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Abstract
We study the thermal buckling behavior of precompressed boron-nitride nanotubes (BNNTs)using
molecular dynamics simulations with Tersoff interatomic potential.We compute the critical buckling
strains at near-zero temperature, and subsequently precompress the nanotubes at a certain fraction of
this value followed by temperature ramping. The critical buckling temperature,Tcr, ismarked by a
sudden decrease of the internal force.We observe that (i) at small tomoderate lengths,Tcr is higher for
chiral nanotubes than for either armchair or zigzag nanotubes, (ii)Tcr decreases with increasing
diameter unlike in thermal disintegrationwhere disintegration temperatures rise with increasing
diameter, and (iii) armchair nanotubes have an optimal length forwhichTcr ismaximum.We
qualitatively explain the reasons for each of thefindings. Thermomechanical buckling occurs
predominantly in twoways depending on the length of the nanotube—while the shorter nanotubes
fail by radial instability (shell-like behavior), the longer ones invariably fail due to bending-buckling
(rod-like behavior).

1. Introduction

Boron nitride nanotubes (BNNTs) have seen several applications over the last few years owing to their excellent
mechanical strength [1, 2] and better chemical/thermal stability as compared toCNTs [3–6]. The good thermal
andmechanical properties render it possible to use BNNTs in applications such as protective shielding for
nanomaterials [7], hydrogen storage [8–10], sorption of gases [11], water purification [12], and fabrication of
new compositematerials [13]. As these devices become smaller, they dissipate a significant amount of heat over a
small region [14]. Thus, theworking conditions of BNNTs usually involve large stresses due tomechanical and
thermal loadings, often both occurring simultaneously. It is therefore important to understand the structural
response of BNNTs under not only independently appliedmechanical or thermal load but also as under
combinedmechanical and thermal loads, a topic that has not receivedmuch attention.

Themechanical properties of BNNTs have been found using several differentmethods–molecular
mechanics [2, 15, 16], molecular dynamics simulations [17, 18],first-principle studies [19, 20] and continuum
modelling [21, 22]. All these studies indicate that the elastic and shearmoduli of BNNTs are very high, almost
comparable toCNTs. Although there is a significant dependence ofmechanical properties on the chirality and
the presence of defects (Stone-Wales and vacancies) [23, 24], themagnitude of the smallest of these remains very
high—of the order of 100 GPa [23].

BNNTs can fail due to several reasons—yielding, defect propagation,material fracture, thermal
disintegration, buckling etc. Their high yield strength [25, 26] and thermal disintegration temperatures [17]
make BNNTs virtually impervious to failure due to independently appliedmechanical or thermal loads. Among
all failuremodes, BNNTs are probablymost susceptible to buckling. The buckling strength has been evaluated
using classicalmolecular dynamics [27, 28], atomic scale finite element [29] and continuumapproaches [22].
Buckling can occur either due to the separate action ofmechanical or thermal stresses or due to a combination of
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both. The structural response of the BNNTs under buckling depends upon several factors; for example, with
increasing tube diameter the critical buckling strain decreases significantly [30]. The buckling strength is also
inversely proportional to the system temperature [28, 31].

However, the structural properties of the BNNTs under thermomechanical loading—that is, initially
compressed BNNTs under progressively increasing thermal loading—have not yet been explored. In this paper
we study the thermally assisted buckling of initially compressed BNNTs using classicalmolecular dynamics
simulations. Our objectives are twofold: (i) assessment of critical buckling temperature (Tcr), and (ii) identifying
themechanism and the governing structural variables determiningTcr. To accomplish our goals we study several
BNNTconfigurations that elucidate the effects of chirality, length and diameter.

2.Modeling and simulation

2.1. Boron nitride nanotubes
Ahexagonal boron nitride sheet comprises hexagonal ring-shaped structures inwhich each atomof nitrogen is
bonded covalently to three boron atoms, and vice versa, with the nearest BNbond length being = Åa 1.4457
[32]. Usually, a BNNT is characterized by three parameters: the chiral indices ( )n m, and the length, l. The
diameter of a BNNT in terms of these parameters is

= = ´ + +
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and, the chiral angle can be computed as
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A chiral BNNT is denoted by a value ofm that satisfies < <m n0 . A value ofm=0 gives us a zigzag
BNNT,whilem=n gives an armchair BNNT. In the present study, we use 15 different nanotube configurations
to gauge the effects of chirality, length and diameter. The BNNTs have beenmodelled using the nanotube
builder tool of the open-sourceVMDpackage [33]. The geometrical parameters of the BNNTs used in the
present study are shown in tables 1 and 2.

2.2. Interaction potential
The three-body Tersoff-like potential [34] has been adopted tomodel the interaction between the B-N atoms.
The Tersoff potential can be expressed in the following form:
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Table 1.Geometry of different nanotubes used in the study: indices (n,m), dia-
meter (D) and total length (LT). Three different values of total lengths have
been used.

(n,m) D (Å)
LT ,1

(nm)
LT ,2

(nm)
LT ,3

(nm)
Chiral

Angle (◦)

(10, 10) 13.8 6.9 13.8 20.7 30.0

(13, 7) 13.8 7.6 15.2 22.8 20.2

(15, 4) 13.8 7.5 15.0 22.5 11.5

(17, 0) 13.8 6.8 13.7 20.6 0.0

Table 2.Configuration of armchair nanotubes for investigating the
effects of diameter.

(n,m) D (Å) LT (nm) L (nm) Chiral Angle (◦)

(8, 8) 11.1 13.8 12.8 30.0

(10, 10) 13.8 13.8 12.8 30.0

(12, 12) 16.6 13.8 12.8 30.0

(15, 15) 20.7 13.8 12.8 30.0

2

Mater. Res. Express 3 (2016) 025005 AChandra et al



In equation (3), rij is the distance between the ith and the jth atoms, bij is the bond order function, fC denotes
the cutoff function that ensures nearest-neighbor interaction, fR denotes the repulsive pair potential, and fA
denotes the attractive pair potential. Themathematical forms of the individual functions are as follows:
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In expression (4), qijk is the angle between the bonds ij and ik. The parameters in the equation take different
values depending upon the systembeing simulated. Several Tersoff potential parameters have been proposed for
BNmaterials [36, 37]. In the present studywe have used the parameters proposed by Sevik et al [37], whichwere
obtained by fitting the simulation results to the structural,mechanical and vibrational characteristics of
hexagonal BN.Weweremotivated to use this potential parameter set because of its widespread use [23, 44] and
good agreement with results fromfirst-principle studies and experiments [37, 38]. Previously, the same set of
potential parameters has been used to estimate the thermal conductivity, vibrational frequencies and bending
rigidity of BN systems at up to K1000 [39, 44], making them suitable to investigate thermomechanical buckling
characteristics.

2.3. Simulationmechanism
Molecular dynamics simulationswere performed using the open-source LAMMPSpackage [40]. To understand
the effect of thermomechanical buckling, a precompression is necessary. Itmust be noted, however, that the
precompression force (or strain) should not be very high, or the systemwould buckle right away, and the
thermal effects would bemissed. Therefore, we have designed the simulations so that the nanotubes are
compressed at a certain percentage of their buckling strain.Our definition of strain corresponds to engineering
strain: the ratio of change in length of the system to the initial length of the system. The buckling load is
calculated at (near ground state of)0.1 K, and the corresponding strain is demarcated as the buckling strain.
Subsequently, the temperature is ramped up until the nanotube buckles. These steps are explained next.

2.3.1. Calculation of buckling load
The setup for calculating buckling load is shown infigure 1(a). The simulation domain is divided into three
regions, depending upon the boundary conditions imposed. The bottommost region (the regionmarked 3 in
figure 1(a) isfirst fixed, and the resulting system isminimized using the conjugate gradientmethod to obtain a
stable configuration. The rest of the boundary conditions are then imposed on this stable configuration—the
topmost region (marked 1 infigure 1(a)) is constrained in such amanner that only displacement in the z
direction is allowed, the central region (marked 2 infigure 1(a)) is allowed tomove freely, and the bottommost
region (marked 3 infigure 1(a)) isfirstfixed, and the resulting system isminimized using the conjugate gradient
method to obtain a stable configuration.We are interested in the behavior of region 2, which has a free length of
L. The regionmarked 3 is Å5 long, while the length of the regionmarked 1 varies in such amanner that the free
length (length of region 2) is kept fixed for a particular columnof LT (see table 1) in order to ensure uniformity.

The system is subjected to uniaxial compression by imposing a displacement rate of Å fs0.1 on region 1
along the z-direction. Each compression step is followed by 5,000 equilibration steps. Equilibration is performed
at 0.1 Kusing theNosé-Hoover thermostat [41]. The time step for performing numerical integration is 1 fs.
During this equilibration, region 1 and region 3 are constrained in all directions whereas region 2 is free of any
such constraints. The buckling load (Pcr) is found by summing up the forces in the z-direction for all atoms
within region 1. The critical strain e( )cr is taken as the strain at which Pcr occurs.

2.3.2. Pre-compression followed by temperature ramping
The entire simulation is restarted, as highlighted in the previous subsection, but now the displacement is applied
until the strain reaches a certain fractionα of cr . In otherwords, rather than compressing the nanotube until
(and beyond) buckling, we now apply a compressive load that is smaller than the buckling load. Every
compression step is followed by 5000 equilibration steps at 0.1 K, as before. After compression, region 1 is
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constrained along the z-direction. The temperature of the system is then ramped up at the rate of 10 K every fs.
Each temperature ramping step is followed by 10000 equilibration steps. The boundary conditions employed
during temperature ramping and the subsequent equilibration are portrayed infigure 1(b). Compressive forces
are averaged over all the equilibration steps. The internal forces are then related to the temperature of the system
to obtain the thermo-mechanical response of the system.

3. Results and discussions

The configurations of the different nanotubes used in the present study are detailed in tables 1 and 2. The values
of ( )n m, are chosen in such away that the diameter of the nanotubes remains almost constant. The free lengths
L, corresponding to the configurations given in table 1, are 5.9 , 12.8 and 19.7 nm respectively. For investigating
the effects of diameter only armchair nanotubes have been chosen (see table 2).

Pcr and cr corresponding to the nanotubes of table 1 are shown in table 3. Just like inCNTs, [42], the
buckling strength of BNNTs can be explained on the basis of bond configurations: (i) in zigzag nanotubes 1/3 of
the bonds are along the loading direction and the compressing load transfers symmetrically over them, resulting
in higher resistance to buckling; (ii) in chiral nanotubes none of the bonds are along the load-bearing direction
or transverse to it, and due to the asymmetric nature of the bonds, the load is transferred asymmetrically, causing

Figure 1. (a) Setup for compressing the nanotube.D represents the diameter. L denotes the length of region 2, i.e. the free length, and is
different from the total length of the nanotube LT. The bottom regionmarked 3 is keptfixed in all directions. The top regionmarked 1
is allowed tomove only along the z direction. The regionmarked 2 does not have any constraints and canmove freely in any direction.
A displacement-controlled approach is taken for calculating buckling load and buckling strain. Every compression step is followed by
equilibration steps, duringwhich region 1 is also keptfixed in all directions. (b)The boundary conditions used during the temperature
ramping process are shown. Both regions 1 and 3 arefixed in all directions while region 2 is kept free. These boundary conditions are
kept unchanged during the equilibration steps associatedwith temperature ramping.

Table 3.Critical buckling load and critical strain for the different nanotubes of table 1.

(n,m) LT ,1 LT ,2 LT ,3

Pcr (nN) CR Pcr (nN) CR Pcr (nN) CR

(10, 10) 61.99 0.058 52.22 0.047 39.00 0.038

(13, 7) 56.12 0.050 49.51 0.045 31.00 0.028

(15, 4) 56.46 0.051 49.65 0.045 30.20 0.028

(17, 0) 63.69 0.058 54.14 0.048 36.03 0.034
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some bonds to displacemore than others, eventually resulting in lower buckling loads; and (iii) in armchair
nanotubes no bonds are along the loading direction, but the symmetric nature of the bonding allows symmetric
load transfer, causing higher buckling strength than the chiral configurations. As is evident from the table, there
is a significant dependence of both Pcr and ecr on chirality and length. Short tomoderately long zigzag nanotubes
have the highest buckling strength. The buckling strength initially decreases as the chiral angle increases, but
then increases as the armchair configuration is approached.

The bucklingmechanism itself is independent of the chirality of the nanotubes but depends significantly
upon their length–nanotubeswith L 12.8 nm, regardless of their chirality, fail in radial bucklingmode (see
the left and center images offigure 2), and show limit point instability, while nanotubeswith =L 19.7 nm fail
through excessive in-plane deformation, as seen typically in Euler struts, and exhibit rod-like behavior. This is
subsequently followed by radial buckling (as typified in the right-hand image offigure 2). Despite the
independence of themechanismof buckling from chirality, the exact location at which the nanotubes buckle for
different chiralities is not the same.

Themechanism of buckling is strongly influenced by the diameter of the nanotubes, at constant length.
While BNNTswith < ÅD 13.8 show excessive in-plane deformation before radial buckling (like the bending-
buckling as typified in figure 2 (right)), BNNTswith  ÅD 13.8 fail due to radial buckling (in amanner similar
to the ones shown infigure 2 (left and center). The buckling strength and strains for different nanotubes shown
in table 2 are given in table 4.

The nanotube configurations shown in tables 1 and 2 are now subjected to the simulation setup detailed in
the previous section.We choose a = 0.7, i.e. the ratio of precompressing strain to the critical buckling strain,
ecr, is 0.7. The nanotubes undergo buckling as the temperature rises beyond a critical value, causing an abrupt
decrease in internal axial force. The critical buckling temperature decreases with increasingα.

It is interesting to note that as the temperature of the system is increased fromnear zero, the internal forces
on region 1 decrease, unlikewhat has been observed inCNTs [42]. This decrease in the internal forces is due to
the following reasons: (i) the negative coefficient of thermal expansion in BNNTs [43], and (ii) the instant the

Figure 2.Bucklingmechanisms for L=5.9 nm (left), 12.8 nm (center) and 19.7 nm (right)nanotubes.

Table 4.Critical buckling load
and strain for different nanotubes
shown in table 2.

(n,m) Pcr (nN) CR

(8, 8) 44.49 0.052

(10, 10) 52.22 0.047

(12, 12) 56.40 0.043

(15, 15) 57.05 0.034
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temperature rises above 10 K, the BNNTs experience local radial expansion/contraction near region 1, resulting
in a tensile effect on that region. Consequently, the internal compressive force decreases.

To validate the second hypothesis, we look at the average local expansion/contraction as a function of
temperature near the vicinity of region 1. Local aberration is obtained by calculating the RMSdisplacement of
the atomswith respect to theirmean positions at near ground state, ( )x y z, ,0 0 0 . It is seen that the atoms in the
vicinity of region 1move away from their ground-state positions (along the axis of the nanotube) as the
temperature is increased, providing a net tension on region 1. This eventually results in a decrease of the net
compressive force on it.

å= - + - + -[( ) ( ) ( ) ] ( )
N

x x y y z zRMS
1

5
i

i o i o i o
2 2 2

The results for RMS are highlighted infigure 3.Notice the inverse relation between the force andRMS
displacement—internal force increases when the displacement decreases and vice versa, validating our
reasoning.

3.1. Effects of chirality
The armchair and zigzagBNNTs are expected to have an inferior thermo-mechanical response as compared to the
chiral BNNTsdue to the inherent symmetry in their structures ,which amplifies thermal perturbations. The
armchair configuration is comparativelymore stable than the zigzag because 1/3of the former’s bonds are aligned
transverse to the loading direction, and thus havemore resistance to radial buckling causedby local perturbations.
Noneof the bonds in the zigzagBNNTs are alignedperpendicular to the loadingdirection, and all of themare in
compression.A combinationof these factorsmakes themvery unstable against radialfluctuations.

To elaborate this effect, an artificial radial imperfection is introduced in precompressed BNNTs at 10 K and
then further compression is applied. It is seen thatwhen the amplitude of the radial imperfection exceeds a
certain value, the zigzag BNNT fails immediately while the armchair BNNT absorbs the imperfection, regains its
original configuration and eventually buckles at amuch highermechanical load. If, however, the amplitude is
significantly large then the armchair BNNT also fails as soon as the defect is introduced. The primary effect of
temperature loading onBNNTs is the introduction of these kinds of ‘multiple’ local radial imperfections.
Moreover, as the temperature increases, the amplitude of the radial imperfections also increases.

The results for L=12.8 nmBNNTs forα= 0.7 are shown in figure 4. The results are as per our expectations
—the armchair configuration has higherTcr than the zigzag configuration, and the highest thermal stability is
exhibited by the chiral BNNTs. The asymmetrical bonding of the chiral BNNTs inhibits the amplification of
thermal perturbations and thus they are least susceptible to thermal buckling. The higher buckling temperature
of the (15, 4)BNNT than the (13, 7)BNNT suggests thatTcr increases with decrease in chiral angle.

3.2. Effect of diameter at constant length andfixed chirality
The effect of diameter (at constant L=12.8 nm) on theTcr is similar to the one observed for CNTs— as the
diameter increases, theTcr decreases. For simplicity, only armchair configurations have been considered in this
study. This is in contrast to the thermal disintegration of the BNNTs, where the disintegration temperature

Figure 3. Internal force on thefixed region 1 andRMS displacement in the vicinity of region 1 for the (10, 10)BNNTwith
L=12.8 nm as a function of temperature.
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increases with increasing radius due to the lower strain energy density of thewider BNNTs [17]. Figure 5 shows
the values ofTcrwhenα=0.7.

It is interesting to note that all BNNTs except (8, 8) fail due to radial buckling. The (8, 8)BNNTundergoes
bending-buckling failure and fails at a higherTcr than the rest. At lower load factors bending is induced in the (8,
8)BNNTonly after the temperature rises beyond a substantial value, and the bending is followed by radial
buckling. Consequently, at these load factors, (8, 8) shows the highest resistance to thermal buckling.

3.3. Effect of length
Tounderstand the effect of length let us look atfigure 6, which shows the thermo-mechanical buckling behavior
of (10, 10), (13, 7), (15, 4) and (17, 0)BNNTs forα=0.7. The longest BNNT (L=19.7 nm) invariably fails by
bending-buckling, while the shortest ones fail due to radial buckling. Themedium-length BNNTsmay undergo
either of the above or a combination of the two.

Figure 6 shows that the L=12.8 nm (10, 10)BNNT fails at amuch higher temperature than either the
shorter 5.9 nmBNNTor the longer 19.7 nmBNNT. This suggests that the armchair (10, 10) configuration has
an optimum length for whichTcr reaches amaximum— as L increases,Tcr increases, attains amaximumvalue,
and subsequently decreases. This is because the local thermal perturbations generated in the 5.9 nm armchair
BNNTaffect the system globally due to its small axial dimension and, therefore, it fails the earliest. The 12.8 nm

Figure 4.Effect of chirality onTcr for BNNTswith =L 12.8 nm. The chirality of the nanotubes has a significant effect onTcr. The
zigzag nanotube is thefirst to fail, followed by the armchair nanotube. The two chiral nanotubes have better thermal stability than
either the armchair or the zigzag configuration.

Figure 5.Effect of diameter onTcr forα=0.7. Forα=0.8 andα=0.9, the dependence ofTcr on diameter is similar to that of
α=0.7.

7

Mater. Res. Express 3 (2016) 025005 AChandra et al



BNNT, being longer, can reduce the global effects of the local perturbations, resulting in a higher buckling
temperature. On the other hand the longest BNNTundergoes bending-buckling, and thus fails earlier than the
12.8 nmBNNT.

The length dependence for the zigzag nanotube follows the common expectation— as length increases, the
Tcr decreases. The 5.9 nm and 13.8 nmzigzag BNNTs undergo radial buckling at lower temperatures as
compared to their armchair and chiral counterparts. Further, the longer 19.7 nmBNNTundergoes bending
failure at a temperature lower than the above two. As length increases, the number of local imperfections being
created also increases. This, combinedwith the fact that zigzag nanotubes do not have significant resistance to
radial instabilities,makes them fail progressively earlier with increasing length.

For chiral nanotubes we see that with increasing length,Tcr increases. The chiral 19.7 nmBNNTs at lower
loads do not show any bending, and thus do not fail at temperatures up to 1000 K.However as the load is
increased, a rapid decrease in theTcr is observed since the nanotube bending becomes prominent at higher loads.
The 12.8 and 5.9 nmBNNTs showdeformation characteristics that depend on the chiral angle.

4. Conclusions

The predominant effect of thermal loading is the creation ofmultiple local imperfections because of which the
nanotubes have a ‘wavy’ structure. Counterintuitively, these local imperfections lead to a reduction in the
internal forces of the system, on account of their tensile effect on the fixed ends. Despite the decrease in the
internal forces, the critical buckling temperature,Tcr, is well defined.

Chirality has a significant influence on theTcr –chiral nanotubes fail at amuch higher temperature than
either armchair or zigzag nanotubes.We attribute this to the asymmetrical bond profile of the chiral nanotubes.
The local thermal imperfections arising due to the increase in temperature aid in buckling.However, the
asymmetrical bonding of the chiral BNNTs hinders the amplification of these thermal perturbations, which
makes them less susceptible to buckling. The symmetric structure of the zigzag nanotubes and the fact that all
their bonds are under compressionmake themmost susceptible to buckling induced by thermal vibrations. For
armchair nanotubes, although the bonding is symmetric, since 1/3 of their bonds (the horizontal bonds) are in
tension, they havemore resistance to buckling due to locally created imperfections. However, because of the
symmetry, they buckle faster than the chiral nanotubes.We also observe that theTcr increases with decreasing
chiral angle.

Armchair BNNTswith smaller radii tend to undergo bending-bucklingwhile the ones with larger radii fail
predominantly by radial buckling. At small values ofα, where sufficiently large bending is not induced in the
nanotube, the shorter-radius BNNT fails at the highest temperature. This behavior changes at large values ofα,
where shorter-radius BNNTs fail the fastest. The effect of diameter can be summarized in a single statement as,
when diameter increases, buckling temperature decreases at small tomoderate precompression strains.
Interestingly, the effect of the length of the nanotubes is intrinsically coupled to the precompression strain,α, as
well as to chirality.
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