
Computers and Structures 128 (2013) 31–37
Contents lists available at SciVerse ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
Technical Note
A fast parallel Gauss Jordan algorithm for matrix inversion using CUDA
0045-7949/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruc.2013.06.015

⇑ Corresponding author. Tel./fax: +91 3222 283422.
E-mail addresses: baidurya@civil.iitkgp.ernet.in, baidurya.bhattacharya@jhu.

edu, baidurya@udel.edu (B. Bhattacharya).
Girish Sharma a, Abhishek Agarwala b, Baidurya Bhattacharya a,⇑
a Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India
b Archayne Labs, Gurgaon 122001, India
a r t i c l e i n f o

Article history:
Received 5 April 2012
Accepted 24 June 2013
Available online 13 September 2013

Keywords:
Graphics processing unit
Compute unified development architecture
Matrix inversion
Gauss Jordan
Parallelization
a b s t r a c t

The ability to invert large matrices quickly and accurately determines the effectiveness of a computa-
tional tool. Current literature suggests that time complexity of matrix inversion is 2 or higher. This paper
redesigns the Gauss Jordan algorithm for matrix inversion on a CUDA platform to exploit the large scale
parallelization feature of a massively multithreaded GPU. The algorithm is tested for various types of
matrices and the performance metrics are studied and compared with CPU based parallel methods.
We show that the time complexity of matrix inversion scales as n as long as n2 threads can be supported
by the GPU.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Matrix inversion is an essential step in a wide range of numer-
ical problems – starting with solving linear equations [1–4], struc-
tural analyses using finite element method [5–7], 3D rendering [8],
digital filtering [9], image filtering [10,11] and image processing
[12] – and constitutes an indispensable component in almost all
mathematical/statistical software suites. Some of the common
available algorithms for computing the inverse of a matrix are
Strassen [13], Strassen-Newton [14], Gaussian elimination [15],
Gauss–Jordan [15], Coppersmith and Winograd [16], LUP Decom-
position [17], Cholesky decomposition [18], QR decomposition
[19], RRQR factorization [20], Monte Carlo Methods for inverse
[21,22], etc.

Until the late 1960s matrix inversion was believed to require a
cubic number of operations, as the fastest algorithm known was
Gaussian elimination method, or rather Gauss Jordan [15] method
which runs in O(n3) time where n is the size of the matrix. In 1969,
Strassen [13] excited the research community by giving the first
sub cubic time algorithm for matrix multiplication, running in
O(n2.808) time. This also reduced the time complexity, w, of Matrix
Inversion using Strassen Multiplication to O(n2.808) time. This dis-
covery triggered a long line of research that gradually reduced
the time complexity w over time. In 1978, Pan [23] presented a
method that proved w < 2.796 and the next year, Bini et al. [24]
introduced the notion of border rank and obtained w < 2.78.
Schönhage [25] generalized this notion in 1981, proving
w < 2.548. In the same paper, combining his work with ideas by
Pan [23], he also showed w < 2.522. The following year, Romani
[26] found that w < 2.517. The first result to break 2.5 was by
Coppersmith and Winograd [16] who obtained w < 2.496. In
1988, Strassen introduced his laser method [27] which was a novel
approach for matrix multiplication, and thus decreased the bound
to w < 2.479. Two years later, Coppersmith and Winograd [28]
combined Strassen’s technique with a novel form of analysis based
on large sets avoiding arithmetic progressions and obtained the
famous bound of w < 2.376 which has remained unchanged for
more than 22 years (a very recent unpublished work [29] claims
to have brought down the limit to w < 2.3727). While most activity
focuses on trying to reduce the exponent w, both Coppersmith and
Winograd [28] and Cohn et al. [30] presented conjectures which if
true would imply w = 2, but never less than that.

Inversion methods for specific types of matrices sometimes
with no set time complexity, like Monte Carlo Methods [21,22]
for inverting Hermitian matrix and positive definite matrix, a fast
algorithm [31] for the inversion of general Toeplitz matrices and
various matrix decomposition methods [16–19] also exist.

Recent developments in parallel architecture and its use in
computation have brought about the prospect of massively parallel
systems capable of reducing running times of codes below the limit
of w = 2. The amount of performance boost of course depends
largely upon the scope of parallelization that the algorithm pro-
vides. Owing to its unique architecture, the graphics processing unit
(GPU) enables massive parallelization unlike anything possible on a
CPU based network, as described later. The Gauss Jordan method is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2013.06.015&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2013.06.015
mailto:baidurya@civil.iitkgp.ernet.in
mailto:baidurya.bhattacharya@jhu.edu
mailto:baidurya.bhattacharya@jhu.edu
mailto:baidurya@udel.edu
http://dx.doi.org/10.1016/j.compstruc.2013.06.015
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

32 G. Sharma et al. / Computers and Structures 128 (2013) 31–37
one of the oldest methods for matrix inversion. It is straightforward
and robust and is particularly suitable for massive parallelization
unlike many of the more advanced methods. Nevertheless, the
available literature either on the scope of parallelization of the
Gauss Jordan algorithm or its optimization appear rather insuffi-
cient. This paper tailors and implements the Gauss–Jordan
algorithm for matrix inversion on a CUDA (Compute Unified Device
Architecture [32]) based GPU platform and studies the performance
metrics of the algorithm.

2. Parallelization and challenges

The Strassen approach [14,33] for matrix inversion reduces the
problem of inverting an n � n matrix into seven n/2 � n/2 multipli-
cations and inversion of two n/2 � n/2 matrices, each of which then
can be solved recursively. The inverse is given as:

A�1 ¼
A11 A12

A21 A22

� ��1

¼
C11 C12

C21 C22

� �
ð1Þ

The four partitions of C may be computed in the following steps:

1: P1 ¼ A�1
11 2: P2 ¼ A21 � P1 3: P3 ¼ P1 � A12

4: P4 ¼ A21 � P3 5: P5 ¼ P4 � A22 6: P6 ¼ P�1
5

7: C12 ¼ P3 � P6 8: C21 ¼ P6 � P2 9: C11 ¼ P1 � P3 � C21

10: C22 ¼ �P6

ð2Þ

For large n, the individual matrices will be large enough to pro-
vide scope for parallelization of the matrix multiplication steps
(steps 2, 3, 4, 7, 8 and 9) while the inverse calculation steps (steps
1 and 6) can be performed recursively. It is this inherent recursive
nature of the algorithm that reduces the scope of large scale
parallelization.

An additional issue faced by the Strassen approach is that the
accuracy of the resultant inverse depends highly on the quarter
matrix A11. If the quarter matrix chosen in step 1 is singular, then
pivoting is required and the matrix with the larger determinant be-
tween A11 and A22 is chosen for step 1. This check is performed in
each level of recursion in steps 1 as well as 6, making this algo-
rithm cumbersome. While certain parallel implementations for
specific types of matrices already have been studied before
[34,35], developing an algorithm to comply with all types of matri-
ces is a difficult task. A much easier and robust parallel implemen-
½C 0� ¼

1 a12=a11 a13=a11 � � � � � �
0 a22 � a21 � a12=a11 a23 � a21 � a13=a11 � � � � � �
0 a32 � a31 � a12=a11 a33 � a31 � a13=a11 � � � � � �
..
. ..

. ..
. . .

. ..
.

0 an2 � an1 � a12=a11 an3 � an1 � a13=a11 � � � . .
.

1=a11 0 0 � � � 0
�a21=a11 1 0 � � � 0
�a31=a11 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

�an1=a11 0 0 � � � 1

�������������

2
66666664

3
77777775

ð6Þ
tation of an algorithm can be developed using the straightforward
method, i.e. Gauss Jordan method, as we have attempted in this
paper.

Parallel computations can be performed both on Central Pro-
cessing Unit (CPU) and graphics processing unit (GPU). While the
term CPU has been used at least since 1960s [36], GPU which is a
single chip processor with multiple capabilities and a highly paral-
lel structure, is of more recent vintage since 1999 [32]. Among the
many differences between CPU and GPU in terms of architecture
and usage, the overriding one with respect to parallelization is
the number of cores present on the respective chip. The number
of parallel threads that can run on a GPU is orders of magnitude
larger than in a CPU [37].
Within a GPU, there are a couple of techniques for performing
parallel computation. In the early years, General-purpose comput-
ing on graphics processing units (GPGPU) [38] was the technique
used to harness the computational power of a GPU by program-
mers, until CUDA (Compute Unified Device Architecture) was made
publically available in 2007 as the platform to replace GPGPU.
CUDA has several advantages [39] over GPGPU and CPU which
includes faster memory sharing and read backs, minimal threads
creation overhead, and flexibility in the choice of programming
language, and has been adopted for this work. More extensive
information about Nvidia and CUDA model is explained in the
Programming Guide published by Nvidia [32].

3. Parallel Gauss–Jordan algorithm

Gauss Jordan method for computation of inverse of a matrix is
one of the oldest methods. It is robust, accurate over range of matri-
ces and does not require multiple checks depending upon the type
of matrix involved. Existing work on the parallelization of the Gauss
Jordan algorithm (e.g. [33]) has been limited in the scope for
parallelization mainly due to the hardware limitations of the time.
This paper redesigns the Gauss Jordan method so as to make full use
of the massive parallelization feature of a modern GPU.

The standard Gauss Jordan method for computation of inverse
of a matrix A of size n starts by augmenting the matrix with the
identity matrix of size n:

½C� ¼ ½A Ij � ð3Þ

Then, performing elementary row transformations on matrix C, the
left half of C0 is transformed column by column into the unit matrix.
This step is broken down into 2 steps per column of the left half
matrix, the first of which is to convert element aii into 1 by the
transformation:

Ri Ri=aii ð4Þ

If aii is zero, then any non-zero row is added to the ith row before
applying Eq. (4). The second step is to reduce all the other elements
of the jth column to zero by the following transformation of every
row except for the jth one:

Ri Ri � Rj � aij ð5Þ

After transforming the first column, the matrix reduces to:
And following these two steps for each column sequentially, the left
half of C0 becomes the unit matrix while the right half becomes the
desired inverse of A:

½C 0� ¼ ½I A�1
��� � ð7Þ

Thus, Step 1 of the original Gauss Jordan algorithm (which con-
verts jth element of jth column to 1, Eq. (4)) involves processing 2n
elements, and Step 2 (which converts the remaining elements of
jth column to 0, Eq. (5)) involves processing (n � 1) rows of 2n
elements each (of which n are identically zero). If these two steps
are performed sequentially, without any parallelization, the time
complexity of the program becomes proportional to n� ðn� 1Þ � n,
i.e. O(n3).

G. Sharma et al. / Computers and Structures 128 (2013) 31–37 33
We now redesign the algorithm to exploit the capabilities of
GPU parallel processing. We perform Steps 1 and 2 in parallel, i.e.
for Step 1, spawn n threads and process the whole row at once,
Fig. 1. Process n elements i.e. ajj in the left side matrix to ajj on the r

Fig. 2. Process n2 elements starting from a1j on the left side matrix to anj on
which can be implemented in CUDA C as shown in Fig. 1. For Step
2 we spawn n� ðn� 1Þ threads to convert the rest of the column to
0 which can be implemented in CUDA C as shown in Fig. 2.
ight side matrix (top), and corresponding pseudo code (bottom).

the right side matrix (top), and corresponding pseudo code (bottom).

Fig. 3. Pseudo code explaining the Gauss Jordan algorithm for matrix inversion adapted to GPU computing.

34 G. Sharma et al. / Computers and Structures 128 (2013) 31–37
We also minimize computations by processing only the first n
columns (starting from the jth column) in the Step 2 instead of pro-
cessing all the 2n columns, as also indicated in Fig. 2. This will re-
duce the computations to half without affecting the final result,
since for the columns after the (n + j)th column, the elements
above the jth row are still zero, hence they will not contribute to
the step as the product will become zero.

A further speed boost is obtained when the program is run
using shared memory. Shared memory is a local common memory
available to all the threads of the same thread block. Data read-
and-write on shared memory is faster than that from GPU global
memory [39] making the shared memory act like a cache for the
GPU. Thus, subject to availability of computational resources, the
time complexity becomes proportional to n� ð1þ 1Þ, i.e. O(n).
The final pseudo code is presented in Fig. 3. Pivoting is done to pre-
vent division by zero exception. While pivoting can be done inside
the second for thread loop using an if. . .else condition, it is done
prematurely for all elements to avoid extra GPU cycles being used
in the if. . .else comparison.

4. Testing and results

4.1. Hardware advantages and limitations

As shown above, if all the n2 computations can be done in par-
allel, the complexity of the Gauss Jordan algorithm on a massively
parallel architecture reduces to O(n). For all the computation to be
in parallel, the thread creation should be very light, else the crea-
tion time of n2 threads will contribute to time complexity. This is
where CUDA has an advantage [39] over other methods for parallel
computation. Thread creation in CUDA is very light and it does not
contribute to the run-time of the program.
While thread creation is lighter using CUDA, the use of GPU
brings in some limitations dependent on the hardware of the
GPU. The first limitation has to do with the running of n2 threads
in parallel. This depends upon the type of GPU used for computa-
tion. A modern GPU (Nvidia GTX 590) may have up to 49,152 active
threads divided into sets of 32 (called warps) [32] but only 1024
[32] dispatched threads running in parallel, i.e. 32 SM � 48
Resident Warps per SM � 32 Threads per warp (Table 9 of [32])
active threads but only 32 SM � 32 Threads per warp running in
parallel, any number above that will lead to stacking of warps
waiting for their turns. Thus, up to n =

p
1024 = 32, the algorithm

will have time complexity of O(n);the complexity starts increasing
for n > 221 and becomes quadratic at n = 1024. If cluster of parallel
GPUs is used and the program is run using all the GPUs, then this
hardware capacity can be further increased.

The second issue is the space available for the shared memory.
We are using GPU’s shared memory to store maximum of one row
and one column of the matrix in order to prevent reads and writes
to the global memory of the GPU. Access to the global memory is
very slow as compared to the shared memory [40], but at the same
time, the size of the shared memory is very small (up to 48 KB) as
compared to the global memory (up to 3 GB).

The third issue is the maximum allowed block size (in terms of
maximum number of threads per bock). In this algorithm, each
block handles the computations involved for one column at a time.
If the column size is greater than the maximum allowed block size,
then the matrix would be needed to vertically split so that each
part is having appropriate column size. Maximum number of
threads allowed in a modern GPU is 1024 [32] (#compute-capabil-
ity-3-0).

A modern CPU, in comparison, can spawn a small number of
threads, typically 8 or 12 [41]. Adding to this the fact that thread

G. Sharma et al. / Computers and Structures 128 (2013) 31–37 35
creation on a CPU is not as light as that on a GPU, a GPU has a clear
advantage over a CPU for parallel computation.

4.2. Results and comparisons

The Algorithm was programmed using CUDA C and was tested
against various sizes of the following types of matrices: identity
matrix, sparse matrix, band matrix (with k = n/2), random matrix
and hollow matrix. For this paper, the GPU used was Nvidia GTX
260 (216 Cores), capable of storing 9216 active threads and 288
dispatched concurrent threads (9 SM � 32 Resident Warps/
SM � 32 Threads/Warp and 9 SM � 32 Threads/Warp respectively),
having a shared memory size of 16 KB (up to 4096 floating point
locations) and a maximum thread per block limit of 512. The
CPU used for comparison purpose is Intel Quad Core processor
Q8400 @ 2.66 GHz each, capable of running 4 threads in parallel.

As the compute capability of GTX 260 is 1.3, we chose to use
single-precision floating-point arithmetic operations instead of
double-precision floating-point numbers as the wrap cycles in-
volved for double-precision operations is 8 times that of single pre-
cision [32] (#compute-capability-1-x). In depth accuracy and
(a)

(c)

(e)

Fig. 4. (a–e): Linear computation time for matrix inversion is observed up to n �
performance analyses on single and double precision floating point
numbers can be found in [42]. Finally, the optimization flags used
while compiling the program are -ftz = true, --use_fast_math and
--prec-div = true.

While Identity matrix is used to test the accuracy of the inverse,
sparse matrix is the most general matrix in case of problems
involving structural analysis. Hollow matrix is a matrix having all
the diagonal elements as zero. Thus a hollow matrix would require
an extra row transformation to fix the diagonal element for each
column making it the type of matrix with the maximum amount
of computation involved. For performance testing of the algorithm,
all the matrices were stored in dense format.

Fig. 4 displays the computational time taken for matrix size up
to 100 and demonstrates the linear nature of time complexity.
Fig. 5 displays the time taken by the algorithm on GPU over a larger
scale as compared to a CPU.

It is observed from Fig. 4 that the graph is still linear for around
n = 64 even though a matrix of size 64 require 4096 parallel run-
ning threads. This is explained by the fact that all the 4096 threads
or 128 warps were already loaded in memory and scheduled to be
dispatched thus there was no latency observed while dispatching
(b)

(d)

(f)

64 using GPU, (f) computation time for inverting hollow matrix using CPU.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Computation time for inverting different types of matrices, (a–e): using GPU, (f) using CPU.

36 G. Sharma et al. / Computers and Structures 128 (2013) 31–37
these warps of threads. Also, due to the elegant design of the algo-
rithm in Fig. 2, running time of each thread is not significant en-
ough as compared to the total number of threads to contribute to
complexity. We also observe that the first quadratic curvature in
the graph is observed at around n = 100. For n = 100, 10,100
threads are required, whereas only 9216 threads can be scheduled
at a time. This leads to latencies between dispatching warps when
the remaining 884 threads are loaded in the memory. Moreover,
10,100 would require 35 cycles of 288 parallel running threads
to complete the algorithm. Thus values around n = 100 start dis-
playing the quadratic nature of algorithm due to hardware
limitations.
5. Conclusions

The ability to invert large matrices accurately and quickly
determines the effectiveness of a wide range of computational
algorithms and products. GPU computing is ideally suited for mas-
sively parallel tasks as the thread creation and memory transfer
overheads are negligible. We have redesigned the Gauss Jordan
algorithm for matrix inversion on GPU based CUDA platform,
tested it on five different types of matrices (identity, sparse,
banded, random and hollow) of various sizes, and have shown that
the time complexity of matrix inversion scales as n if enough com-
putational resources are available (we were limited by only one
GPU capable of running 288 threads in parallel with which we
showed that the time complexity is in order of n up to n � 64). Lin-
ear scaling will continue by using a network of GPUs. We also show
that GPU based parallelization for matrix inversion is orders of
magnitude faster than CPU based parallelization. Even a small ma-
trix of size 10 � 10 did better using the parallel CUDA Gauss Jordan
algorithm.
References

[1] Demmel JW. Applied numerical linear algebra. 1st ed. Society for Industrial
Mathematics; 1997.

[2] Gantmacher FR. Applications of the theory of matrices. 1st ed. Dover
Publications; 2005.

[3] Arfken GB, Weber HJ, Harris FE. Mathematical methods for physicists: a
comprehensive guide. 7th ed. Academic Press Inc; 2012.

http://refhub.elsevier.com/S0045-7949(13)00209-5/h0005
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0005
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0010
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0010
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0015
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0015

G. Sharma et al. / Computers and Structures 128 (2013) 31–37 37
[4] Marcus M, Minc H. Introduction to linear algebra. New ed. New York: Dover
Publications; 1988.

[5] Felippa CA, Park KC. The construction of free–free flexibility matrices for multilevel
structural analysis. Comput Methods Appl Mech Eng 2002;191:2139–68.

[6] Liang P, Chen SH, Huang C. Moore–Penrose inverse method of topological
variation of finite element systems. Comput Struct 1997;62.

[7] Fung TC. Derivatives of dynamic stiffness matrices. In: Proceedings of the Asian
Pacific conference on computational mechanics. Hong Kong; 1991. p. 607–613.

[8] Shi HF, Payandeh S., GPU in haptic rendering of deformable objects. In:
Proceedings of haptics: perception, devices and scenarios: 6th international
conference. Madrid; 2008. p. 163–168

[9] Farden DC, Scharf LL. Statistical design of non recursive digital filter. IEEE Trans
Acoust Speech Signal Process 1974;22:188–96.

[10] Jain AK. An operator factorization method for restoration of blurred images.
IEEE Trans Comput 1977;C-26:1061–71.

[11] Jain AK, Padgug RA. Fast restoration of finite objects degraded by finite PSF. J
Comput Phys 1978;28:167–80.

[12] Leroux JD, Selivanov V, Fontaine R, Lecomte R. Fast 3D image reconstruction
method based on svd decomposition of a block-circulant system matrix. In:
IEEE nuclear science symposium and medical imaging conference, NSS–MIC.
Honolulu; 2007. p. 3038–3045.

[13] Strassen V. Gaussian elimination is not optimal. Numer Math 1969;13:354–6.
[14] Bailey DH, Ferguson HRP. A Strassen–Newton algorithm for high-speed

parallelizable matrix inversion. In: Supercomputing’88, proceedings of the
1988 ACM/IEEE conference on supercomputing. Orlando; 1988. p. 419–424.

[15] Althoen SC, McLaughlin R. Gauss–Jordan reduction: a brief history. Am Math
Mon 1987;94:130–42.

[16] Coppersmith D, Winograd S. On the asymptotic complexity of matrix
multiplication. SIAM J Comput 1981;11:472–92.

[17] Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Section 2.3: LU
decomposition and its applications, numerical recipes in FORTRAN: the art of
scientific computing. New York: Cambridge University Press; 2007. p. 34–42.

[18] Burian A, Takala J, Ylinen M. A fixed-point implementation of matrix inversion
using Cholesky decomposition. In: Proceedings of the 46th international
Midwest symposium on circuits and systems. Cairo; 2003. p. 1431–1433.

[19] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Section 2.10: QR
decomposition, numerical recipes: the art of scientific computing. New
York: Cambridge University Press; 2007. p. 1256.

[20] Ming G, Eisenstat SC. Efficient algorithms for computing a strong rank-
revealing QR factorization. SIAM J Sci Comput 1996;17:848–69.

[21] Fathi Vajargah B. A way to obtain Monte Carlo matrix inversion with minimal
error. Appl Math Comput 2007;191:225–33.

[22] Fathi Vajargah B. Different stochastic algorithms to obtain matrix inversion.
Appl Math Comput 2007;189:1841–6.

[23] Pan VY. Strassen’s algorithm is not optimal trilinear technique of aggregating,
uniting and canceling for constructing fast algorithms for matrix operations.
In: Proceedings of the 19th annual symposium on foundations of computer
science. Ann Arbo; 1978. p. 166–176.
[24] Bini D, Capovani M, Romani F, Lotti G. O(n2.7799) complexity for nxn
approximate matrix multiplication. Inf Process Lett 1979;8:234–5.

[25] Schönhage A. Partial and total matrix multiplication. SIAM J Comput
1981;10:434–55.

[26] Romani F. Some properties of disjoint sums of tensors related to matrix
multiplication. SIAM J Comput 1982;11:263–7.

[27] Strassen V. The asymptotic spectrum of tensors. J Für Die Reine und
Angewandte Mathematik 1988;384:102–54.

[28] Coppersmith D, Winograd S. Matrix multiplication via arithmetic progressions.
J. Symbolic Comput 1990;9:251–80.

[29] Williams VY. Breaking the Coppersmith–Winograd barrier. Retrieved from:
Accessed: http://unicyb.kiev.ua/~vingar/progr/201112/1semestr/matrixmult.
pdf.

[30] Cohn H, Kleinberg R, Szegedy B, Umans C. Group-theoretic algorithms for
matrix multiplication. In: 46th annual IEEE symposium on foundations of
computer science. Pittsburgh; 2005. p. 379–388.

[31] JAIN AK. Fast Inversion of banded toeplitz matrices by circular decompositions.
IEEE Trans Acoust Speech Signal Process 1978;26.

[32] CUDA Programming Guide. Retrieved from: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html. Accessed: 05 December 2012.

[33] Vancea C, Vancea F. Parallel algorithm for computing matrix inverse by Gauss–
Jordan method. J Comput Sci Control Syst 2008;1:110–3.

[34] Gravvanis GA, Filelis-Papadopoulos CK, Giannoutakis KM. Solving finite
difference linear systems on GPUs: CUDA based parallel explicit
preconditioned biconjugate conjugate gradient type methods. J Supercomput
2011;61:590–604.

[35] Filelis-Papadopoulos CK, Gravvanis GA, Matskanidis PI, Giannoutakis KM. On
the GPGPU parallelization issues of finite element approximate inverse
preconditioning. J Comput Appl Math 2011;236:294–307.

[36] Weik MH. A third survey of domestic electronic digital computing systems,
(Report No. 1115); 1961 Retrieved from B.R. Laboratories: http://ed-thelen.
org/comp-hist/BRL61.html.

[37] CUDA C Best Practices Guide. Retrieved from: http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html. Accessed: 05 December 2012.

[38] General-purpose computing on graphics processing units. Retrieved from:
http://www.gpgpu.org/. Accessed: 01 April 2012.

[39] Mei W, Hwu W, Kirk D. Video lectures for ECE 498AL, University of Illinois
[m4v Video]; Retrieved from: http://www.nvidia.com/content/cudazone/
cudacasts/CUDA%20Programming%20Model.m4v. Accessed: 01 April 2012.

[40] Farber R. CUDA application design and development. 1st ed. Waltham
Massachusetts: Morgan Kaufman; 2011.

[41] Intel-Core-i7-3930K-Processor. Retrieved from: http://ark.intel.com/products/
63697/Intel-Core-i7-3930K-Processor-%2812M-Cache-3_20-GHz%29.
Accessed: 01 April 2012.

[42] Whitehead N, Fit-Florea A. Precision & performance: floating point and IEEE
754 compliance for NVIDIA GPUs. Retrieved from: https://developer.
nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.
pdf. Accessed: 05 December 2012.

http://refhub.elsevier.com/S0045-7949(13)00209-5/h0020
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0020
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0025
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0025
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0030
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0030
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0035
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0035
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0040
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0040
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0045
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0045
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0050
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0055
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0055
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0060
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0060
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0065
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0065
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0065
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0070
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0070
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0070
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0075
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0075
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0080
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0080
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0085
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0085
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0090
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0090
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0090
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0095
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0095
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0100
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0100
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0105
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0105
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0110
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0110
http://unicyb.kiev.ua/~vingar/progr/201112/1semestr/matrixmult.pdf
http://unicyb.kiev.ua/~vingar/progr/201112/1semestr/matrixmult.pdf
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0115
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0115
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0120
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0120
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0125
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0125
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0125
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0125
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0130
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0130
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0130
http://ed-thelen.org/comp-hist/BRL61.html
http://ed-thelen.org/comp-hist/BRL61.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://www.gpgpu.org/
http://www.nvidia.com/content/cudazone/cudacasts/CUDA%20Programming%20Model.m4v
http://www.nvidia.com/content/cudazone/cudacasts/CUDA%20Programming%20Model.m4v
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0135
http://refhub.elsevier.com/S0045-7949(13)00209-5/h0135
http://ark.intel.com/products/63697/Intel-Core-i7-3930K-Processor-%2812M-Cache-3_20-GHz%29
http://ark.intel.com/products/63697/Intel-Core-i7-3930K-Processor-%2812M-Cache-3_20-GHz%29
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

	A fast parallel Gauss Jordan algorithm for matrix inversion using CUDA
	1 Introduction
	2 Parallelization and challenges
	3 Parallel Gauss–Jordan algorithm
	4 Testing and results
	4.1 Hardware advantages and limitations
	4.2 Results and comparisons

	5 Conclusions
	References

