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This paper presents a probability-based methodology for load rating bridges that can

accommodate detailed site-specific in-service structural deterioration and response data

in a load and resistance factor rating (LRFR) format. The use of site-specific structural

response allows the elimination of a substantial portion of modelling uncertainty in live

load characterization. Inclusion of structural ageing allows the bridge owner the choice to

rate for longer intervals than, say, the usual two-year inspection cycle. This methodology

allows the live load-effect sequence on bridges to be statistically stationary with a

weakened mixing-type dependence that asymptotically decreases to zero with increasing

separation in time, instead of making the common assumption of independent and

identically distributed sequences of live loads. In addition, uncertainties in field

measurement, modelling uncertainties and Bayesian updating of the empirical distribu-

tion function are considered to obtain an extreme value distribution of the time-

dependent maximum live load. Gross section loss due to corrosion occurring with a

random rate governed by an exponentiated Ornstein-Uhlenbeck type stochastic noise is

considered. An illustrative example utilizes in-service peak strain data from ambient

traffic collected on a high-volume steel girder bridge. In-service load and ageing resistance

factor rating (ISLARFR) equations corresponding to plastic collapse of critical girder

cross-section over a range of service lives are developed.

Keywords: Bridge rating; Extreme value analysis; Extremal index; Stochastic process;

Structural reliability; Corrosion

1. Introduction

As bridge infrastructures age throughout the world, more

and more bridges are being classified as ‘structurally

deficient.’ Unfortunately, due to limited financial resources,

bridge owners are not able to immediately repair or, if

needed, replace all of the structurally deficient bridges in

their inventory. As a result, methods for accurately

assessing a bridge’s true load-carrying capacity are needed

so that the limited resources can be spent wisely.

When a bridge is designed, the behaviour of the as-built

bridge, as well as the nature of the site-specific traffic, can

only be estimated. Many secondary sources of stiffness and

strength are either neglected in design or are difficult to

compute. The calibrated load and resistance factors in the

AASHTO LRFD (load and resistance factor design)

Specifications (AASHTO 1994) are thus, by necessity,

conservative. Also, the condition of a bridge at any future

time is likely to be different from the as-built condition due

to aging. Incorporation of aging effects in future bridge

ratings is commonly not performed quantitatively. Rather,

aging effects are incorporated using primarily qualitative

information gathered during visual inspections. Never-

theless, inclusion of accurate time-dependent structural
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aging description in the rating methodology would allow

the bridge owner the choice to rate for longer intervals

than, say, the usual two-year inspection cycle and, as has

recently been suggested by JCSS (2001), to develop more

rational and economical maintenance strategies.

When load rating a bridge, the best model is the bridge

itself. By monitoring the bridge, one can gather in-service

traffic and performance data and conduct in-service

evaluations. The Manual for Bridge Rating through Load

Testing (NCHRP 1998) was published as an outcome of

NCHRP Project 12-28(13)A (NCHRP 1987). This manual

provides deterministic methods for determining bridge

capacities based on field testing and the quantification of

site-specific bridge behaviour. Most recently, NCHRP

Project 12-46 (NCHRP 1999b) has led to the development

of a Load and Resistance Factor Rating (LRFR) Manual

that is consistent with the LRFD Specifications. Like

the LRFD Specifications, the evaluation procedures devel-

oped are probability based, and like LRFD, LRFR

specifications are still based on design parameters and

non-site-specific data. Nevertheless, they do open the door

for using site-specific information to load rate bridges. For

example, the manual discusses the use of weigh-in-motion

data to calibrate site-specific live-load factors (NCHRP

2001).

It may be relatively time consuming and expensive to

inspect and instrument every bridge in a jurisdiction’s

inventory. If in-service response from a limited number of

sites can be deemed representative of a larger suite of

bridges, the rating factors can be ‘optimized’ for the entire

suite of bridges (similar to the principle applied in LRFD

and LRFR), and bridge owners may determine the safety of

bridges in their inventory using such optimized rating

equations.

This paper presents a probability-based methodology for

load rating bridges using site-specific in-service structural

response data in an optimized LRFR format. Possible

dependence in the loading process as well as gross section

loss due to corrosion are considered.

1.1 Properties of bridge rating

As detailed in Bhattacharya et al. (2005), bridge rating

should ideally use site- or region-specific data and should

account for uncertainties in strength (including aging) and

loads over the rating interval. Following the LRFR lead

and using peak live-load strain data from an instrumented

bridge incorporating new sensor technology, a reliability-

based rating methodology, referred to as In-Service Load

and Aging Resistance Factor Rating (ISLARFR), has been

developed to yield a bridge rating that satisfies the above

three criteria. The in-service data acquisition procedure

requires a minimum of equipment, no load truck, and no

traffic restriction. By measuring actual structural response,

the method accounts for both site-specific traffic and as-

built bridge response.

As in LRFD and LRFR, the scope of this paper is

restricted to assessment of structural components (as

opposed to the system), and the focus is on flexural beha-

viour, although the methodology can be easily extended to

other individual limit states such as shear if relevant. Gross

section loss due to random corrosion of steel has been

included in the methodology. Distribution of the yearly

maximum live load-effect is projected from the in-service

data using extreme value theory. Dependence in the loading

process has also been considered. Furthermore, since this

method uses the actual load-effect data instead of vehicle

weights, it eliminates a substantial portion of the modelling

uncertainty that is commonly associated with live load

characterization (e.g. that related to truck weight statistics,

dynamic impact and girder distribution factors). Therefore,

the resulting bridge ratings are expected to be more accurate

than present methods. A bridge that rates above 1.0 using

the present method will not require any (new) load

restrictions for the entire duration for which the rating

equation is valid provided the following are satisfied: (i)

traffic observed during in-service measurement reflects the

true traffic pattern, (ii) vehicles do not become significantly

heavier over the years, and (iii) the target reliability for the

limit state under consideration is acceptable. Application to

permit vehicles will require additional procedures.

The time-dependent component reliability model de-

scribed in this paper can subsequently be incorporated in

an appropriately formulated systems reliability analysis,

but will require additional work. In addition to the com-

ponents having adequate reliability, the system reliability

too must meet its target value – a target that is commen-

surate with the consequences of system failure. System

reliability computation should account for load sharing,

load path dependence, load redistribution after initial mem-

ber failures for redundant structures, non-linear behaviour

and non-brittle failure of the components, and possible

statistical dependence among the basic variables.

1.2 In-service strain measurement system

The proposed ISLARFR methodology uses a recently

developed in-service strain monitoring system (Shenton III

et al. 2000). The system, which is analogous to a weigh-in-

motion system, is used to measure peak live-load bridge

strains due to site-specific traffic over extended periods of

time. The prototype system consists of a digital data

acquisition system, a full-bridge strain transducer, a battery

pack, and an environmental enclosure. The single-channel

system was assembled from specially modified instru-

ments, off-the-shelf components, and custom-fabricated

parts. The data acquisition system consists of a specially

modified Snap Shock PlusTM (SSPM4), manufactured by

238 B. Bhattacharya et al.



D
ow

nl
oa

de
d 

B
y:

 [B
ha

tta
ch

ar
ya

, B
ai

du
ry

a]
 A

t: 
17

:3
7 

15
 A

pr
il 

20
08

 

Instrumented Sensor Technologies. The SSPM4 is small

and weighs only 204 g. It is powered by a single 9 volt

battery and has an on-board microprocessor, a 16 kilobyte

EEPROMmemory, a 12 bit Analogue-to-Digital converter,

and a serial communication link. Strains are measured

using an IntelliducerTM strain transducer, manufactured by

Bridge Diagnostics Inc. This sensor requires a regulated 5

volt excitation and is powered by a 9 volt battery pack. The

entire system, including the SSPM4, 5 volt regulator, and 9

volt battery pack, fits in a 15061506100 mm environ-

mental enclosure. The system continuously digitizes an

analogue signal at 1200 Hz, and when a pre-specified strain

threshold is exceeded, the system evaluates the response

and records the time at which the event took place, the peak

strain during the event, and the area under the strain-time

curve. The system can operate unattended for over two

weeks and can store up to 1475 data records (events). In

this research, only the peak strain during an event and its

time stamp are used. We admit that for steel girders and

slab bridges it may not always be possible to ascertain from

the observed strain data if they are a result of a bridge

acting compositely or noncompositely. Compositely-

designed bridges are generally assumed to act compositely

unless load tests show otherwise. Many noncompositely-

designed bridges, however, may act compositely under

service loads, but the composite action is likely to be lost

near failure load (Bakht and Jaeger 1990). However, we do

not account for any loss of composite behaviour at high

loads in this paper.

2. Bridge performance function in the presence of aging

It is common knowledge that bridges lose strength as they

age. The deterioration may be due to accidents, overweight

vehicles or cumulative physical/chemical processes. In this

paper, we consider deterioration only in the form of general

corrosion, although the methodology will be found general

enough to apply to other slow degradation mechanisms

such as high-cycle fatigue. Application to pitting corrosion

may require additional considerations due to the potentially

rapid rate of pit growth and the highly local nature of pit

damage.

Atmospheric corrosion of bridge members depends both

on the macro-environment, which refers to the general

atmosphere at and around the bridge, and on the micro-

environment, which refers to localized conditions (such as

leaky expansion joints) which might considerably alter the

deterioration due to just the macro-environment. Rural

environments are not very aggressive towards steels

because of the absence of corrosive agents like salt, sulphur

oxides, etc. while urban and industrial environments

contain all of the above that, along with moisture, promote

the corrosion of steel. The losses from corrosion are even

higher in marine environments because of salt spray,

humidity, winds, and daily temperature fluctuations

(NCHRP 1987).

General corrosion loss as a function of time t, C(t), can be

modelled most simply as a power law: C(t)¼AtB (Komp

1987). The exponent B assumes the value of 0.5 if the

process is purely diffusion controlled. In general, A and B

are random variables, possibly correlated, and account for

noise in the observed data. This model can be generalized

by incorporating a random initiation time (TI) as in

Ellingwood et al. (1996):

CðtÞ ¼ Aðt� TIÞB; t > TI; ð1Þ

where TI accounts for the time to activate the corrosion

process due to breakdown of protective paint or oxide

coatings for example. Since the above models produce

perfectly dependent sample functions (meaning that at any

two instants t1 and t2, the values C(t1) and C(t2) are

statistically completely dependent, as each is completely

determined by the initial values of A, B and TI), and may

appear unrealistic in some situations, they can be general-

ized by an additive noise, e(t), to yield models of the type

C(t)¼AtBþ e(t) (as reviewed by Melchers (2003)) such that

the future growth of corrosion still has some uncertainty

even if the process up to the present instant is known. The

noise term is most commonly taken to be an independent,

stationary and zero-mean Normal sequence.

Simple additive noises particularly of the Gaussian type,

however, have the potentially undesirable consequence of

turning the rate or the process negative, which for corrosion

loss, is inadmissible. We therefore propose a new model for

corrosion rate that incorporates a multiplicative noise term

ensuring that the corrosion loss function is non-decreasing

in time:

dC

dt
¼ 0; t � TI

bðt� TIÞgeZðtÞ; t > TI

�
; ð2Þ

where b and g are random parameters independent of time.

We would like the exponentiated noise, Z(t), to have the

following desirable properties: (i) it should be zero-mean

and be symmetric about the mean so that the classical

power law form would produce the median rate, (ii) it

should be stationary in time so that it reflects the same type

of environment, and (iii) it allows dependence in the rate at

different times so that the dependence decreases with

increasing separation in time. These properties are satisfied

if Z(t) is an Ornstein-Uhlenbeck process following the

Langevin equation of the type:

dZðtÞ
dt
¼ �kZðtÞ þ

ffiffiffiffi
D
p

xðtÞ; ð3Þ

where k and D are constants and x(t) is the white noise. The
process Z(t) quickly becomes stationary with mean zero (if

Bridge rating using in-service data 239
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the initial state is zero) and variance D/(2k). The stationary

autocorrelation function at lag t is exp(�k j t j) such that

the correlation length of the stationary process is 1/k

(Gardiner 2004). Since corrosion loss directly affects

the strength of structural members, the time-dependent

strength, R(t), of a critical cross-section can be conveniently

expressed as:

RðtÞ ¼ R0 f ½CðtÞ� ¼ R0GðtÞ; ð4Þ

where R0 is the initial strength and G(t) is a non-increasing

dimensionless stochastic process describing the degradation

in strength with time normalized by the initial strength.

Along with the strength of a structural component, the live

load-effect, L, on it is also a time-indexed random process.

Vehicle loads on a bridge can be approximated as random

pulses. Therefore, the time-dependent limit state equation

for a bridge component can be expressed as:

RðtÞ �D� LðtÞ ¼ 0 for t 2 ½0; t�: ð5Þ

We ignore load combinations involving earthquakes,

wind, etc. and concentrate only on traffic loading in this

paper. The random dead load-effect, D, is generally

assumed not to vary with time. The cumulative failure pro-

bability, Pf (t), over an interval [0, t], or its complement the

time-dependent reliability function, Rel(t) , is given by

PfðtÞ ¼ 1�RelðtÞ ¼ P½RðtÞ �D� LðtÞ � 0

for any t 2 ½0; t��: ð6Þ

Evaluation of the first passage probability in equation (6)

is involved but can be simplified by using the property

in equation (4) that sample functions of R(t) are non-

increasing in time. The failure probability in that case can

be conservatively estimated as:

PfðtÞ ¼ 1�RelðtÞ � P
[n
i¼1

Ri �D� Lmax ;i � 0

" #

for 0 ¼ t0 < t1 < t2 < � � � < tn ¼ t; ð7Þ

where Ri¼R(ti) and Lmax,i is the maximum live load-effect

on the bridge during (ti�1, ti). Please note that for each

interval (ti�1, ti), this choice of the ‘representative’ resis-

tance as the value at the right end point of the interval is

conservative. The degree of conservatism depends on the

number of intervals, n, and on the rate of degradation over

those intervals (ti�1, ti).
Since live load-effects are measured directly as strain, it is

convenient to consider the above strength limit state in the

strain domain as well. Therefore, the variables Ri,D and

Lmax,i are expressed in terms of strain throughout this

paper. As long as the structural response is elastic, this

formulation is completely equivalent to the more common

flexural moment based approach, although a correction is

needed for the inelastic domain as discussed later. The time-

dependent nature of the resistance has been discussed

above and in the following section, a statistical description

of Lmax,i is developed.

3. Distribution of maximum live load-effects

We define a ‘loading event’ as the passing of one vehicle or

the simultaneous passing of more than one vehicle over the

bridge. The loading events constitute a marked ordinary

point process, N(t), where the marks are the peak strain

responses L1;L2; . . . ;LNt
in which Nt denotes the number

of events during the interval [0, t]. It should be noted that

the marks are random in nature, and the number of events,

Nt, is a random variable as well. We assume that the peak

strains are caused by a truck population whose character-

istics do not evolve over time, and that traffic pattern, load-

ing and volume have memory (i.e. statistical dependence) in

the short term. However, we assume that the dependence

falls off with increasing separation in times of occurrence.

The above assertions are formalized as follows. The

loading sequence {Ln}¼ {L1,L2, . . . } constitutes a strictly

stationary but dependent sequence with common marginal

distribution F (also called the parent distribution). Let Mn

denote the maximum of the sequence {Ln}. The dependence

structure of {Ln} is such that the well-known Leadbetter’s

‘Conditions D(un) and D0(un)’ are satisfied (un represents a

sequence of increasing thresholds) (Leadbetter et al. 1983).

Condition D(un) ensures that groups from the sequence

{Ln} become asymptotically independent (in the statistical

sense) with increasing separation between the groups. The

Condition D0(un) limits the possibility of clustering of very

large values.

It can then be shown that the asymptotic distribution of

Mn has only three possible forms that are identical to the

three classical extreme value distribution types, Hc (the

classical case arises from a sequence of statistically

independent and identically distributed (i.i.d.) random

variables). The rate of convergence, however, is slower than

in the i.i.d. case, and can be quantified using the extremal

index, y, of the sequence, defined below. Further, the point

process constituting the instants when {Ln} exceeds the

threshold un becomes asymptotically Poisson as n increases.

Consequently, the maxima in disjoint time intervals become

asymptotically independent as well. Full details of the

analytical development is provided in Bhattacharya (2005).

3.1 The extremal index of the loading process

The extremal index, y, of a sequence can be interpreted as

the reciprocal of the mean limiting cluster size above high

thresholds (Leadbetter et al. 1983). y is a number between 0

240 B. Bhattacharya et al.
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and 1, and measures the strength of the dependence in the

sequence {Ln}. Heuristically, y¼ 0 corresponds to an

infinitely long memory sequence, 05 y5 1 corresponds

to a short memory sequence, and y¼ 1 corresponds to a

memoryless sequence (Hsing 1993).

It is convenient to introduce the associated sequence

fL̂ngthat is i.i.d. and has the same marginal distribution, F,

as the original sequence {Ln}. Let M̂n be the maximum of

the i.i.d. sequence fL̂ng. Classical extreme value theory (e.g.

Galambos 1987) gives the well-known result that under

suitable normalization and regularity conditions that

are satisfied by most common parent distributions, F, the

distribution of the maximum M̂n, converges to one of the

three classical types, Hc(z)¼ exp[�(1þ cz)�1/c], 1þ cz4 0.

Here z¼ (x� e)/d in which e and d4 0 are appropriate

location and scale parameters of the distribution. Hc

represents the generalized extreme value distribution, in

which the parameter c determines the type of the distri-

bution. It is of: (i) Type I (the Gumbel type) if c¼ 0, where

Hc is interpreted as the limit exp(� exp(� z)) as c! 0, (ii)

Type II (the Frechet type) if c4 0, and (iii) Type III (the

Weibull type) if c5 0.

It can be shown that if the associated i.i.d. sequence

possesses a maximum distribution, then under Conditions

D(un) and D0(un), so does the original sequence {Ln}.

Further, the distribution ofMn converges to the type of Hy
c ,

where y4 0 is the extremal index of {Ln}:

P Mn � anxþ bn½ � ! Hy
cðzÞ ¼ exp ½�yð1þ czÞ�1=c�;

1þ cz > 0: ð8Þ

The converse is also true. Clearly,Hc andHy
care of the same

type for any given value of c. The significance of this result

is that the distribution of the maximum Mn of a stationary

dependent sequence, provided it converges (which can be

guaranteed by Conditions D(un) and D0(un)), may be

estimated, at least in the right tail, simply with the help

of the marginal distribution F and the extremal index y of

the underlying process. Equation (8) is also significant as it

highlights the degree of conservatism that may be intro-

duced by the common and rather indiscriminate engi-

neering practice of assuming a sequence to be i.i.d. when

estimating the distribution of its maximum (for details see

Bhattacharya (2005)).

Defining Mp,q¼max{Lp , . . . ,Lq}, the runs estimator of

the extremal index, ŷR, is given by Smith and Weissman

(1994) and Weissman and Novak (1998):

ŷRðx; r; nÞ ¼
Pn

i¼1 IB;iðLi > x �Miþ1;iþr�1ÞPn
i¼1 IA;iðLi > xÞ ; r � 2; ð9Þ

in which IA;ið�Þ and IB;ið�Þ are indicator functions verifying

the truth of the respective condition in parentheses. The

estimate is basically the reciprocal of the average cluster

size above high thresholds (x) in which two consecutive

exceedances are part of the same cluster if they are less than

r observations apart. Note that ŷR also depends on the run

length, r, a parameter that must be chosen with care. As

explained in Bhattacharya (2005), we use Vanmarcke’s

scale of fluctuation, tc, as an estimate of the run length, r.

3.2 Maximum of the associated i.i.d. sequence

In order to find the distribution of the maximum live load-

effect, we first look at the maximum, L̂max ;t, of the

associated i.i.d. peak strain sequence L̂1; L̂2 ; . . . ; L̂Nt
. The

number of occurrences, Nt, is asymptotically Poisson as

mentioned above. Hence, the unconditional distribution of

L̂max ;t is:

FL̂max ;t
ðxÞ ¼ P L̂max ;t � x

� �
¼ exp �lt 1� FðxÞf g½ �; ð10Þ

where l is the rate of the Poisson process. For large lt,
FL̂max ;t

ðxÞ approaches one of the classical extreme value

distributions (equation (8)); the best fit model may be

determined and its parameters estimated by one of several

standard methods (Castillo 1988). Effects of additional

uncertainties may also be incorporated in equation (10) as

described below. The maximum of the actual loading

process, Lmax,t, can then be obtained using the extremal

index of the process {Ln} as given by equation (8).

Uncertainties arising from sampling and measurement

errors are discussed next.

3.3 Sampling and measurement-related uncertainties

Recall that the parent distribution, F(x), of the peak strains

in equation (10) can only be estimated from the observed

data. Thus, for any given x, the true value of the c.d.f., F(x),

is unknown, hence we can describe it as a random variable

P(x). The unknown P(x) is estimated from the sample as:

p̂ðxÞ � F̂ðxÞ ¼ 1

nþ 1

Xn
k¼1

IðLk � xÞ: ð11Þ

Before any data are collected, let the (prior) probability

density function of P(x) be f 0PðxÞ. Since the Lks are

stationary, p̂ðxÞ is an asymptotically unbiased estimator

of F(x) regardless of the fact that the Lks form a dependent

sequence, although its variance is larger than that in the

i.i.d. case. Based on the n observations, I, of the indicator

function I, we can perform a Bayesian updating of the

probability law of P and obtain its posterior (updated)

density function f 00PðxÞðpÞ ¼ fPðxÞjI¼I¼ðpÞ as:

f 00PðxÞðpÞ ¼
1

C
Lðp; IÞf 0PðxÞðpÞ; ð12Þ

Bridge rating using in-service data 241
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where C is the normalizing constant, Lðp; IÞ ¼ P I ¼ Ij½
PðxÞ ¼ p� is the likelihood function, and f 0PðxÞðpÞ is the prior
probability density function of P(x). Lðp; IÞ can be inter-

preted as the probability of observing exactly k ¼ ½ðnþ 1Þp̂�
samples less than or equal to x out of n samples (where

x¼F�1(p)) if the unknown parameter P(x) was indeed

equal to p. It can be shown that (Bhattacharya 2005), under

Conditions D(un) and D0(un) and for values of p close to 1,

the posterior density of P is of the Beta type, given by:

f 00PðxÞðz; a1; a2Þ ¼
1

Bða1;a2Þ z
a1�1ð1� zÞa2�1; 0 � x � 1

0; elsewhere.

�
ð13Þ

The two parameters a1 and a2 are dependent on given

values of x and are given by a1 ¼ ð½ðnþ 1Þp̂ðxÞ� þ 1Þyþ 1;

a2 ¼ ðn� ½ðnþ 1Þp̂ðxÞ�Þyþ 1 where n is the number of

observations, and the estimate p̂ðxÞ is given by equation

(11). The mean and variance of P(x) can therefore be given

by a1/(a1þ a2) and a1a2/{(a1þ a2)
2(a1þ a2þ 1)} respec-

tively. Clearly, the updated mean of P(x) is very close to

the estimate p̂ðxÞ regardless of the value of y; its variance,
however, is inversely proportional to the extremal index. In

a more sophisticated load analysis (Bhattacharya 2005) the

occurrence rate, L, may be taken to be a stochastic process

resulting in a Cox process model for the load process.

Here we find it sufficient to approximate L as simply a

Normal random variable, as has been demonstrated in

Bhattacharya et al. (2005).

In light of the above uncertainties, equation (10) can now

be restated as the conditional distribution of the maximum

of the associated i.i.d. sequence during an interval of length

t given fixed values of the parent distribution, rate of

occurrence and location error: FL̂max ;t x jP ¼ p; L ¼ lð Þ ¼
exp �ltð1� pðxÞð Þ. The unconditional distribution of the

associated i.i.d. sequence, L̂max ;t, may be obtained as,

FL̂max ;tðxÞ ¼
Z
b

Z
p

Z
l
exp �ltð1� pðxÞð Þ

� fLðlÞf 00PðxÞðpÞ dl dp; ð14Þ

which may be estimated numerically using Monte-Carlo

simulations.

4. Development of rating equations for a suite of bridges

In terms of LRFR methodology (NCHRP 1998), the rating

factor (RF) for an existing bridge is

RF ¼ fRn � gDDn

gLQn
; ð15Þ

where Rn is the nominal resistance, Dn and Qn are

the nominal (or characteristic) values of dead and live

load-effects respectively, f is the resistance factor, and gD
and gL are the load factors for rating. Elastic buckling is

generally not encountered in bridge flexural members,

hence, for the first yield limit state the nominal strength, Rn,

is equal to the nominal yield strength, Yn. For the plastic

collapse limit state, the nominal resistance is Rn¼ fpYn,

where fp is an amplification factor accounting for post-yield

reserve strength. Note that if a bridge is not instrumented

its nominal live load, Qn, needs to be estimated indirectly.

Note also that because it is a load-effect, Qn already

includes dynamic impact effects.

A reliability-based bridge rating factor could be defined

in a variety of ways, such as the ratio b/bT, where b¼F�1

(Rel) is the reliability index and bT is its target value

(defined in the next section) that would satisfy the desirable

features mentioned at the beginning of this paper, as well as

equation (15). Nevertheless, the format in equation (15)

conforms to current professional practices and was adopted

in this paper.

4.1 Target reliability index for bridge rating

The target or minimum acceptable reliability, bT, for a

given failure mode is intended to ensure that the structural

component under consideration has an adequate level of

safety up to the end of a reference period. The target

reliability, bT, used implicitly in LRFD of new bridge

components in flexure is 3.5 with a typical design life of

75 years (NCHRP 1999a, 1999b). This value is based on

calibration with a representative sample of existing bridges.

One should note that when target reliability is calibrated

to existing service-proven design standards, the results

depend upon the method of reliability analysis, the

assumptions regarding random variables, the mechanistic

model, etc.

For evaluating existing bridges, a value of bT¼ 2.5

corresponding to typical inspection intervals of 5 years has

been suggested (NCHRP 1998, Ghosn 2000) mainly from

economic considerations. It was argued that the marginal

cost of increasing bridge reliability before construction

(i.e. at the design stage) is small compared to that for

an existing bridge (through repair/rehabilitation). Since

the total expected cost over the remaining life of the bridge

has to be minimized in this case, the revised optimal target

reliability would be clearly lower than that in a new design

in this approach.

In-service bridge rating at two different levels has been

proposed for bridge structural components in Bhattacharya

et al. (2005) such that bridge owners may choose either one

or both to rate their bridges. The first level corresponds to a

first yield limit state for a reference period not exceeding 2

years with bT¼ 2.5, and the second level corresponds to

plastic collapse (i.e. ultimate limit state) over any duration

up to the end of service life with bT¼ 3.5. Since we are

242 B. Bhattacharya et al.
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concerned with failure of aging bridges here, the relevant

limit state in this paper is the ultimate one with a target

reliability index of 3.5.

4.2 Optimum load and resistance rating factors

As in LRFD where a design equation is optimized for a

suite of bridges, the rating equation should preferably be

valid for at least a sizeable fraction of a given bridge

inventory. The series of limit state equations (7) can be

normalized by the rating equation (15) to yield the

cumulative failure probability as:

PfðtÞ ¼ 1�Re lðtÞ ¼ F �bðtÞ½ �

¼ P
[n
i¼1

X1;i

f
�

X2 þ Qn

Dn

� �
X3;i

gD þ Qn

Dn

� �
ðRFÞgL

� 0

8<
:

9=
;

2
4

3
5; ð16Þ

where b(t) is the equivalent time-dependent reliability

index. As stated before, this series decomposition of a

time-continuum problem is conservative. However, the

degree of conservatism can be controlled by choosing

the number, n, and size, ti� ti�1, of those intervals for the

given process of strength degradation. The terms in

equation (16) are defined as follows: X1,i is the normalized

resistance at time i. For plastic collapse limit state, the

initial resistance, R0¼FpY, where Fp is the random plastic

strength factor and fp is its nominal value. The normalized

resistance at any time i then equals X1,i¼ (Fp/fp)(Y/Yn)

G(ti). The term X2¼D/Dn is the normalized dead load.

Although the nominal dead load Dn is usually estimated

indirectly, we assume that the estimation-related error is

negligible. The normalized maximum live load in the ith

interval is given by X3,i¼Lmax,i/Qn.

Figure 1 shows the scheme for obtaining optimized load

and resistance factors (LRFs) for rating a suite of bridges

that have statistically similar loading and strength degrada-

tion properties. The acceptance criteria used in the opti-

mization procedure are:

min Dðf; gD; gLÞ ¼
Xk
j¼1
ðbj � bTÞ

2wj

subject to:

RF ¼ 1

f � 1;

gL � gD � 1;

ð17Þ

where k is the total number of nominal load ratios (Qn/Dn)

in the suite of bridges, and wj denotes the relative frequency

(weight) of the jth nominal load ratio with
Pk

j¼1 wj ¼ 1.

The reliability index for each load ratio is a function of

bj¼ f(RF,f, gD, gL; (Qn/Dn)j) as given by equation (16). The

constraints on the decision variables, i.e. the LRFs f, gD
and gL, are intended to conform to accepted engineering

practices. It should be noted that the optimal LRFs thus

obtained are unique to an arbitrary factor in the sense

that they could each be multiplied by any arbitrary

constant and still yield the same minimum weighted

error. The equality constraint RF¼ 1 (instead of an

inequality constraint such as RF� 1) ensures that bridges

that rate at 1.0 just satisfy the target reliability (on the

average) such that rating factors above 1.0 indicate

reliabilities above bT and vice versa. The local response

surface fit for the objective function, D, as depicted in

figure 1, is optional but may be found desirable from the

numerical efficiency point of view for: (i) smoothing the

noise generated by the finite size of the Monte-Carlo

sampling, and (ii) cheaply computing the gradient of the

objective function.

5. A numerical example of rating an aging bridge

using in-service data

The proposed rating procedure is now demonstrated with a

brief example involving highway bridges. For this purpose,

all highway bridges in the State of Delaware were assumed

to constitute the bridge inventory for which the optimal

rating equation will be developed. The bridge selected for

instrumentation and data acquisition was Bridge 1-791,

which is a 3-span continuous, slab-on-steel girder structure

carrying two lanes of Interstate-95 over Darley Road in

Delaware. In-service strain data were recorded at the

midspan of the critical girder of the approach span

(beneath the right travel lane) during an approximate 11

day period in August 1998 (figure 2). A trigger level was set

at 85 me so that only the larger truck events would be

recorded. The effect of raising the threshold (in steps up

to 160 me) on the statistical dependence in the loading se-

quence and the properties of the extreme loads have been

studied in Bhattacharya et al. (2005) and Bhattacharya

(2005).

A histogram of the observed raw data is shown in

figure 3, which represents 533 loading events. The data were

analyzed to project the probability distribution of daily and

yearly maximum load-effects (also shown in figure 3).

Gross section loss due to corrosion in an urban atmosphere

leading to deterioration in girder sectional modulus was

incorporated. Load and resistance factors (LRFs) for

rating were derived for the suite of bridges for periods

ranging up to 25 years. Needless to say, it is for the purpose

of illustration alone that we are relying on only one bridge

and only 11 days of data. Developing optimized LRFs for a

suite of bridges requires a careful selection of representative

bridges and in-service observation windows for deriving

live load statistics.
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5.1 Random degradation of girder strength

The corrosion statistics are adopted from the existing

literature and not from any in-service inspection. We

obtained the properties of the random curve fitting

parameters b and g in equation (2) as follows. Using

b¼AB and g¼B� 1 (where A and B are as in equation

(1)), we adopted the statistics of A and B from Komp

(1987). For urban environments, A is normally distributed

with mean 80.2 microns and a c.o.v. of 42%, while B is

normally distributed with mean 0.593 and a c.o.v. of 40%.

The correlation coefficient between A and B is 0.68. We

choose a moderate value of 0.05 for the stationary variance

of the dimensionless noise in equation (2), the correlation

length is taken to be 0.25 years to account for seasonal

dependence in the rate of corrosion. The corrosion

initiation time TI is taken to be Lognormally distributed

with mean 5 years and a c.o.v. of 30%.

The measure of strength degradation due to the corro-

sion process described above is taken as the normalized

Figure 1. Flowchart for determining optimal load and resistance factors.
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reduction in the plastic section modulus of the critical girder

section. The uncorroded plastic section modulus of the steel

girder in consideration is 307.1 in3. Figure 4 shows about

15 sample paths of the stochastic degradation function,G(t).

5.2 Statistics of maximum live load-effect

We first estimate the distribution of the maximum load,

L̂max ;t, during the interval (0, t] of the associated i.i.d.

sequence. Point estimates of the c.d.f., p̂, of the load

sequence {Ln} at nine different strain values (l) are listed in

table 1. As is desirable, only the right tail of the parent

distribution is used in estimating the distribution of the

maximum. A Bayesian updating of the c.d.f. is performed

(using equation (13)), and the mean and the c.o.v. of the

updated distribution are listed in the table at various values

of l. The c.o.v. of P is found to be very small (as a result of

the reasonably large sample size and high extremal index),

especially at the upper tail, and was considered to be deter-

ministic, i.e. P � p̂ðlÞ for each l. Eleven point estimates of

the random arrival rate L were available producing a mean

of 48.5 events/day and a c.o.v. of 59.0% (Bhattacharya

et al. 2005). Since the arrival rate is by definition non-

negative, a left-truncated Gaussian distribution was used

for L in the simulations (the truncation point was l¼ 0

corresponding to an original c.d.f. of about 5%). We select

the time interval t¼ 1 day. To estimate equation (14) for

each value of l, 10000 Monte Carlo simulations were used.

As discussed above, the maximum from an i.i.d. sequence

approaches one of the three classical extreme value

distributions for largest values for most parent distribu-

tions. Of these, the Gumbel (i.e. Type I maximum) and the

Frechet (i.e. Type II maximum) distributions were tried for

L̂max ;1d. The third, Weibull distribution for maxima, was

Figure 2. Time-line of loading events spanning 11 days in

August 1998 on Bridge 1-791 on I-95.

Figure 3. Distribution of observed raw data compared with projected daily maximum live load strain (from the associated

i.i.d. sequence) and the projected annual maximum live load strain (from the actual sequence).

Bridge rating using in-service data 245



D
ow

nl
oa

de
d 

B
y:

 [B
ha

tta
ch

ar
ya

, B
ai

du
ry

a]
 A

t: 
17

:3
7 

15
 A

pr
il 

20
08

 

not tried here since it is limited on the right, although this

property can be attractive in situations where geometric,

load posting or other constraints put a clear upper limit on

loads that can be placed on the bridge. The Gumbel fit was

found to be clearly better in the present case, and was

adopted for L̂max ;1d in this paper:

FL̂max ;1d
ðxÞ ¼ exp½�expð�â1dðx� û1dÞÞ�; ð18Þ

where â and û are the scale and mode, respectively, of the

maximum of the associated i.i.d. sequence and the subscript

denotes the model corresponds to a duration of 1 day. The

parameters are estimated as â1d ¼ 0:0237 and û1d ¼ 158:3

microstrain.

The extremal index of the loading sequence, {Ln}, is

estimated using equation (9). For a given run length, r, the

estimate is found to depend on the threshold, u, according

to the nonlinear relation:

ŷðuÞ ¼ b0 þ b1qðuÞ
b2 ; q! 0; ð19Þ

where the exceedance probability q(u): 1� p(u) is esti-

mated from equation (11). We found that the estimate ŷ

Table 1. Estimates of daily maximum peak strain.

c.d.f. of load-effect

Right

endpoint Counts

Point

estimate

Updated Beta

distribution

parameters for P Predicted max

load-effect c.d.f.

Interval (m�) x (m�) (k) p̂ðxÞ¼Sk/(nþ 1) mean c.o.v. FLmax,1day (x)

585 85 0 0 – – –

85 – 100 100 428 0.8015 0.8019 2.15% 0.0252

100 – 115 115 61 0.9157 0.9159 1.31% 0.0776

115 – 130 130 17 0.9476 0.9477 1.02% 0.1550

130 – 145 145 9 0.9644 0.9645 0.83% 0.2461

145 – 160 160 5 0.9738 0.9738 0.71% 0.3354

160 – 175 175 5 0.9831 0.9832 0.56% 0.4782

175 – 190 190 3 0.9888 0.9888 0.46% 0.6021

190 – 205 205 3 0.9944 0.9944 0.32% 0.7674

205 – 255 255 2 0.9981 0.9981 0.19% 0.9146

Figure 4. Sample paths of the normalized deterioration function.
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shows a decreasing trend with increasing run length, r, for

any particular value of the threshold, u. This is consistent

since the extremal index is the reciprocal of the average

number of exceedances per cluster, and with increasing run

length the number of clusters goes down. This points to

the need for correctly identifying the run length. The run

length is estimated as 2 which involves a slight degree of

conservatism (Bhattacharya 2005). The minimum squared

error fit to the data according to equation (19) is shown

in figure 5, yielding a value of the extremal index as

y¼ 0.93. This high value of y indicates that the load

sequence is almost independent, a likely consequence of the

rather high trigger of 85 me set for the in-service recording

device.

Since the distribution of the maximum of the associated

i.i.d. sequence and the actual dependent stationary se-

quence are of the same type (compare to equation (8)),

differing only in terms of the factor y, for the Gumbel

family, this leads to an unchanged a (hence an unchanged

variance) and a mode (and mean) shifted to the left by an

amount (1/a) ln(1/y), 0 5 y � 1. Since the Gumbel family is

closed under maximization, L̂max ;rd for any other interval

t¼ r days (in integral multiple of days) is also Gumbel

distributed with parameters:

ard ¼ â1d � a

urd ¼ û1d �
1

a
ln

1

y

� 	
þ 1

a
lnðrÞ:

ð20Þ

The mean and c.o.v. of the annual maximum live load-

effect are thus 428.2 me and 12.6%, respectively.

5.3 Time-dependent LRFs optimized for a suite of bridges

According to Delaware Department of Transportation, the

state has 333 single-span bridges and 317 multi-span

bridges (only aqueducts, culverts and bridges shorter than

5 m are excluded). The estimated nominal live to nominal

dead load-effect ratio, Qn/Dn, calculated with BRASS

(1992) (with Qn corresponding to HL93 in the AASHTO

LRFD Specifications (AASHTO 1994)), varied from 1.0

to 4.0 for the above mentioned inventory. The relative

frequency, wi, of the Qn/Dn ratios 1.0, 1.5, 2.0, 2.5, 3.0

and 4.0 were 4%, 9%, 13%, 18%, 23% and 33%

respectively (Hastings 2001). This skew in favour of higher

values (Qn/Dn� 3) is presumably due to the inclusion of

very short bridges in the database (about half of which were

in the 5 – 15 m range).

This study did not involve any experimental analysis of

dead load or initial resistance; the statistics of these

quantities are adopted from those published and widely

used by the professional community. The dead load

statistics, taken from NCHRP (1999b), were that the

normalized dead load, X2, is normally distributed with

mean 1.04 and c.o.v. 9%. Pending more sophisticated

analysis, the nominal plastic strength factor, fp, is simply

taken as the ratio of the girder’s ultimate to yield moment

capacities, assuming a bilinear moment curvature relation-

ship and, in this example, fp¼ 1.16. The corresponding

random factor Fp¼ fpPF where P is the random profes-

sional error factor and F is the random fabrication error

factor (Ellingwood et al. 1980). Fp is thus Lognormally

distributed with mean 1.03 fp and c.o.v. of 7.1%. The

Figure 5. Estimation of the extremal index.
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normalized yield strain is taken to be Lognormally

distributed with mean 1.05 and c.o.v. 11.7%. The normal-

ized initial resistance is thus Lognormal with mean 1.09 and

c.o.v. 13.7%. As stated below equation (16), all normal-

ization mentioned in this paragraph is with respect to the

nominal or characteristic value of each random variable.

The nominal dead load-effect on Bridge 1-791, computed

by BRASS (1992), is 96 me. The girder is constructed of

A36 grade steel whose nominal yield resistance is taken to

be 1241 me. The nominal live load is taken to be the annual

median live load effect, i.e. the load level with a 2 year

return period coinciding with the typical inspection period,

and equals 419.6 me. This value may be compared to the

nominal live load-effects produced by two design trucks on

the same bridge: (i) 322.7 me by HS20, and (ii) 409.8 me by
HL93. If future in-service measurements are performed, the

nominal live load may be updated following the same

procedure. The random strength deterioration due to

corrosion is as described above and is considered indepen-

dent of the initial strength and the random loading process.

For the purpose of this example, we assume the normalized

strength deterioration to be statistically the same for all

bridges under consideration. However, in practice, this may

be true only for a subgroup of the entire suite of bridges.

The optimal rating equation LRFs for different time

intervals with and without aging are shown in table 2. As

stated previously, the target reliability, bT, equals 3.5 for

each reference period (t) listed in the first column. For each

numerical evaluation of the objective function, D (equation

(17)), and its gradients at a given set of values of the

decision variables f, gD and gL, a linear response surface

was fitted locally for D on a 3-D grid with n3 points. The n

points for f were chosen according to: fþ (k� (n�1)/2)
Df, k¼ 0, . . . , n�1, and similarly for gD and gL. We found

n¼ 4 and Df¼DgD¼DgL¼ 0.05 to be acceptable for this

exercise. The non-linear optimization is performed using a

sequential quadratic programming method in Matlab

(TM).

For each set of values for f, gD and gL and for the load

ratio Qn/Dn, the limit state probability (equation (16)) was

computed with the help of importance sampling (IS). For

each estimate of b, 100 000 IS trials were found to be

sufficient. Benchmark analyses established that the optimal

IS distribution for the series reliability analysis of equation

(16) required shifting the means of only X1,0 and X2 while

keeping the c.o.v.s the same. For each given set of f, gD, gL,
Qn/Dn and t, the two means were shifted to the respective

design point values obtained by a first order reliability

method (FORM) analysis of the limit state equation

Xl,t0/f� (X2þX3,t0)/(gDþ (Qn/Dn)gL)¼ 0 where t0 ¼max

(E[TI]þ (t�E[TI])/2, 1). The FORM analysis involved the

Rackwitz and Fiessler (1978) algorithm for mapping the

basic variables to the uncorrelated standard normal space.

The left half of table 2 presents the optimal load and

resistance factors for various reference periods, t, up to 25

years when aging effects are not considered. The corre-

sponding rating factors for Bridge 1-791, obtained using

equation (15) in each case, are also listed. If aging is not

considered, the bridge rates more than adequately for the

foreseeable future. As expected, the rating factor drops

with increasing t, although the decrease is fairly moderate

and tapers off with time. The sole reason for this decrease is

the shifting of the live load distribution to the right with

time.

The right half of table 2 presents the picture when aging

effects are included. It is clear that the effects of aging on

the LRFs and the RF are rather insignificant for up to

about 10 years. This is due first to the existence of the

corrosion initiation period (which has a mean of 5 years)

and subsequently to the rather gentle deterioration process

as evidenced by figure 4. Beyond 15 years or so, the

cumulative effect of aging becomes clear and the bridge

rating falls below 1.0 at around 17 years. Thus, in this

example, if the bridge owners are confident about the aging

model and the in-service loading data, they may decide to

schedule a comprehensive maintenance operation at the

end of 16 years and perform only limited or no inspection

up to that time. For the purpose of comparison, rating

factors for Bridge 1-791 using existing methods (LFD (load

factor design) and LRFR) that do not account for aging

or correlation in the load process may be found in

Bhattacharya et al. (2005).

Table 2. Illustrative rating equation LRFs and resultant rating factors under ambient traffic for highway girder bridges in Delaware
with and without aging effects.

Aging not considered With stochastic aging process

Reference time, t (yr.) f gD gL RF f gD gL RF

5 0.85 1.20 1.80 1.47 0.85 1.20 1.80 1.47

10 0.85 1.20 1.89 1.40 0.85 1.20 1.89 1.40

15 0.85 1.20 1.93 1.37 0.85 1.20 2.32 1.14

20 0.85 1.20 1.94 1.36 0.80 1.50 3.11 0.77

25 0.84 1.20 1.94 1.34 0.80 1.50 3.88 0.62
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6. Conclusions

The recent LRFR method uses a probabilistic approach to

ensure that existing bridges can be rated and compared

against a common target reliability level. Nevertheless, it

does not accommodate the use of site-specific information,

nor does it explicitly account for time-dependent aging

effects. This paper presented a methodology that allows the

use of in-service peak strain data to evaluate the safety of

existing bridges in a fully probabilistic manner. A

significant part of the effort has involved statistical

characterization of the live load-effect based on extreme

value theory including the consideration of statistical

dependence in the loading data. Furthermore, a random

aging mechanism leading to loss of plastic section modulus

due to general corrosion occurring with a random initiation

time and a stochastic rate with temporal dependence was

also considered. The proposed in-service load and aging

resistance factor rating (ISLARFR) methodology is con-

sistent with both the LRFD and LRFR procedures, and

because it can incorporate actual bridge response and

health condition, it can lead to more accurate condition

assessments.
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