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A B S T R A C T

For a coherent, binary system made up of binary elements, the exact failure probability requires knowledge
of statistical dependence of all orders among the minimal cut sets. Since dependence among the cut sets
beyond the second order is generally difficult to obtain, second order bounds on system failure probability
have practical value. The upper bound is conservative by definition and can be adopted in reliability based
decision making. In this paper we propose a new hierarchy of m-level second order upper bounds, 𝐵𝑚 : the
well-known Kounias–Vanmarcke–Hunter–Ditlevsen (KVHD) bound – the current standard for upper bounds
using second order joint probabilities – turns out to be the weakest member of this family (𝑚 = 1). We prove
that 𝐵𝑚 is non-increasing with level m in every ordering of the cut sets, and derive conditions under which 𝐵𝑚+1

is strictly less than 𝐵𝑚 for any m and any ordering. We also derive conditions under which the optimal level
m bound is strictly less than the optimal level m + 1 bound, and show that this improvement asymptotically
achieves a probability of 1 as long as the second order joint probabilities are only constrained by the pair
of corresponding first order probabilities. Numerical examples show that our second order upper bounds can
yield tighter values than previously achieved and in every case exhibit considerable less scatter across the
entire n! orderings of the cut sets compared to KVHD bounds. Our results therefore may lead to more efficient
identification of the optimal upper bound when coupled with existing linear programming and tree search
based approaches.
. Introduction

For a binary system made up of binary elements, the system failure
vent can be described as the union of its minimal cut sets:

𝑠𝑦𝑠 =
𝑛
⋃

𝑖=1
𝐶𝑖 (1)

ach minimal cut set, 𝐶𝑖, is a parallel arrangement of its constituent
lements:

𝑖 = 𝐹𝑖1 ∩ 𝐹𝑖2 ∩⋯ ∩ 𝐹𝑖max
, 𝑖 = 1,… , 𝑛 (2)

here 𝐹𝑖 = {𝑋𝑖 = 0}, 𝑖 = 1,… , 𝑛𝑒𝑙 is the failure of the 𝑖th binary
lement with

𝑖 =
{

0 if element 𝑖 is down
1 if element 𝑖 is up , 𝑖 = 1,… , 𝑛𝑒𝑙 (3)

he minimal cut sets are generally not independent (nor are they
isjoint) owing to (i) the presence of the same element failure event
𝑗 in more than one 𝐶𝑖’s, and (ii) possible mutual dependence among
he 𝐹𝑗 ’s themselves. Hence, a central problem in reliability analysis is
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to estimate the union probability in Eq. (1):

𝑃 [𝐹𝑠𝑦𝑠] = 𝑃
𝑛
⋃

𝑖=1
𝐶𝑖 =

∑

all 𝑖
𝑃𝑖 −

∑

all 𝑖,𝑗;𝑗<𝑖
𝑃𝑖𝑗 +

∑

all 𝑖,𝑗,𝑘;𝑘<𝑗<𝑖
𝑃𝑖𝑗𝑘 −⋯ (4)

where 𝑃𝑖 = 𝑃 [𝐶𝑖], 𝑃𝑖𝑗 = 𝑃 [𝐶𝑖𝐶𝑗 ], 𝑃𝑖𝑗𝑘 = 𝑃 [𝐶𝑖𝐶𝑗𝐶𝑘], etc. In general, the
evaluation of 𝑃𝑖, 𝑃𝑖𝑗 , 𝑃𝑖𝑗𝑘,… requires the joint probability information
of the constituent element failure events 𝐹𝑖𝑗 . If each cut set in (1) can
be described by a limit state function 𝑔𝑖 such that 𝐶𝑖 = {𝑔𝑖 < 0} and 𝑔𝑖 is
a linear combination of one or more jointly normal random variables,
then an exact (numerical) evaluation of Eq. (4) is possible with only
the first order 𝑃𝑖’s and the second order 𝑃𝑖𝑗 ’s; in every other case,
higher order joint probabilities are required for evaluating the union
probability.

Bonferroni [1] first introduced upper and lower bounds which are
simple algebraic sums with alternating signs of the joint probabilities.
As a matter of practical consideration however, joint probabilities be-
yond the second order are difficult to obtain, and hence bounds on the
union probability based only on second order joint information have
a practical appeal. Further, second order upper bounds, which are the
subject of this paper, are again of practical interest in reliability analysis
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as they provide conservative estimates of system failure probability
with limited data.

Upper and lower Bonferroni bounds have been the subject of con-
siderable research since the 1950s. The first such (lower) bound was
discovered by Chung and Erdos [2] which was also found indepen-
dently by Whittle [3]. The first approximations to the union proba-
bility in structural reliability involved only first order probabilities:
Freudenthal et al. [4] approximated it as the sum of first order failure
probabilities ∑

𝑃𝑖. Cornell [5] proposed the lower bound to the union
probability as max𝑃𝑖 and showed that for a coherent system the upper
bound to the union probability is 1 −

∏𝑛
𝑖=1[1 − 𝑃

(

𝐹𝑖
)

]. Using the
onferroni inequalities, Kounias [6] obtained upper and lower bounds

nvolving both first and second order probabilities; similar second order
ounds were subsequently proposed by Vanmarcke [7], Hunter [8] and
itlevsen [9]: We refer to these as KVHD bounds in this paper. For
structural system with normally distributed performance functions,
hmed and Koo [10] showed that the upper and lower bounds of the
esultant joint normal probability are narrower than KVHD bounds.
mprovements using third or higher order joint probabilities to KVHD
econd order bounds were later proposed by Hohenbichler and Rack-
itz [11], Ramachandran [12], Feng [13], Greig [14], Zhang [15], and
amachandran [16]. Reliability bounds based on interval probability

heory have been developed by Cui and Blockley [17], Qiu et al. [18],
nd Wang et al. [19,20]. Recently, a new method using interval Monte
arlo method along with Linear Programming has been developed by
hang et al. [21].

The second and higher order bounds discussed above depend on
he ordering of the failure events and one would in principle need to
ompute the bounds for all 𝑛! permutations of the minimal cut sets
n order to obtain the sharpest bounds. This can be computationally
xpensive for large problems and researchers have looked for methods
hat do not require computing bounds for all orderings. Hailerpin [22]
as the first to formulate the Boolean probability bounding problem as
linear programming (LP) problem and showed that Boole’s method

s similar to Fourier’s elimination. Using the LP proposed by Hailerpin,
ounias and Marin [23] proposed second order upper and lower bounds
sing indicator random variables and LP. They showed that previously
nown bounds [2,3,6,24–27] are particular cases of their bounds. They
ave also shown that if the events are assumed exchangeable then their
ounds are the best in a given class of bounds. Around the same time,
werel [28,29] described the dual feasible bases of LP to obtain upper
ounds on union probabilities based on first two binomial moments.
alambos [30] also found the same upper bound based on first two
inomial moments using a different technique. A few years later,
alambos and Mucci [31] and Platz [32] developed bounds using LP

hat use higher binomial moments. Prekopa in his series of papers [33–
6] formulated the Bonferri Inequalities of Dawson and Sankoff [24]
s a linear programming problem, replaced the first and second order
robabilities with the first 𝑚 binomial moments of the random variable
nd obtained sharper bounds.

Tree structures have also been used to search optimal bounds. Buk-
zár and Prékopa [37] introduced the idea of Cherry Trees which are
pecial cases of chordal graph structure, and derived third order upper
ounds to the union probability. Tomescu [38] generalized the Hunter
ound [8] and also proposed new lower bounds using the concept
f hypertrees in the framework of uniform hypergraphs. Bukszár and
zántai [39] improved Tomescu’s lower and upper bounds [38] by
ntroducing the idea of hypercherry tree in the same ways as Bukszár
nd Prékopa [37] generalized the Hunter–Worsley [8,40] bound. Boros
nd Veneziani [41] generalized the cherry tree bounds by using chordal
raph structure which are graphs where every cycle of 4 or more
ertices have a chord that connects two non-consecutive vertices of the
ycle. This graph structure was further generalized by Dohmen [42,43]
o find a new set of lower bounds using chordal-sieve bounds.

For structural systems, Song and Der Kiureghian [44] showed for

he first time that LP can be used to compute bounds given any i

2

available information on the component probabilities and that the LP
based bounds were independent of the ordering of the components and
produced the narrowest possible bounds. Subsequently, Der Kiureghian
and Song [45] extended the formulation to complex systems having
large number of cut and link sets and proposed multi-scale modeling
of the decomposed system. Chang and Mori [46] developed a relaxed
linear programming (RLP) bounds method while Chang et al. [47] de-
rived bounds on failure probability of k-out-of-n systems with the help
of universal generating function and LP. Byun and Song [48] applied
binary integer programming to tackle the problem of exponential rise
in the number of variables in LP with system size. A recent overview of
all these structural reliability estimation methods is available in Song,
Kang, Lee and Chun [49].

A considerable amount of work over the past decades has focused
exclusively on the lower bound. Although outside the scope of this
paper, we summarize them for the sake of completeness. Prekopa and
Gao [50] generalized the lower bounds developed by De Caen [51]
and Kuai et al. [52] using additional information (third order joint
probabilities). The Kuai et al. [52] lower bound was further improved
by Yang et al. [53,54]. A similar lower bound using only first and
second order probabilities was also proposed much earlier by Gal-
lot [25]. This bound was recently revisited by Feng et al. [55,56] and
Mao et al. [57]. They also showed that the Gallot Bound [25] is not
necessarily sharper than the Kuai et al. [52] lower bound. The De
Caen bound [51] was further improved by Cohen and Merhav [58].
Szántai [59] used variance reduction technique to improve previously
discovered lower bounds.

The union probability bounding problem is a special case of prob-
abilistic satisfiability problem [60]. The linear programming models
are generally computationally very intensive and not polynomially
computable [61]. Zemel [62], Jaumard et al. [63] and Georgakopou-
los et al. [60] proposed column generation techniques to solve this
problem. Nevertheless, column generation and quadratic binary opti-
mization are similar algorithms and thus column generation method is
an NP-hard optimization problem [63]. Deza and Laurent [64] showed
that column generation is algorithmically is similar to the separation
problem for the cut polytope. They developed upper and lower bounds
by using inequalities for this correlation polytope. Boros and Ham-
mer [65] further generalize these cut polytope bounds. This complexity,
feasibility of the cut polytope problem has been also discussed by
Kavvadias and Papadimitriou [66] and Veneziani [67].

In this article, we propose a new hierarchy of m level of second
order upper bounds, 𝐵𝑚, to the n-dimensional (m < n) union proba-
bility 𝑃 [𝐹𝑠𝑦𝑠]: The well-known Kounias–Vanmarcke–Hunter–Ditlevsen
(KVHD) second order upper bound [6–9] turns out to be the weakest
member of this family (𝑚 = 1). The hierarchy of bounds is non-
increasing with level m in every ordering of the cut sets, and we derive
conditions under which 𝐵𝑚+1 is strictly less than 𝐵𝑚 for any m and any
rdering. We also derive conditions under which the optimal level m
1 bound is strictly less than the optimal level m bound, and show

hat this improvement asymptotically achieves a probability of 1 as
ong as the second order joint probabilities are only constrained by
he pair of corresponding first order probabilities. Numerical examples
how that our second order upper bounds can yield tighter values than
reviously achieved and in every case our bounds exhibit considerable
ess scatter across the entire n! orderings of the cut sets compared to
VHD bounds which are the current standard for upper bounds using
econd order joint probabilities. Our results therefore may lead to more
fficient identification of the optimal upper bound when coupled with
xisting linear programming and tree search based approaches.

Before presenting the general form, we start with deriving the level
bound, and show that even for 𝑚 = 2, our second order bound is

ess sensitive to the ordering of the cut sets, that it is at least as good
s the KVHD bound in every case, and, under a very mild condition,
s better than the KVHD upper bound in a given ordering. The level 2
pper bound is given in Eq. (11) and the general level m upper bound

s given in Eq. (26) below.



S. Ghosh and B. Bhattacharya Probabilistic Engineering Mechanics 70 (2022) 103335
2. The level-2 second order bound

We list out the contribution of each additional cut set in the union
by rewriting Eq (4) as:
𝑃 [𝐹𝑠𝑦𝑠] = 𝑃1

+𝑃2 − 𝑃12

+𝑃3 − 𝑃13 − 𝑃23 + 𝑃123

+𝑃4 − 𝑃14 − 𝑃24 − 𝑃34 + 𝑃124 + 𝑃134 + 𝑃234 − 𝑃1234

+𝑃5 − 𝑃15 − 𝑃25 − 𝑃35 − 𝑃45 + 𝑃125 + 𝑃135 + 𝑃145 + 𝑃235

+𝑃245 + 𝑃345 − 𝑃1235 − 𝑃1245 − 𝑃1345 − 𝑃2345 + 𝑃12345

+𝑃6 −⋯

(5)

From the third line onward, we can rewrite (5) as:
𝑃 [𝐹𝑠𝑦𝑠] = 𝑃1

+𝑃2 − 𝑃12

+𝑃3 − 𝑃 (𝐶1𝐶3 ∪ 𝐶2𝐶3)

+𝑃4 − 𝑃 (𝐶1𝐶4 ∪ 𝐶2𝐶4 ∪ 𝐶3𝐶4)

+𝑃5 − 𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5 ∪ 𝐶3𝐶5 ∪ 𝐶4𝐶5)

+𝑃6 −⋯

(6)

Since 𝑃 (𝐴1 ∪ 𝐴2 ∪⋯) ≥ max𝑃 (𝐴𝑖) for any collection of sets 𝐴1, 𝐴2,…,
we have:
𝑃 [𝐹𝑠𝑦𝑠] ≤ 𝑃1

+𝑃2 − 𝑃12

+𝑃3 − max(𝑃13, 𝑃23)

+𝑃4 − max(𝑃14, 𝑃24, 𝑃34)

+𝑃5 − max(𝑃15, 𝑃25, 𝑃35, 𝑃45)

+𝑃6 −⋯

= 𝑃1 + 𝑃2 − 𝑃12 +
𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑖

{

𝑃𝑗𝑖
}

]

= 𝐵1

(7)

which is the well-known second order KVHD upper bound [6–9] men-
tioned above. In this paper we show that KVHD upper bound happens
to be the first member of a family of hierarchical level-m second order
upper bounds, 𝐵𝑚, whose general form will be presented in Section 4.
Before presenting the general form, we present the level 2 bound next.

We can obtain a better bound by going back to the third line onward
in (6). Since 𝑃 (𝐴1 ∪ 𝐴2 ∪ 𝐴3 …) ≥ 𝑃 (𝐴𝑖 ∪ 𝐴𝑗 ), 𝑖, 𝑗 = 1, 2, 3,… , 𝑖 ≠ 𝑗 for
any collection of three or more sets 𝐴1, 𝐴2, 𝐴3,…, we have:
𝑃 [𝐹𝑠𝑦𝑠] ≤ 𝑃1

+𝑃2 − 𝑃12

+𝑃3 − 𝑃 (𝐶1𝐶3 ∪ 𝐶2𝐶3)

+𝑃4 − max
[

𝑃 (𝐶1𝐶4 ∪ 𝐶2𝐶4), 𝑃 (𝐶1𝐶4 ∪ 𝐶3𝐶4),
𝑃 (𝐶2𝐶4 ∪ 𝐶3𝐶4)

]

+𝑃5 − max
⎡

⎢

⎢

⎣

𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5), 𝑃 (𝐶1𝐶5 ∪ 𝐶3𝐶5),
𝑃 (𝐶1𝐶5 ∪ 𝐶4𝐶5), 𝑃 (𝐶2𝐶5 ∪ 𝐶3𝐶5),
𝑃 (𝐶2𝐶5 ∪ 𝐶4𝐶5), 𝑃 (𝐶3𝐶5 ∪ 𝐶4𝐶5)

⎤

⎥

⎥

⎦

+𝑃6 −⋯

= 𝑃1 + 𝑃2 − 𝑃12 +
𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑙<𝑖

[

𝑃 (𝐶𝑗𝐶𝑖 ∪ 𝐶𝑙𝐶𝑖)
]

]

(8)

Let us look at any one argument within the max [ ] brackets in (8). The
general form is:

𝑃 (𝐶 𝐶 ∪ 𝐶 𝐶 ) = 𝑃 + 𝑃 − 𝑃 (9)
𝑗 𝑖 𝑙 𝑖 𝑗𝑖 𝑙𝑖 𝑗𝑙𝑖

3

Since 𝑃𝑗𝑙𝑖 ≤ 𝑃𝑗𝑖, 𝑃𝑗𝑙𝑖 ≤ 𝑃𝑙𝑖, 𝑃𝑗𝑙𝑖 ≤ 𝑃𝑙𝑗 in all cases, we can write:

𝑃 (𝐶𝑗𝐶𝑖 ∪ 𝐶𝑙𝐶𝑖) ≥ 𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 ) (10)

which gives us a new upper bound:
𝑃 [𝐹𝑠𝑦𝑠] ≤ 𝑃1 + 𝑃2 − 𝑃12

+
𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑙<𝑖

{

𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 )
}

]+

= 𝐵2

(11)

We first show that this level 2 bound is at least as good as KVHD bound
in every permutation of the index set, and then derive the condition
under which 𝐵2 is better than 𝐵1 in a given permutation. Subsequently,
we discuss under what conditions the best 𝐵2 is better than the best 𝐵1
over all permutation of the index set. We will also generalize the results
as the number of cut sets (n) becomes large.

3. An improvement over KVHD bound

The proposed level 2 upper bound (11) is always less than or equal
to the upper KVHD bound regardless of the ordering of events; further,
if a rather mild condition is satisfied (which we term Condition 1
below), there are at least 2(𝑛−3)! orderings where our bound is strictly
less than KVHD. To show these we need the following results.

Theorem 1. In any ordering (𝜋) of the index set describing second order
probabilities, the level 2 bound is less than or equal to the corresponding
level 1 bound: 𝐵2(𝜋) ≤ 𝐵1(𝜋).

Proof. We prove the theorem by showing that for all quantities 𝑃𝑗𝑖, 𝑃𝑙𝑖
and 𝑃𝑙𝑗 such that 1 ≤ 𝑗 < 𝑙 < 𝑖, 3 ≤ 𝑖 in ordering (𝜋), we must have

max
1≤𝑗<𝑙<𝑖

{

𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 )
}

≥ max
1≤𝑗<𝑖

{

𝑃𝑗𝑖
}

(12)

For any three quantities a, b and c we can write:

𝑏 ≥ min(𝑎, 𝑏, 𝑐)
𝑏 − min(𝑎, 𝑏, 𝑐) ≥ 0

(13)

Adding a on both sides, we obtain

𝑎 + 𝑏 − min(𝑎, 𝑏, 𝑐) ≥ 𝑎 (14)

Without loss of generality, let us assign 𝑎 = 𝑃𝑗𝑖, 𝑏 = 𝑃𝑙𝑖, 𝑐 = 𝑃𝑙𝑗 . Taking
the maximum on both sides of (14) over 1 ≤ 𝑗 < 𝑙 < 𝑖, 3 ≤ 𝑖 we arrive
at (12). We now sum both sides of (12) from i = 3 to n and subtract
both sides from 𝑃1 + 𝑃2 − 𝑃12 +

∑𝑛
𝑖=3 𝑃𝑖 to obtain:

𝑃1 + 𝑃2 − 𝑃12 +
𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑙<𝑖

{

𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 )
}

]

≤ 𝑃1 + 𝑃2 − 𝑃12 +
𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑖

{

𝑃𝑗𝑖
}

]

i.e., 𝐵2(𝜋) ≤ 𝐵1(𝜋)

(15)

Hence, proved.

Since this holds for any ordering (𝜋) of the minimal cut sets
{

𝐶𝑖
}

,
i.e., for every permutation of the index set {1, 2,… , 𝑛}, our bound (11)
is at least as good as KVHD bound in Eq (7) for any given permutation
of the cut sets. We now show that our bound is strictly better than
KVHD under a rather mild condition, introduced next.

Condition 1. Given second order probabilities 𝑃𝑖𝑗 = 𝑃𝑗𝑖, 𝑖 = 1,… , 𝑛 −
1, 𝑖 < 𝑗 ≤ 𝑛, in some ordering of the index set, there is one triplet a, b,
c (all distinct with a, b < c) for which the largest off-diagonal element
above the diagonal in column c, 𝑃𝑎𝑐 = max𝑖<𝑐 (𝑃𝑖𝑐 ), satisfies

𝑃 = max(𝑃 ) ≥ 𝑃 > 𝑃 (16)
𝑎𝑐 𝑖<𝑐 𝑖𝑐 𝑏𝑐 𝑎𝑏
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i
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Fig. 1. Four element series system: comparison of proposed level 2 with KVHD upper bound.
Fig. 2. Four element series system: scatter in proposed level 2 vs. KVHD upper bound for all orderings of the index set.
≤
Theorem 2. If a particular ordering of the index set of second order
probabilities satisfies Condition 1, the level 2 bound is less than the level
1 bound in that ordering.

Proof. Since 𝑃𝑎𝑐 ≥ 𝑃𝑏𝑐 > 𝑃𝑎𝑏, we can write

𝑃𝑎𝑐 + 𝑃𝑏𝑐 − min(𝑃𝑎𝑐 , 𝑃𝑏𝑐 , 𝑃𝑎𝑏) > 𝑃𝑎𝑐 = max
𝑖<𝑐

(𝑃𝑖𝑐 ) (17)

We have already proved (Theorem 1) that for any 1 ≤ 𝑗 < 𝑙 < 𝑖, 3 ≤ 𝑖

max
1≤𝑗<𝑙<𝑖

{

𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 )
}

≥ max
1≤𝑗<𝑖

{

𝑃𝑗𝑖
}

(18)

Summing both sides from 𝑖 = 3,… , 𝑛, but 𝑖 ≠ 𝑐, we have
∑

all 𝑖
𝑖≠𝑐

max
1≤𝑗<𝑙<𝑖

{

𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 )
}

≥
∑

all 𝑖
𝑖≠𝑐

max
1≤𝑗<𝑖

{

𝑃𝑗𝑖
}

(19)

Combining (17) with (19) and subtracting both sides from 𝑃1 + 𝑃2 −
𝑃12 +

∑𝑛
𝑖=3 𝑃𝑖 we obtain:

𝑃1 + 𝑃2 − 𝑃12 +
𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑙<𝑖

{

𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 )
}

]

< 𝑃1 + 𝑃2 − 𝑃12 +
𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑖

{

𝑃𝑗𝑖
}

]

i.e., 𝐵2 < 𝐵1 under Condition 1

(20)

Hence, proved.

If Condition 1 is satisfied for a certain c in a given ordering of the
ndex set {1, 2,… , 𝑛}, it will be satisfied for a subset of other orderings
f the index set as well. The minimum number of such orderings,
𝑐−3
𝑗=0

(

𝑐 − 3
)

(𝑗 + 2)!(𝑛 − 3 − 𝑗)!, depends on the value of c in (16), 3

𝑗

4

c ≤ n where j signifies the number of free columns (other than a and
b) to the left of the 𝑐th column: for a given n, its lower limit is 2(n −
3)! when 𝑐 = 3 and upper limit is n!/3 when 𝑐 = 𝑛.

Example 1. This problem is taken from [15] which was later adopted
by Trandafir et al. [68]. It is a series system with 4 elements having
the first and second order probabilities as:

[𝑃𝑖𝑗 ] =

⎡

⎢

⎢

⎢

⎢

⎣

0.27425312 0.17106964 0.13021655 0.09525911
0.21185540 0.10920296 0.08120990

0.15865525 0.06566078
0.11506967

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑃𝑗𝑖 = 𝑃𝑖𝑗

(21)

For notational convenience we have used 𝑃𝑖𝑖 = 𝑃𝑖 in Eq. (4). Each
element constitutes a minimal cut set in a series system and 4!=24
orderings of the minimal cut sets are possible for this problem. Fig. 1
(left) shows the upper bound on 𝑃 [𝐹𝑠𝑦𝑠] for each of these orderings
given by KVHD (𝐵1) and the proposed level 2 method (𝐵2). The relative
errors ((𝐵1 − 𝐵2)/𝐵1) for all orderings are shown in Fig. 1 (right).
KVHD method yields its best 𝑃𝑓 = 0.363288 for only 12 out of the 24
possibilities. Our level 2 method identifies every of those 12 cases, and
an additional 6 orderings with the same best 𝑃𝑓 = 0. 363288. In each of
the remaining six cases, our method improves upon KVHD. The lower
scatter is evident from Fig. 2: when all 24 orderings are considered,
our level 2 upper bounds have a smaller mean (0.367) than KVHD
bounds (0.379) and a significantly smaller coefficient of variation (COV
= 1.7%) than KVHD results (4.7%). Since the safety margins are jointly
normal in the original problem statement, we can determine the exact
system failure probability (0.349120) which is plotted as the horizontal

line in Fig. 1 (left).
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While the level 2 bound in this example is clearly more effective
han KVHD bound, we note that the best bound given by both are
qual. We will come back to the question of whether the best bound
an improve with increasing levels and if so under what conditions,
ut first, we present the general level m bound.

. A nested hierarchy of upper bounds

The KVHD upper bound (7) and the upper bound derived in Eq (11)
n fact belong to a hierarchy of second order bounds. KVHD bound
onsiders only one second order intersection C 𝑖𝑗 in each line of Eq (6)
hereas Eq (11) considers the union of two pairs C 𝑖𝑗 and C𝑗𝑘 at a time.
his bound can be further generalized by taking 𝑚 pairs at each line.
o see this, take, for example, the union probability in the fourth line
f Eq. (6):
(5) = 𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5 ∪ 𝐶3𝐶5 ∪ 𝐶4𝐶5) (22)

Since this term is subtracted, we need a lower bound to P(5) in order
to derive an upper bound to 𝑃 [𝐹𝑠𝑦𝑠]. For m = 1, that lower bound is

simply the maximum of
(

4
1

)

= 4 terms,max𝑗=1,…,4{𝑃𝑗5}:

𝑃 (5) = 𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5 ∪ 𝐶3𝐶5 ∪ 𝐶4𝐶5) ≥ max
𝑗=1,…,4

{𝑃𝑗5} (23)

For the level 2 bound, the lower bound to P(5) involves the maximum
of

(

4
2

)

= 6 pair-wise union probabilities:

𝑃 (5) = 𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5 ∪ 𝐶3𝐶5 ∪ 𝐶4𝐶5)

≥ max
[

𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5), 𝑃 (𝐶1𝐶5 ∪ 𝐶3𝐶5), 𝑃 (𝐶1𝐶5 ∪ 𝐶4𝐶5),
𝑃 (𝐶2𝐶5 ∪ 𝐶3𝐶5), 𝑃 (𝐶2𝐶5 ∪ 𝐶4𝐶5), 𝑃 (𝐶3𝐶5 ∪ 𝐶4𝐶5)

]

≥ max
1≤𝑗,𝑙<5
𝑗≠𝑙

[

𝑃𝑗5 + 𝑃𝑙5 − min(𝑃𝑗5, 𝑃𝑙5, 𝑃𝑙𝑗 )
]

(24)

Continuing this way, the lower bound to P(5) for m = 3 involves the

maximum of
(

4
3

)

= 4 triplet-wise union probabilities as follows:

𝑃 (5) = 𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5 ∪ 𝐶3𝐶5 ∪ 𝐶4𝐶5)

≥ max
[

𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5 ∪ 𝐶3𝐶5), 𝑃 (𝐶1𝐶5 ∪ 𝐶2𝐶5 ∪ 𝐶4𝐶5)
𝑃 (𝐶1𝐶5 ∪ 𝐶3𝐶5 ∪ 𝐶4𝐶5), 𝑃 (𝐶2𝐶5 ∪ 𝐶3𝐶5 ∪ 𝐶4𝐶5)

]

≥ max
1≤𝑗,𝑘,𝑙<5
𝑗≠𝑘,𝑙
𝑙≠𝑘

[

𝑃𝑗5 + [𝑃𝑙5 − min(𝑃𝑗5, 𝑃𝑙5, 𝑃𝑙𝑗 )]
+ [𝑃𝑘5 − min(𝑃𝑗5, 𝑃𝑘5, 𝑃𝑘𝑗 ) − min(𝑃𝑙5, 𝑃𝑘5, 𝑃𝑘𝑙)]

+

]

(25)

where [a]+ = max[a, 0]. Generalizing, the level m second order upper
bound is:
𝑃 [𝐹𝑠𝑦𝑠]

≤
𝑛
∑

𝑖=1

⎡

⎢

⎢

⎢

⎣

𝑃𝑖 − max
1≤𝑗1<𝑗2<⋯𝑗𝑚<𝑖

⎧

⎪

⎨

⎪

⎩

𝑚
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+⎫
⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

= 𝐵𝑚, 𝑚 = 1,… , 𝑛 − 1

(26)

which is the main result of this work. Eq. (26) simplifies to Eq. (7) for
𝑚 = 1 and to Eq. (11) for 𝑚 = 2. By Theorem 2 we have shown that,
given any permutation of the index set, the bound in Eq (26) for m =
2 is at least as good as that for m = 1. Here we generalize this to m >
2 as follows.

Theorem 3. In any ordering (𝜋) of the index set describing second order
probabilities, the level 𝑚+1 bound is less than or equal to the corresponding

level 𝑚 bound, 𝑚 ≤ 𝑛 − 2 ∶ 𝐵𝑚+1(𝜋) ≤ 𝐵𝑚(𝜋).

5

Proof. Incrementing m by 1, we split the sum within the curly brackets
of Eq. (26) for any 1 ≤ 𝑗1, 𝑗2,… , 𝑗𝑚, 𝑗𝑚+1 < 𝑖 as,

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

=
𝑚+1
∑

𝑟=1
𝑟≠𝑣

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

+

[

𝑃𝑗𝑣𝑖 −
𝑣−1
∑

𝑠=1
min(𝑃𝑗𝑣𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑣𝑗𝑠 )

]+

(27)

Since the second term on the RHS is non-negative,

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

≥
𝑚+1
∑

𝑟=1
𝑟≠𝑣

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+ (28)

Now taking maximum over all sequences 1 ≤ 𝑗1, 𝑗2,… , 𝑗𝑚, 𝑗𝑚+1 < 𝑖 and
setting 𝑣 = 𝑚 + 1:

max
1≤𝑗1 ,𝑗2 ,…,𝑗𝑚 ,𝑗𝑚+1<𝑖

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

≥

max
1≤𝑗1 ,𝑗2 ,…,𝑗𝑚<𝑖

𝑚
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+
(29)

Subtracting both sides from 𝑃𝑖 and summing over i = 1,. . . ,n we get:

𝑛
∑

𝑖=1
𝑃𝑖 − max

1≤𝑗1 ,𝑗2 ,…,𝑗𝑚 ,𝑗𝑚+1<𝑖

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

≤

𝑛
∑

𝑖=1
𝑃𝑖 − max

1≤𝑗1 ,𝑗2 ,…,𝑗𝑚<𝑖

𝑚
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+
(30)

that is, the level m + 1 bound is at least as good as the level m bound
for any arbitrary permutation of the index set. Hence, proved.

We now generalize Condition 1 above and state Condition 2 under
which the level m + 1 bound is strictly better than the level m bound.

Condition 2. Given second order probabilities 𝑃𝑗𝑖 = 𝑃𝑖𝑗 , 𝑖 = 1,… , 𝑛 −
1, 𝑖 < 𝑗 ≤ 𝑛, in some ordering of the index set, {1, 2,… , 𝑛}, the terms
satisfy

𝑃𝑗𝑟𝑖 >
𝑚+1
∑

𝑠=1
𝑠≠𝑟

min(𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 ), ∀𝑟 = 1, 2,… , 𝑚 + 1 < 𝑖, and 𝑗𝑟, 𝑗𝑠 < 𝑖 ≤ 𝑛 (31)

for every
(

𝑖
𝑚 + 1

)

combination of the 𝑚 + 1 < 𝑖 indices.

It is easy to show that Condition 2 simplifies to Condition 1 for
𝑚 = 1.

Theorem 4. If a particular ordering of the index set of second order
probabilities satisfies Condition 2, the level 𝑚 + 1 bound is less than the
level 𝑚 bound in that ordering.
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Table 1
Summary of 120 upper bounds at 4 levels in Example 3.

Level 1 Level 2 Level 3 Level 4

Total CPU time (sec) 0.0132 0.0184 0.0647 0.0201
Minimum upper bound 0.08531 0.08438 0.08438 0.08438
Maximum upper bound 0.09241 0.08531 0.08531 0.08531
Mean upper bound 0.08847 0.08476 0.08476 0.08476
Median upper bound 0.08787 0.08442 0.08442 0.08442
COV (= SD/Mean) of upper bound (per cent) 2.52 0.53 0.53 0.53
Number of orderings giving minimum upper bound 12 12 12 12
Proof. We have for one set of 𝑚+1 indices 1 ≤ 𝑗1, 𝑗2,… , 𝑗𝑚, 𝑗𝑚+1 < 𝑖 ≤ 𝑛

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

=
𝑚+1
∑

𝑟=1
𝑟≠𝑣

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

+

[

𝑃𝑗𝑣𝑖 −
𝑣−1
∑

𝑠=1
min(𝑃𝑗𝑣𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑣𝑗𝑠 )

]+

(32)

Since 𝑃𝑗𝑟𝑖 >
∑𝑚+1

𝑠=1
𝑠≠𝑟

min(𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 ) ⇔ 𝑃𝑗𝑟𝑖 >
∑𝑚+1

𝑠=1
𝑠≠𝑟

min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 ) for

each 𝑟 = 1, 2,… , 𝑚 + 1, we have

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

> max
𝑣

(
𝑚+1
∑

𝑟=1
𝑟≠𝑣

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

)

(33)

Now since this is true for every 𝑚+1 indices 1 ≤ 𝑗1, 𝑗2,… , 𝑗𝑚, 𝑗𝑚+1 < 𝑖 ≤
𝑛, we have

max
1≤𝑗1 ,𝑗2 ,…,𝑗𝑚 ,𝑗𝑚+1<𝑖

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

>

max
1≤𝑗1 ,𝑗2 ,…,𝑗𝑚<𝑖

𝑚
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+
(34)

Subtracting both sides from 𝑃𝑖 and summing over i = 1, . . . , n we get:

𝑛
∑

𝑖=1
𝑃𝑖 − max

1≤𝑗1 ,𝑗2 ,…,𝑗𝑚 ,𝑗𝑚+1<𝑖

𝑚+1
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

<

𝑛
∑

𝑖=1
𝑃𝑖 − max

1≤𝑗1 ,𝑗2 ,…,𝑗𝑚<𝑖

𝑚
∑

𝑟=1

[

𝑃𝑗𝑟𝑖 −
𝑟−1
∑

𝑠=1
min(𝑃𝑗𝑟𝑖, 𝑃𝑗𝑠𝑖, 𝑃𝑗𝑟𝑗𝑠 )

]+

i.e., 𝐵𝑚+1 < 𝐵𝑚

(35)

Hence, proved.

Example 1 (Contd.). In Example 1 above, we find that Condition 2 is
not satisfied in any ordering at level 2. Setting 𝑖 = 4 and 𝑚 = 2 in (31)
and selecting 𝑗1 = 1, 𝑗2 = 2, 𝑗3 = 3, Condition 2 requires,

𝑃𝑗1𝑖 > min(𝑃𝑗2𝑖, 𝑃𝑗1𝑗2 ) + min(𝑃𝑗3𝑖, 𝑃𝑗1𝑗3 )
𝑃𝑗2𝑖 > min(𝑃𝑗1𝑖, 𝑃𝑗1𝑗2 ) + min(𝑃𝑗3𝑖, 𝑃𝑗2𝑗3 )
𝑃𝑗3𝑖 > min(𝑃𝑗1𝑖, 𝑃𝑗1𝑗3 ) + min(𝑃𝑗2𝑖, 𝑃𝑗2𝑗3 )

⎫

⎪

⎬

⎪

⎭

⇒
𝑃14 > min(𝑃24, 𝑃12) + min(𝑃34, 𝑃13)
𝑃24 > min(𝑃14, 𝑃12) + min(𝑃34, 𝑃23)
𝑃34 > min(𝑃14, 𝑃13) + min(𝑃24, 𝑃23)

⎫

⎪

⎬

⎪

⎭

(36)

Substituting the numerical values, we find the left hand sides of the
three inequalities are respectively 0.09525911, 0.08120990, 0.06566078
6

while the right hand sides are:
min(0.08120990, 0.17106964) + min(0.06566078, 0.13021655)

= 0.14687068

min(0.09525911, 0.17106964) + min(0.06566078, 0.10920296)

= 0.16091989

min(0.09525911, 0.13021655) + min(0.08120990, 0.10920296)

= 0.22547566

(37)

It is straightforward to show that Condition 2 is not satisfied in every
other permutation of the indices 𝑗1, 𝑗2 and 𝑗3 as well. We can show the
same to hold in every other ordering of the index set {1, 2,… , 𝑛} in this
example.

Example 2. In this example, we study how dependence among the
cut sets affects the upper bounds. With P𝑖𝑖 = P𝑖, let the second order
probabilities be of the form,

𝑃𝑖𝑗 = 𝑃𝑖𝑃𝑗 + 𝛿, 𝑖 ≠ 𝑗 (38)

The constant 𝛿 = 0 if the cut sets C 𝑖 and C𝑗 are statistically pairwise
independent; if 𝛿 < 0 the cut sets are negatively correlated and if 𝛿 >
0 the cut sets are positively correlated. The allowable range of 𝛿 is:

−𝑃𝑖𝑃𝑗 ≤ 𝛿 ≤ min(𝑃𝑖, 𝑃𝑗 ) − 𝑃𝑖𝑃𝑗 ∀𝑖, 𝑗, 𝑖 ≠ 𝑗 (39)

We continue with a four element series system (𝑛 = 4), with first
order failure probabilities {𝑃𝑖} = [.01 .025 .03 .07]T and choose three
value of 𝛿 ∈ {0.0001, 0,−0.0001}, corresponding to positively correlated,
pairwise independent and negatively correlated element failure events,
respectively.

Fig. 3 shows the levels 1, 2 and 3 bounds in all 24 permutations
for each 𝛿. With 𝑖 = 4, it is easy to check that Condition 2 is satisfied
for 𝑚 = 1 and 𝑚 = 2 for all three values of 𝛿 in at least one ordering
(i.e., {1, 2, 3, 4}) of the index set. In contrast to Example 1, we observe
here the level 3 bound to be strictly better than the level 2 bound in 6
(and the level 1 bound in 12) out of 24 permutations of the index set,
for each of the three cases of 𝛿. Thus, although the best (i.e., lowest)
level 1, level 2 and level 3 upper bounds are all equal, level 1 achieves
its best less frequently than do the higher levels. Further, the worst level
1 bound is significantly poorer than the worst level 2 bound, which in
turn is significantly poorer than the worst level 3 bound. Further, when
all 24 orderings are considered, the level 3 bounds show about 1/3 the
scatter shown by level 2 bounds, and level 2 bounds in turn show about
1/3 the scatter shown by level 1 bounds.

Example 3. We take a 5 element problem from [16]. The 5 × 5 s order
symmetric probability matrix is:

[𝑃𝑖𝑗 ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

4.548 1.776 1.790 1.559 0.119
2.360 1.358 1.133 0.212

3.031 1.786 0.123
2.744 0.269

1.469

⎤

⎥

⎥

⎥

⎥

⎥

⎦

× 0.01, 𝑃𝑗𝑖 = 𝑃𝑖𝑗 (40)

5! = 120 permutations are possible for the index set and second order
upper bounds up to the 4th level can be computed for each of those
permutations. Table 1 lists a summary of the bounds. Clearly, levels



S. Ghosh and B. Bhattacharya Probabilistic Engineering Mechanics 70 (2022) 103335

T
a
𝑋

Fig. 3. Four element series system: comparison of levels 1–3 upper bounds: (a) top row—positively correlated element failures, (b) middle row—pairwise independent element
failures, (c) bottom row—negatively correlated element failures.
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𝜌
𝑟

2–4 bounds are indistinguishable from one another, but level 1 bound
performs significantly poorer than the higher level bounds: the level
1 bounds exhibit a much higher scatter, and the best level 1 bound
equals the worst level 2 bound. Unlike level 1, the difference between
the best and worst bounds at levels 2, 3 or 4 are insignificant. Because
this is a small sized problem, the time taken to search through the 120
permutations are of the same order.

Example 4. This problem is taken from [9] as modified by Song and
der Kiureghian [44]. A seven member determinate truss can fail due
to the yielding of any of its seven members. Compression members are
prevented from failing by buckling. The safety margins are:

𝑀𝑖 = 𝑋𝑖 − 𝐿, 𝑖 = 1,… , 7 (41)

he member strengths, 𝑋𝑖, are jointly normal: 𝑋1 and 𝑋2 each has
mean of 100 kN and a standard deviation of 20 kN while 𝑋3, . . . ,

each has a mean of 200 kN and a standard deviation of 40 kN.
7

7

he dependence structure is given by Dunnet–Sobel class correlation
𝑖𝑗 = 𝑟𝑖𝑟𝑗 (𝑖 ≠ 𝑗)∶ 𝑟1 = 0.90, 𝑟2 = 0.96, 𝑟3 = 0.91, 𝑟4 = 0.95,
5 = 0.92, 𝑟6 = 0.94 and 𝑟7 = 0.93 and 𝜌𝑖𝑖 = 1. The load L = 100 kN is

deterministic. The first order probabilities are all equal: 𝑃𝑖 = 1.88×10−4.
The complete second order probability matrix is:

[𝑃𝑖𝑗 ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

18.8 5.73 4.35 5.42 4.59 5.13 4.85
18.8 6.08 7.79 6.47 7.42 6.87

18.8 5.75 4.86 5.43 5.14
18.8 6.10 6.88 6.48

18.8 5.76 5.44
18.8 6.11

18.8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

× 10−5, 𝑃𝑗𝑖 = 𝑃𝑖𝑗

(42)

7! = 5040 permutations of the minimal cut sets are possible for this
problem. Multivariate normal integration yields the exact 𝑃 [𝐹 ] =
𝑠𝑦𝑠
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Table 2
Summary of 5040 upper bounds at 6 levels in Example 4.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Total CPU time (sec) 0.0163 0.0333 5.586 7.739 9.601 9.049
Minimum upper bound 0.000912 0.000912 0.000912 0.000912 0.000912 0.000912
Maximum upper bound 0.000961 0.000944 0.000944 0.000944 0.000944 0.000944
Mean upper bound 0.000925 0.000919 0.000919 0.000919 0.000919 0.000919
Median upper bound 0.000924 0.000917 0.000917 0.000917 0.000917 0.000917
COV (= SD/Mean) of upper bound (per cent) 1.22 0.83 0.83 0.83 0.83 0.83
Number of orderings giving minimum upper bound 24 1636 1636 1636 1636 1636
[

[

6.9988e−4. All levels give the lowest upper bound as 9.1216e−4:
however the KVHD method yields this optimum for only 24 orderings,
whereas the higher levels gives the lowest upper bound in almost a
third of all cases (1636 out of 5040). Further, in 2420 non-optimal
orderings, our method yields a smaller upper bound. The time taken,
however, to search through the 5040 permutations is two orders of
magnitude higher for levels 3–6 than for levels 1 and 2. As was the
case with the two highest levels in Table 1, the time taken for the
level 6 bound here is somewhat smaller than that for its preceding
level because fewer terms need to be compared in the maximum
value operation within the curly brackets of (26). Details are given in
Table 2.

5. Does the optimal bound improve with levels?

The second order upper bound, for any level m, depends on the
ordering of the index set. Let 𝐵∗

𝑚 denote the best (i.e., smallest) level-m
bound 𝐵𝑚 identified across all orderings of the index set:

𝐵∗
𝑚 = min

all orderings𝜋
of the index set

[

𝐵𝑚(𝜋)
]

, 𝑚 = 1,… , 𝑛 − 1 (43)

We have shown that for any ordering of the index set, we must have
𝑚(𝜋) ≥ 𝐵𝑚+1(𝜋), that is, the level m +1 bound will always be as

good or better than the level m bound. We have also shown under
hat condition the relation becomes a strict inequality for a given
rdering: 𝐵𝑚(𝜋) > 𝐵𝑚+1(𝜋). Thus, while the first statement ensures that

the optimal (i.e., best) bound over all orderings, 𝐵∗
𝑚 in Eq. (43), cannot

et worse with increasing m, the second statement does not guarantee
n improvement in the best. Additional conditions are required for
∗
𝑚 > 𝐵∗

𝑚+1 to hold.
Without any loss of generality, let the second order probabilities,

𝑖𝑗 (i ≠ j), be all unique so that we can rank them as:

[1] > 𝑃 [2] > ⋯ > 𝑃 [𝑛(𝑛+1)∕2] (44)

f some or all of them are equal, we can simply identify them in-
erchangeably and the number of unique permutations will reduce.
he best possible KVHD (i.e., level 1) upper bound is achieved if, for
ome ordering of the index set, the 𝑖th largest second order probability
its above the diagonal in column i + 1 for each i. We denote such
rrangements with the set 𝜋∗:

[𝑖] = max(𝑃1,𝑖+1, 𝑃2,𝑖+1,… , 𝑃𝑖,𝑖+1;𝜋∗) (45)

hich yields,

∗
1,𝜋∗ = 𝑃1 + 𝑃2 − 𝑃12 +

𝑛
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑖

{

𝑃𝑗𝑖
}

]

=
𝑛
∑

𝑖=1
𝑃𝑖 −

𝑛−1
∑

𝑖=1
𝑃 [𝑖]

(46)

where the superscript ‘*’’ indicates the best possible value and 𝜋∗ refers
to all those arrangements that satisfy (45).

We now look at the conditions necessary for the best level-2 bound
∗ ∗
to be better than the best level-1 bound, i.e., for 𝐵1 > 𝐵2 to hold. For

8

𝑛 = 4, the level 2 bound is:

𝐵2 = 𝑃1 + 𝑃2 − 𝑃12 +
4
∑

𝑖=3

[

𝑃𝑖 − max
1≤𝑗<𝑙<𝑖

{

𝑃𝑗𝑖 + 𝑃𝑙𝑖 − min(𝑃𝑗𝑖, 𝑃𝑙𝑖, 𝑃𝑙𝑗 )
}

]

= 𝑃1 + 𝑃2 − 𝑃12

+𝑃3 −
{

𝑃13 + 𝑃23 − min(𝑃13, 𝑃23, 𝑃12)
}

+𝑃4 − max

⎧

⎪

⎨

⎪

⎩

𝑃14 + 𝑃24 − min(𝑃14, 𝑃24, 𝑃12),
𝑃14 + 𝑃34 − min(𝑃14, 𝑃34, 𝑃13),
𝑃24 + 𝑃34 − min(𝑃24, 𝑃34, 𝑃23)

⎫

⎪

⎬

⎪

⎭

(47)

The task is to place six second order probabilities above the diagonal
of the probability matrix. We first restrict ourselves to Eq. (45) since
it ensures the best possible value of Ditlevsen’s upper bound. Without
any loss of generality we place the maximum 𝑃 [1] among these at (1,
2), then place 𝑃 [2] in the third column and 𝑃 [3] in the fourth column. A
total of 2 × 3 × 3! = 36 unique arrangements are possible involving 𝑃 [2],
. . . , 𝑃 [6] (another 36 arrangements can be made by interchanging the
third and fourth columns; however these are not unique as they arise
from a simple switching of the index set). Of these 36 arrangements,
20 show no improvement: 𝐵∗

1,𝜋∗ = 𝐵∗
2,𝜋∗ , another 4 yield 𝐵∗

1,𝜋∗ > 𝐵∗
2,𝜋∗

conditionally, and the remaining 12 yield 𝐵∗
1,𝜋∗ > 𝐵∗

2,𝜋∗ unconditionally.
The cases are described in the following.

Let the indices {𝑖, 𝑗, 𝑘} be permutations of the integers {4, 5, 6}. Let
𝑃 [𝑖] be the other member in the third column (besides 𝑃 [2]). Thus 𝑃 [𝑗]

and 𝑃 [𝑘] are elements of the fourth column.

[a] 𝑃 [2] and 𝑃 [3] are in different columns and in the same row (12
cases). If 𝑃 [𝑖] < min (𝑃 [𝑗], 𝑃 [𝑘]), i.e., 𝑖 = 6, and if 𝑃 [4] + 𝑃 [5] >
𝑃 [3] +𝑃 [6] then 𝐵∗

1,𝜋∗ > 𝐵∗
2,𝜋∗ = 𝛴𝑃𝑖 −𝑃 [1] −𝑃 [2] − [𝑃 [4] +𝑃 [5] −𝑃 [6]]

(2 cases). Otherwise, 𝐵∗
1,𝜋∗ = 𝐵∗

2,𝜋∗ = 𝛴𝑃𝑖 − 𝑃 [1] − 𝑃 [2] − 𝑃 [3].
b] 𝑃 [2] and 𝑃 [3] are in different columns and in different rows (24

cases). Let 𝑃 [2] and 𝑃 [𝑘] be in the same row. If 𝑃 [𝑖] < 𝑃 [𝑗], then
𝐵∗
1,𝜋∗ > 𝐵∗

2,𝜋∗ = 𝛴𝑃𝑖 − 𝑃 [1] − 𝑃 [2] − [𝑃 [3] + 𝑃 [𝑗] − 𝑃 [𝑖]] (2 cases).
Otherwise, 𝐵∗

1,𝜋∗ = 𝐵∗
2,𝜋∗ = 𝛴𝑃𝑖 − 𝑃 [1] − 𝑃 [2] − 𝑃 [3].

The arrangements for case [a] are graphically shown in Fig. 4. The
other four cases can be depicted similarly. As stated above, identical
results are obtained from 36 additional cases created by switching the
third and fourth columns. We now relax the restriction imposed by
Eq. (45) and look at the remaining 2! × 3! + 3! × 3! = 48 cases (denoted
by 𝜋) where 𝑃 [2] and 𝑃 [3] are in the same column. Without any loss
of generality, 𝑃 [1] is still at (1, 2). In 𝜋, 12 arrangements show no
improvement: 𝐵∗

1,𝜋 = 𝐵∗
2,𝜋 , another 4 yield 𝐵∗

1,𝜋 > 𝐵∗
2,𝜋 conditionally,

and the remaining 32 yield 𝐵∗
1,𝜋 > 𝐵∗

2,𝜋 unconditionally. The cases are
described in the following.

[c] 𝑃 [2] and 𝑃 [3] are in the 3rd column (12 cases). Regardless of where
𝑃 [𝑖], 𝑃 [𝑗] and 𝑃 [𝑘] are placed, there is no improvement: 𝐵∗

1,𝜋 =
𝐵∗
2,𝜋 = 𝛴𝑃𝑖 − 𝑃 [1] − 𝑃 [2] − max{𝑃 [𝑖], 𝑃 [𝑗], 𝑃 [𝑘]}. Example 1 above

is belongs to this case.
d] 𝑃 [2] and 𝑃 [3] are in the 4th column and one of them is in (3, 4).

Then 𝐵∗
1,𝜋 > 𝐵∗

2,𝜋 unconditionally (24 cases).
[e] 𝑃 [2] and 𝑃 [3] are in the 4th column and neither of them is in (3, 4).

Of the remaining terms with 𝑖, 𝑗, 𝑘 ∈ {4, 5, 6}, let 𝑃 [𝑖] be the element
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Fig. 4. Possible arrangements of the six unique second order probabilities in case [a] for 4 × 4 symmetric probability matrices. The diagonal terms are the first order probabilities
and they can be placed without any restriction:

(

𝑖1 , 𝑖2 , 𝑖3 , 𝑖4
)

are permutations of (1, 2, 3, 4). The largest second order probability 𝑃 [1] is placed at (1, 2) without any loss of
enerality. In this case [a], the next two largest probabilities are in different columns but in the same row:

(

𝑗2 , 𝑗3
)

are permutations of (2, 3). The remaining three second order
robabilities are placed in the remaining slots:

(

𝑘4 , 𝑘5 , 𝑘6
)

are permutations of (4, 5, 6).
r

𝑃

in (3, 4). If 𝑃 [𝑖] < min (𝑃 [𝑗], 𝑃 [𝑘]), i.e., 𝑖 = 6, then there is no
improvement: 𝐵∗

1,𝜋 = 𝐵∗
2,𝜋 = 𝛴𝑃𝑖−𝑃 [1]−𝑃 [2]−max{𝑃 [𝑗], 𝑃 [𝑘]}. If 𝑃 [𝑖]

> max (𝑃 [𝑗], 𝑃 [𝑘]), i.e., 𝑖 = 4, then there is definite improvement:
𝐵∗
1,𝜋 > 𝐵∗

2,𝜋 = 𝛴𝑃𝑖 − 𝑃 [1] − 𝑃 [2] −⋯.. . . . Otherwise (𝑖 = 5), we have
definite improvement (𝐵∗

1,𝜋 > 𝐵∗
2,𝜋) if 𝑃 [6] is in the same row as 𝑃 [2]

and no improvement (𝐵∗
{1,𝜋} = 𝐵∗

{2,𝜋}) if 𝑃 [6] is not in the same row
as 𝑃 [2].

ombining the 120 results from arrangements 𝜋 and 𝜋 described above,
e find that 52 show no improvement, 56 show certain improvement,
nd the remaining 12 show improvement if certain conditions are
atisfied. If the five probabilities are completely random, (i.e., 𝑃𝑖𝑗 ∼
𝑈
[

0,min(𝑃𝑖, 𝑃𝑗 )
]

), the probability of finding 𝐵∗
1 > 𝐵∗

2 is (56 + 4 × 1/2
+ 4 × 1/2 + 4 × 2/3)/120 = 52.2% when 𝑛 = 4.

We now show that this probability finding 𝐵∗
1 > 𝐵∗

2 , provided
the off-diagonal terms are conditionally independent and uniformly
distributed, increases monotonically with n and asymptotically reaches
one.

Theorem 5. Given an 𝑛-dimensional matrix of second order probabilities
𝑃𝑖𝑗 with IID diagonal elements 𝑃𝑖 ∼ 𝑈 [0, 1] and conditionally independent
off-diagonal elements 𝑃𝑖𝑗 ∼ 𝑈

[

0,min(𝑃𝑖, 𝑃𝑗 )
]

, the best level 2 bound is
asymptotically better than the best level 1 bound: lim𝑛→∞ 𝑃 (𝐵∗

2 < 𝐵∗
1 ) = 1.

Proof. The 𝑖th lines in level 1 and level 2 bounds are, respectively,
𝑃𝑖 − 𝐿1

𝑖 and 𝑃𝑖 − 𝐿2
𝑖 where

1
𝑖 = max𝑗<𝑖(𝑃𝑗𝑖)

𝐿2
𝑖 = max𝑗,𝑘<𝑖

(

𝑃𝑗𝑖 + 𝑃𝑘𝑖 − min(𝑃𝑗𝑖, 𝑃𝑘𝑖, 𝑃𝑗𝑘)
) (48)

t may be noted that,
1
𝑖 ≤ 𝐿2

𝑖 , 𝑖 ≥ 3 (49)

s always true and 𝐿1
𝑖 = 𝐿2

𝑖 for 𝑖 = 1 and 2. Let 𝜋∗
1 be an ordering for

hich level 1 bound is optimal. We have already proved (Theorem 1)
hat for any ordering, the level 2 bound cannot be greater than the level
bound. Hence,

2(𝜋∗
1 ) ≤ 𝐵∗

1 (50)

ue to (49), 𝐵2 is equal to 𝐵∗
1 if each of the line pairs 𝐿2

𝑖 , 𝐿
1
𝑖 are equal:

𝐵2(𝜋∗
1 ) = 𝐵∗

1
}

⇔ (𝐿2
3 = 𝐿1

3) ∩ (𝐿2
4 = 𝐿1

4) ∩⋯ (𝐿2
𝑛 = 𝐿1

𝑛) (51)

The complementary event gives the strict inequality,
{

𝐵 (𝜋∗) < 𝐵∗} ⇔
{

(𝐿2 = 𝐿1) ∩ (𝐿2 = 𝐿1) ∩⋯ (𝐿2 = 𝐿1)
}𝑐 (52)
2 1 1 3 3 4 4 𝑛 𝑛

9

Let us now consider the event,

𝑇𝑖(𝜋∗
1 ) =

{

min
(

𝑃𝑖−1, 𝑃𝑖
)

𝑈1
𝑖 > 𝑃𝑖−1𝑈

2
𝑖
}

∩
{

min
(

𝑃𝑖−2, 𝑃𝑖
)

𝑈3
𝑖 > 𝑃𝑖−2𝑈

4
𝑖
}

(53)

where 𝑈 𝑗
𝑖 ∼ 𝑈 (0, 1), 𝑗 = 1,… , 4 are independent standard uniform

random variables. The probability of this event can be derived using
an appropriate partition:

𝑃
[

𝑇𝑖(𝜋∗
1 )
]

= 𝑃
[

𝑇𝑖(𝜋∗
1 ) ∩ 𝑃𝑖 > 𝑃𝑖−1 ∩ 𝑃𝑖 > 𝑃𝑖−2

]

+𝑃
[

𝑇𝑖(𝜋∗
1 ) ∩ 𝑃𝑖 < 𝑃𝑖−1 ∩ 𝑃𝑖 < 𝑃𝑖−2

]

+

𝑃
[

𝑇𝑖(𝜋∗
1 ) ∩ 𝑃𝑖−1 > 𝑃𝑖 > 𝑃𝑖−2

]

+𝑃
[

𝑇𝑖(𝜋∗
1 ) ∩ 𝑃𝑖−1 < 𝑃𝑖 < 𝑃𝑖−2

]

(54)

The first term can be expanded as:

𝑃
[

𝑇𝑖(𝜋∗
1 ) ∩ 𝑃𝑖 > 𝑃𝑖−1 ∩ 𝑃𝑖 > 𝑃𝑖−2

]

= 𝑃
[

𝑈1
𝑖 > 𝑈2

𝑖 ∩ 𝑈3
𝑖 > 𝑈4

𝑖 ∩ 𝑃𝑖−1 < 𝑃𝑖 ∩ 𝑃𝑖−2 < 𝑃𝑖
]

= 𝑃
[

𝑈1
𝑖 > 𝑈2

𝑖
]

𝑃
[

𝑈3
𝑖 > 𝑈4

𝑖
]

𝑃
[

𝑃𝑖−1 < 𝑃𝑖 ∩ 𝑃𝑖−2 < 𝑃𝑖
]

= 1
2
× 1

2
× ∫

1

0 ∫

𝑝𝑖

0 ∫

𝑝𝑖

0
𝑑𝑝𝑖−2𝑑𝑝𝑖−1𝑑𝑝𝑖 =

1
2
× 1

2
× 1

3
= 1

12

(55)

where we have used the mutual independence of 𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖 and
𝑈 𝑗
𝑖 , 𝑗 = 1,… , 4. Proceeding similarly, the other three terms are,

espectively, 1/54, 1/36 and 1/36, yielding the sum

[

𝑇𝑖(𝜋∗
1 )
]

= 1
12

+ 1
54

+ 1
36

+ 1
36

= 17
108

(56)

Now, for any arbitrary quantity 𝑃𝑏, 𝑇𝑖 can be shown to be a subset of:

𝑇𝑖(𝜋∗
1 ) ⊆

{

min
(

𝑃𝑖−1, 𝑃𝑖
)

𝑈1
𝑖 > min

(

𝑃𝑖−1, 𝑃𝑏
)

𝑈2
𝑖
}

∩
{

min
(

𝑃𝑖−2, 𝑃𝑖
)

𝑈3
𝑖 > min

(

𝑃𝑖−2, 𝑃𝑖−1
)

𝑈4
𝑖
}

(57)

which, using the definition given in the statement of this theorem, can
be rewritten as:

𝑇 (𝜋∗) ⊆
{

𝑃 > 𝑃
}

∩
{

𝑃 > 𝑃
}

(58)
𝑖 1 𝑖−1,𝑖 𝑖−1,𝑏 𝑖−2,𝑖 𝑖−2,𝑖−1
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Defining 𝑃𝑏𝑖 = max𝑃𝑗𝑖, 𝑗 < 𝑖− 1, which implies 𝑏 ≤ 𝑖− 2, the right hand
side of (58) leads to:
{𝑃𝑖−1,𝑖 > 𝑃𝑖−1,𝑏} ∩ {𝑃𝑖−2,𝑖 > 𝑃𝑖−2,𝑖−1}

⇒ {𝑃𝑖−1,𝑖 + 𝑃𝑏𝑖 − 𝑃𝑖−1,𝑏 > 𝑃𝑏𝑖} ∩ {𝑃𝑖−2,𝑖 + 𝑃𝑖−1,𝑖 − 𝑃𝑖−2,𝑖−1 > 𝑃𝑖−1,𝑖}

where 𝑏 ≤ 𝑖 − 2

⇒ {𝑃𝑖−1,𝑖 + 𝑃𝑏𝑖 − min
(

𝑃𝑖−1,𝑖, 𝑃𝑖−1,𝑏, 𝑃𝑏𝑖
)

> 𝑃𝑏𝑖}

∩ {𝑃𝑖−2,𝑖 + 𝑃𝑖−1,𝑖 − min(𝑃𝑖−2,𝑖, 𝑃𝑖−2,𝑖−1, 𝑃𝑖−1,𝑖) > 𝑃𝑖−1,𝑖}
(59)

ombining the LHS from both events gives a lower bound of the
ore general quantity max𝑗,𝑘<𝑖,𝑗≠𝑘

{

𝑃𝑗𝑖 + 𝑃𝑘𝑖 − min
(

𝑃𝑗𝑖, 𝑃𝑗𝑘, 𝑃𝑘𝑖
)}

while
he combined RHS gives max𝑗<𝑖 𝑃𝑗𝑖. In other words,

𝑖(𝜋∗
1 ) ⊆

{

𝐿2
𝑖 > 𝐿1

𝑖
}

(60)

hich by (49) implies,

𝑖(𝜋∗
1 ) ⊆

{

𝐿2
𝑖 = 𝐿1

𝑖
}𝑐 (61)

he intersection of the complementary events, 𝑇𝑖(𝜋∗
1 )

𝑐 , has a probability
ounded by:
[ 𝑛
⋂

𝑖=3
𝑇𝑖(𝜋∗

1 )
𝑐

]

≥ 𝑃

[ 𝑛
⋂

𝑖=3

{

𝐿2
𝑖 = 𝐿1

𝑖
}

]

since
𝑛
⋂

𝑖=3
𝑇𝑖(𝜋∗

1 )
𝑐 ⊇

𝑛
⋂

𝑖=3

{

𝐿2
𝑖 = 𝐿1

𝑖
}

(62)

ence the probability of 𝐵2(𝜋∗
1 ) < 𝐵∗

1 in (52) can be bounded by:

[

𝐵2(𝜋∗
1 ) < 𝐵∗

1
]

= 1 − 𝑃

[ 𝑛
⋂

𝑖=3
(𝐿2

𝑖 = 𝐿1
𝑖 )

]

≥ 1 − 𝑃

[ 𝑛
⋂

𝑖=3
𝑇𝑖(𝜋∗

1 )
𝑐

]

(63)

ince the events such as 𝑇3(𝜋∗
1 ), 𝑇6(𝜋

∗
1 ), 𝑇9(𝜋

∗
1 ),… that are positioned

t least 3 apart are mutually independent as they do not share any
ommon elements, a lower bound to (63) can be obtained:

[

𝐵2(𝜋∗
1 ) < 𝐵∗

1
]

≥ 1 − 𝑃

[ 𝑛
⋂

𝑖=3
𝑇𝑖(𝜋∗

1 )
𝑐

]

≥ 1 − 𝑃

[

⋂

𝑖=3,6,9,…
𝑇𝑖(𝜋∗

1 )
𝑐

]

= 1 −
∏

𝑖=3,6,9,…

(

1 − 𝑃
[

𝑇𝑖(𝜋∗
1 )
])

(64)

sing the numerical value from (56),
(

𝐵2(𝜋∗
1 ) < 𝐵∗

1
)

≥ 1 −
(

1 − 17
108

)
⌊𝑛∕3⌋

(65)

hich, in the limit as the system size becomes large, yields

lim
→∞

𝑃
(

𝐵2(𝜋∗
1 ) < 𝐵∗

1
)

= 1 (66)

ince 𝐵2(𝜋∗
1 ) can only be greater than or equal to the level 2 optimum

∗
2 , we must have

lim
→∞

𝑃
(

𝐵∗
2 < 𝐵∗

1
)

= 1 (67)

ence proved.

It can be shown that this asymptotic property holds for any two
onsecutive levels m and m + 1, 1 ≤ 𝑚 ≤ 𝑛−3, with increasingly slower
onvergence. It can also be shown that for any finite n, the last two
evels always have the same optimal bound:𝐵∗

𝑛−2 = 𝐵∗
𝑛−1.

Fig. 5 shows the improvement in upper bounds from levels 1
hrough 4 with increasing system size in randomly generated second
rder probability matrices. Our level 2 bound is almost certain to
how an improvement over KVHD bound as long as the second order
robabilities are conditionally independent. The system has to be com-
ensurately larger for higher level bounds to start showing noticeable

mprovements.

xample 5. In our final example, we look at one randomly generated
× 6 matrix used in Fig. 5 which is reproduced as Eq. (68) is given in

ox I.

10
There are 6! permutations of the index set and Fig. 6 (left) presents
he five bounds corresponding to each of these 720 permutations: the
ermutations are numbered by sorting the level 5 bound (green line)
n increasing order. By Theorem 3, the bounds cannot worsen with
ncreasing level, and thus while they may coincide segment-wise, none
f the 5 lines cross any other. The level 4 and level 5 bounds (green
nd purple lines) in this 6 × 6 problem are coincident everywhere and,
etween the two, only the green line is visible. The same results are
resented differently in Fig. 6 (right): each level is sorted individually
nd the values are presented in increasing order. It is interesting to
ote that the lines still do not cross each other. The starting point
ndicates the lowest possible value (i.e., 𝐵∗

𝑚) at each level. The best
VHD bound (.012324) is considerably larger than the best higher

evel bounds (0.010669, 0.010281, 0.010247 and .010247 respectively)
lthough the benefit tapers off beyond level 3. At the other end, the
orst value for each level presents a starker picture: KVHD bound
erforms much worse compared to the higher levels, and the higher
evel bounds stay confined within a noticeably narrow band.

. Conclusion

In this paper we derived a nested hierarchy of m-level second order
pper bounds, 𝐵𝑚, on the union probability 𝑃 [𝐹𝑠𝑦𝑠] = 𝑃

[

∪𝑛
𝑖=1𝐶𝑖

]

using
nly first and second order joint probabilities 𝑃𝑖 = 𝑃 [𝐶𝑖], 𝑃𝑖𝑗 = 𝑃 [𝐶𝑖𝐶𝑗 ]
ince in practice, it is generally difficult to estimate joint probabili-
ies beyond the second order. The well-known Kounias–Vanmarcke–
unter–Ditlevsen (KVHD) bound – the current standard for upper
ounds using second order joint probabilities – is the weakest member
f this family (𝑚 = 1).

The tightness of such bounds depends on the particular ordering of
he index set of the cut sets 𝐶𝑖 and identifying the optimal ordering is an
mportant area of research. We proved that 𝐵𝑚 is non-increasing with
evel m in every ordering of the cut sets, and derived conditions under
hich 𝐵𝑚+1 is strictly less than 𝐵𝑚 for any m and any ordering. We also
erived conditions under which the optimal (smallest, considering all
! orderings of the index set) level m + 1 bound, 𝐵∗

𝑚+1, is strictly less
han the optimal level m bound, 𝐵∗

𝑚, and show that this improvement
symptotically achieves a probability of 1 as long as the second order
oint probabilities are only constrained by the pair of corresponding
irst order probabilities but are otherwise independent.

Numerical examples showed that our second order upper bounds
an yield tighter values than previously achieved, and in every case
ur bounds exhibit considerable less scatter across the n! permutations
f the cut sets compared to KVHD bounds. Between successive levels,
he highest relative improvement in the optimal 𝐵∗

𝑚 for a given n ×
second order probability matrix was found to occur between levels
and 2, and then to taper off at higher levels. The computation time

ncreased with level m, however the increase from level 1 to level 2
s insignificant, which is also where the most improvement in 𝐵∗

𝑚 is
bserved. Our results may lead to more efficient identification of the
ptimal upper bound when coupled with existing linear programming
nd tree search based approaches.
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b
l
v
K
l
s

[

𝑃𝑖𝑗
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4.74467793 1.35693940 3.02042750 3.17568001 2.17177994 1.80796900
2.34044502 0.58219757 0.38739530 0.19132633 1.39092307

3.60105675 0.44924975 0.33655831 1.88047290
3.63910007 1.24586511 3.61723941

4.42818259 2.03204045
6.94666654

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

× 10−3,

𝑃𝑗𝑖 = 𝑃𝑖𝑗

(68)

Box I.
Fig. 5. Improvement in upper bounds from levels 1 through 4 with increasing system size in randomly generated second order probability matrices.
Fig. 6. Levels 1–5 upper bounds for one randomly generated 6 × 6 matrix used in Fig. 5. Left: The 6! = 720 permutations of the index set are numbered by sorting the level 5
ound (green line) in increasing order. Since the bounds cannot worsen with increasing level, the five lines coincide segment-wise, but none of the 5 lines cross any other. The
evel 4 and level 5 bounds (green and purple lines) are coincident everywhere and, between the two, only the green line is visible. Right: each level is sorted individually and the
alues are presented in increasing order. Interestingly, the lines still do not cross each other. The starting point indicates the lowest possible value (i.e., B*) at each level. The best
VHD bound (.012324) is considerably larger than the best higher level bounds (0.010669, 0.010281, 0.010247 and .010247 respectively) although the benefit tapers off beyond

evel 3. At the other end, the worst value for each level presents a starker picture: KVHD bound performs much worse compared to the higher levels, and the higher level bounds
tay confined within a noticeably narrow band.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
11
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