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ABSTRACT 

Partial safety factors (PSFs) used in reliability-based design are intended to account for uncertainties in 
load, material and mathematical modeling while ensuring that the target reliability is satisfied for the relevant class 
of structural components in the given load combination and limit state.   This paper describes the methodology in 
detail for developing a set of optimal reliability-based PSFs for the design of prestressed concrete inner containment 
shells in Indian NPPs at collapse limit state under MSLB/LOCA conditions.  The mechanical formulation of the 
flexural limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and SP16. 
 The applied biaxial moments are combined according to Wood’s criteria.  The optimization of the PSFs is based on 
reliability indices obtained from importance sampling and a local linear response surface fit; Monte Carlo 
simulations are performed to determine the capacity statistics and dependence between capacity and applied loads. 
 Numerical examples are provided. 

 

INTRODUCTION 

The design of containment shells for Indian Pressurized Heavy Water Reactors (PHWRs) has evolved over 
the years, originating from a steel cylindrical shell capped with a steel dome (CYRUS Reactor, Trombay), followed 
by the use of reinforced concrete walls and pre-stressed concrete dome (Rajasthan Atomic Power Station) to the use 
of Pre-Stressed concrete for the entire shell (Madras Atomic Power Station) and pre-stressed concrete double 
containment shells (first employed in the Narora and Kakrapar Power Stations). The Kaiga and Rajasthan Atomic 
Power Plants marked a further improvement in the design philosophy with complete double containment shells 
having independent domes [1]. The inner containment shells used in recent PHWRs are cylindrical structures of 63 
m height, with prestressed concrete spherical domes containing 4 large openings to facilitate the replacement of 
steam generators. [2]. Until recently, nuclear containment structures in India were designed using the French RCC-G 
code.  The raft of the PWHR at Tarapur was designed using the ASME code and checked against RCC-G [1].  There 
is yet no formal Indian design standard for containment structures.  In 2007, the Atomic Energy Regulatory Board 
(AERB) of India released the CSE-3 codes [3] which is currently under review. 

Significant uncertainties exist in the structural behavior of the IC Shells of PHWRs, arising out of the 
random nature of material, geometry, prestressing and loadings. As early as 1974, Shinozuka and Shao [4] 
conducted a probabilistic assessment of prestressed concrete pressure vessels using the first order second moment 
approximation. Uncertainties in loads and in the material and geometry of the vessels were considered while short 
term accidental load effects were modeled as Poisson Processes. The overall uncertainty in structural behavior of 
nuclear containment structures, as in any general structure, is caused by uncertainties in resistance and demand 
quantities. The uncertainty associated with the resistance of containment shells arises out of uncertainty in the 
strengths of concrete and steel as well as in shell geometry. While concrete strength has been found to be better 
controlled in the nuclear power plant industry than in the ordinary building industry, steel strength variability does 
not display a noticeable reduction. Variability in sectional dimensions is comparatively quite low and has negligible 
impact on the overall uncertainty in structural resistance [5]. Loads acting on concrete containments intrinsically 
involve random uncertainties, and therefore need to be treated probabilistically. Different loads have different 
degrees of randomness and may entail appropriate adjustments in the probabilistic framework, for example, the 
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variability of dead load being substantially lower than that of an accidental pressurization load, the former can be 
treated as a deterministic quantity for simplification of analysis [6]. Another significant source of uncertainty is the 
long term behavior of these structures  which is highly variable owing to material changes (for example, prestress 
loss in tendons and creep in concrete) and the occurrence of accidental events [7, 8]. 

It is most rational to treat uncertainties associated with parameters governing the design and construction of 
a structure in a probabilistic format, specifically, to model the time-invariant quantities as random variables and the 
time-dependent ones as stochastic processes. Recognizing the existence of these uncertainties is an admission of the 
fact that the structure may not always satisfy its performance and safety objectives during its intended design life.  
The logical extension of this admission is to ensure that the likelihood of unsatisfactory performance be kept 
acceptably low during the life of the structure. 

The subject of structural reliability provides the tools and methodologies to explicitly determine the 
probability of such failures (“failure” here in the sense of non-compliance or non-performance) by taking into 
account all relevant uncertainties.  These techniques can be used to design new structures with specified (i.e., target) 
reliabilities, and to maintain existing structures at or above specified reliabilities.  Target reliabilities are discussed in 
the next subsection. Even though such computed probabilities of failure (reliability being 1 minus failure 
probability) may not have a frequentist or actuarial basis, structural reliability provides a neutral and non-
denominational basis to compare different (and often disparate) designs and maintenance strategies on a common 
basis.    

A limit state function (or performance function), g(X), for a structural component is defined in terms of the 
basic variables, X, such that: 

 
( )  0 denotes failure
( )  0 denotes satisfactory performance

g X
g X

<
>

 (1) 

and the surface given by: 

 ( )  0g X =  (2) 

is called the limit state equation or limit state surface.  The performance function g is typically obtained from the 
mechanics of the problem at hand.   For multiple failure modes or if there are multiple critical sections, Eq. (2) is 
generalized to an appropriate union of failure events.  

The basic variable generally comprise of quantities like material properties, loads or load-effects, 
environmental parameters, geometric quantities, modeling uncertainties, etc. They are usually modeled as random 
variables; however, those with negligible `uncertainties may be treated as deterministic. The general expression of 
failure probability is 

 ( )
( ) 0

( ) 0 ( )f X
g x

P P g X = f x dx
<

= < ∫  (3) 

where fX(x) is the joint probability density function for X. The reliability of the structure would then be defined as 
Rel= 1 - Pf.  

Like any other design approach, reliability based design is an iterative process: the design is adjusted until 
adequate safety is achieved and cost and functional requirements are met. The final step of meeting the target 
reliability can either be direct where the computed structural reliability has to exactly satisfy the target reliability for 
each relevant limit state or it can be indirect as in partial safety factors (PSF) based design where the structure 
implicitly satisfies the target reliability within a certain tolerance [9].  The term load and resistance factor design 
(LRFD) implies the approach followed in the United States where the nominal resistance in the design equation is 
multiplied by an explicit “resistance factor” but the nominal material properties that go into determining the 
resistance are not factored.  The term PSF based design implies the approach taken in Europe where there is no 
explicit resistance factor in design, but each material property generally has its own partial safety factor.  The latter 
approach is taken in this work. 

Closed-form solutions to Eq. (3) are generally unavailable.  Two different approaches are widely in use: (i) 
analytic methods based on constrained optimization and normal probability approximations, and (ii) simulation 
based algorithms with or without variation reduction techniques and both can provide accurate and efficient 
solutions to the structural reliability problem.  The first kind, grouped under First Order Reliability Methods (or 
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FORM), holds an advantage over the simulation based methods in that the design point(s) and the sensitivity of each 
basic variable can be explicitly determined.   However, FORM can prove to be costly or even infeasible if the size of 
the reliability problem goes up (in terms of basic variables and/or number of limit states) or if the limit state is not 
analytic in the basic variables, and is not used in this work.  Monte Carlo simulations with Importance Sampling 
have been used to compute failure probabilities. 

Target Reliability 

It has become increasingly common to express safety requirements, as well as some functionality 
requirements, in reliability based formats.  A reliability based approach to design, by accounting for randomness in 
the different design variables and uncertainties in the mathematical models, provides tools for ensuring that the 
performance requirements are violated as rarely as considered acceptable.    

The cause, reference period, and consequences of violation of different performance requirements may 
vary, and if a reliability approach is taken, the target reliability in each performance requirement must take such 
difference into account [9-12]. For  example,  If the structure gives appropriate warning before collapse, the failure 
consequences reduce and that in turn can reduce the target reliability for that mode [11, 13].  Functionality target 
reliabilities may be developed exclusively from economic considerations.  The safety target reliability levels 
required of a structure, on the other hand,  cannot be left solely to the discretion of the owner, or be derived solely 
from a minimum total expected cost consideration, since structural collapse causing a large loss of human life and/or 
property may not be acceptable either to the society or the regulators. Design codes, therefore often place a lower 
limit on the reliability of safety related limit states [9, 14].  For optimizing a structure with multiple performance 
requirements, Wen [(15)] suggested minimizing the weighted sum of the squared difference of the target and actual 
reliabilities.  

ISO 2394 [10], and later JCSS [(11)], proposed three levels of requirements with appropriate degrees of 
reliability: (i) serviceability (adequate performance under all expected actions), (ii) ultimate (ability to withstand 
extreme and/or frequently repeated actions during construction and anticipated use), (iii) structural integrity (i.e., 
progressive collapse in ISO 2394 and robustness in JCSS).  Target reliability values were suggested based on the 
consequences of failure for ultimate limit states and relative cost of safety measure for serviceability limit states. 
The Canadian Standards Association [16]  defines two safety classes and one serviceability class (and corresponding 
annual target reliabilities) for the verification of the safety of offshore structures (i) Safety class 1- great risk to life 
or high potential for environmental pollution or damage, 2) Safety class 2-small risk to life or low potential for 
environmental pollution or damage, and 3)  Serviceability Impaired function and none of the other two safety classes 
being violated.   Det Norske Veritas [13] specifies three types of structural failures for offshore structures and target 
reliabilities for each corresponding to the seriousness of the consequences of failure.  The American Bureau of 
Shipping [17] identified four levels of failure consequences for various combinations of limit states and component 
class for the concept Mobile Offshore Base and assigned target reliabilities for each. Ghosn & Moses[(18)] suggest 
three levels of performance to ensure adequate redundancy of bridge structures corresponding to functionality, 
ultimate and damaged condition limit states, while Nowak et al.[(19)] recommend two different reliability levels for 
bridge structures corresponding to ultimate and serviceability limit states.  Nuclear power plant containment 
structures are designed for earthquakes at two different levels of intensity and correspondingly to two different 
criteria for failure [3, 20, 21]. Damage, if any, caused by the Operating Basis Earthquake (OBE) must not lead to 
loss of functionality of the nuclear power plant; whereas the Safe Shutdown Earthquake (SSE) that has a higher 
intensity and longer recurrence interval than OBE, is allowed to cause the power plant to shutdown but must not 
cause any radioactive leakage to the environment or loss of structural integrity. 

The fact that the consequences of failure of a critical component in a nuclear reactor are potentially 
catastrophic has driven the interest in building so called “inherently safe reactors” which are publicly perceived to 
have a zero probability of failure. The application of a probabilistic risk assessment framework to such structures 
then has the dual purpose of determining the probability of meeting the stipulated conditions under which 
“inherently safe” performance is guaranteed, and the probability of departure from acceptable performance under 
these conditions. Values of maximum acceptable probability levels set by regulatory authorities of different nations 
for accidents that cause severe damage to the reactor core have ranged from 1x10-6 per year to 1x10-4 per year [22]. 

Given the inability to predict the occurrence or magnitude of earthquakes, the uncertainties involved from 
source to site, and the potential for massive damage, it is not surprising that performance based design has been most 
enthusiastically espoused in the seismic engineering community, as evident in  SEAOC [(23], ATC-40 [(24] and 
FEMA 273/274 [25].  Performance levels for seismic design are commonly defined in terms of increasing severities, 
e.g., (i) Immediate Occupancy (IO), the state of damage at which the building is safe to occupy without any 
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significant repairs, (ii) Structural Damage (SD), an intermediate level of damage in which significant structural and 
non-structural damage has occurred without loss of global stability, and (iii) Collapse Prevention (CP), representing 
extensive structural damage that causes global instability [26].  A comparison of the performance of structures 
designed to one ultimate design earthquake vs. those designed to dual level performance levels indicated that the 
latter produces relatively stronger structures [15].  A similar finding was echoed by Ghobarah [27] who opined that 
the reason for the revision of the then design standards to more reliable performance based methods was that after 
severe earthquakes (such as Northridge and Kobe), while structures designed to the existing codes performed well 
with respect to safety, the extent of damage and the economic costs were unexpectedly high.   

Reliability of Prestressed Concrete Sections 

The tensile strength of concrete is negligible compared to its compressive strength.  In ordinary reinforced 
concrete, the reinforcing steel is used to carry the tensile stresses, and the concrete near the tensile face may crack.  
Prestressing is intended to artificially induce compressive stresses in the concrete to counteract the tensile stresses 
caused by external loads, such that the loaded section remains mostly if not entirely in compression [28].   

Prestressed concrete (for shells, slabs, girders etc.) is often adopted when in addition to satisfying strength 
requirements, the member is also required to be slender (e.g., from aesthetic or weight considerations)  and/or to 
limit cracking (e.g., to satisfy leak-tightness).  Prestressed concrete members are relatively lightweight as they are 
built from high strength steel and high strength concrete, more resistant to shear, and can recover from effects of 
overloading.  However, prestressed concrete structures are more expensive, have a smaller margin for error, and the 
design process of prestressed members is more complicated.  Although the loss of prestress with time is built into 
the design, unintended loss of prestress arising from corrosion of the tendons, slippage etc. can have catastrophic 
consequences.  

Prestressed concrete sections may fail in several possible ways (such as a combination of flexure, shear and 
torsion, bursting of end blocks, bearing, anchorage or connection failures, excessive deflections etc.). This work 
however, only looks at ultimate flexural limit state defined by collapse of concrete due to crushing. 

Several reliability based studies on partially prestressed concrete sections have been conducted in the past. 
Al-Harthy and Frangopol [29] studied prestressed beams designed to the 1989 ACI 318, considering 3 different limit 
states (ultimate flexure, cracking in flexure and permissible stresses), random dead and live loads, material and 
geometric properties, prestressing forces and modeling uncertainty. Their studies concluded that the reliability 
indices implied by the 1989 ACI 318 design standard are non-uniform over various ranges of loads, span lengths and 
limit states. Hamann and Bulleit [30] examined the reliability of under reinforced high-strength concrete prestressed 
beams designed in accordance with the 1983 ACI-318 standard, considering only the ultimate flexural limit state of 
beams subjected to dead and snow loads. While Al-Harthy and Frangopol included all the material and geometric 
random variables in a FORM analysis, Hamann and Bulleit first estimated the moment capacity through Monte 
Carlo simulations, fitted the data to standard distributions, and then performed a first order second moment 
reliability analysis on the linear limit state. 

Reliability for Class-1 structures, particularly concrete containment structures for nuclear power plants, is a 
much researched subject primarily due to the dire failure consequences of the containment structure in terms of 
environmental impact, radiation effect on human health and other economic costs. Hwang et al. [6] described a Load 
and Resistance Factor Design (LRFD)-based approach to determine the critical load combinations for design of 
concrete containment structures. The limit state, corresponding to ultimate strength of concrete, was defined in the 
2-D space of membrane stress and bending moment in the shell, leading to an octagonal limit state surface. Pandey 
[8] and Varpasuo [31] also worked on the on the reliability of concrete containments, their limit states forming sides 
of the octagonal limit state considered by Hwang et al [6]. 

Mechanics of Pre-Stressed Concrete Sections 

In this work, we look at collapse limit state of partially prestressed sections in flexure which corresponds to 
crushing of concrete in compression (reinforcements may yield).  Bidirectional flexure on shell elements 
corresponding to nuclear power plant inner containment structures with voids have been modeled using Wood’s 
criteria ([32]) summarized in Appendix A. The material properties of concrete and steel and the mechanistic 
formulation of both the limit states are discussed next. 

In Indian Standards such as IS 456 ([33]) the compressive stress-strain relationship for concrete is taken to 
be parabolic up to a strain of 0.002, and horizontal from that point on. The nominal compressive strength of concrete 
is taken to be fcn =fck /1.5 where fck is the characteristic compressive strength.  The design compressive strength of 
concrete is fcn /γc, where γc is the material safety factor on concrete strength.  The value of γc is usually taken to be 
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1.5 for normal design condition and as 1.15 for abnormal design condition.  The failure strain of concrete in bending 
compression is 0.0035.  IS 1343([34]) specifies the minimum grade of concrete as M30 for post-tensioning and M40 
for pre-tensioning.  

The stress-strain behavior of concrete in tension is linear [35] and the tensile strength is taken to be fcγ = 
0.7√fck and the modulus of elasticity of concrete in tension is assumed to be same as the secant modulus of concrete 
in compression which is Ec= 5000√fck The maximum tensile strain in concrete is then, 

 max 0.00012cr
t

c

f
E

ε = =  (4) 

The design yield stress for reinforcing steel is fyn/γs where fyn is the nominal yield strength and γs is the 
material safety factor on yield strength of steel and is taken to be 1.15 for normal design conditions and 1.0 for 
abnormal conditions. The nominal modulus of elasticity of steel, En, is 200000 N/mm2. 

The moment capacity of a partially prestressed concrete section, given the amount of prestressing force and 
the geometric and material properties can be obtained in the form of an interaction diagram using strain 
compatibility equations and force balance. Interaction diagrams are plots of normalized compressive force, 

' / ( )ckP P f bD=  and normalized moment capacity, 2' / ( )ckM M f bD=  where b and D are the width and the depth 
of the section, respectively. 

. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Force balance and moment computations for partially prestressed section 
 

 
Figure 1 shows the strain and stress diagrams for an example section similar to the ones used in this work - 

with one set of prestressing tendons and two layers of ordinary reinforcement. In the figure, C= compressive force in 
concrete, fs1 = force in top reinforcement, fs2 = force in bottom reinforcement and P = prestressing force.  

For given amount of prestress the position of the neutral axis is determined iteratively by balancing the 
tensile and compressive forces on the section.  The moment capacity can then be found by taking the moment of the 
forces about any convenient point.  In determining the collapse moment capacity, two cases are possible (Figure 2): 
the neutral axis (NA) outside and the neutral axis inside the section. In the former, the entire section is in 
compression and in the latter, concrete has cracked and is assumed not to carry any load in the tensile zone.
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Fig.2: Strain and stress distributions on section for neutral axis outside (left) and inside (right) the section 
for limit state of collapse  

 
Figure 3 shows an example prestressed concrete element corresponding to the shell structure of nuclear 

power plant inner containment structures. Two layers of ordinary reinforcement top and bottom can be seen and JI 
and JO correspond to prestressing cables in the North-South and East-West directions respectively. In the co-
ordinate system adopted, these two are considered as the x and y directions. 

 
Fig.3: Prestressed concrete shell 

 
When calculating the flexural strength of an element such as this, the space taken by the prestressing cable 

JI has to be considered as a void in concrete, i.e. while calculating the contribution of concrete to the strength the 
area considered is the total area minus the area of the void. For the typical prestressed containment shell, the void 
depth is approximately 0.15 times the total depth of the element. 

The forces and moments acting on the section (for example Dead Load, Ordinary Live Load, Construction 
Live Load, Pre Stressing Load and Accidental Pressure Load) have two normal components (xx and yy) and one 
shearing (xy) component. Additionally, areas occupied by pre stressing cables are considered as voids in concrete. 
The section is thus under bi-directional flexural loading.  

The components of the externally applied loads (Nxx and Nyy) on the section act in the same direction as the 
pre-stressing cables. As a result, the external forces cause the section to be in compression, thus acting like a 
external pre stressing forces. These forces therefore affect the moment capacity of the section. On the other end, 
applied moments on the section are caused due to the same set of forces. Thus both the capacity of the system and 
the loading on the system are affected by a common source and therefore it is possible that the applied moment and 
the moment capacity will show some degree of correlation. 
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The design check is carried out in the principal plane with respect to stresses. Applied moments are 
converted to this plane according to the basic rules of tensorial transformation. The moment capacities of the section 
in each of the 2 principal directions are computed from interaction diagrams with transformed dimensions, 
reinforcement areas and voids. The applied moments in directions X and Y are obtained using Wood’s Criteria [32], 
summarized in Appendix A) which outlines a procedure to obtain applied moments in x and y direction at the 
bottom and the top of the section (M*

xtop, M*
xbottom, M*

ytop, M*
ybottom), eliminating the torsional moment component 

Mxy. 
Since the structural analysis used to compute stress resultants is completely linear in nature, the different 

stress resultant components (Nxx, Nyy, Nxy, Mxx, Mxy, Mxy ) in a given load case are statistically fully dependent on one 
another. Additionally, stress resultants due to different load cases are completely independent. The correlation 
matrix that is developed for analysis is based on these two assumptions. 

RELIABILITY ANALYSIS AND CALIBRATION OF PSFs 

Limit States and Basic Variables 

Since this work concerns the reliability of PC shells in biaxial flexure, the limit states in x and y directions can be 
written respectively as:  

 cap, app, 0x x yg M M= − =  (5) 

 cap, app, 0y y yg M M= − =  (6) 

so that failure of the section is given by: 

 {Failure}= 0 0x yg g< ∪ <  (7) 

and the failure probability can be written as: 

 ( ) { } ( )
{Failure} all 

Failuref X X
x x

P f x d x f x d x
∈

= = ⎡ ⎤⎣ ⎦∫ ∫ I  (8) 

The indicator function, I , on the right hand side of Eq. [4.4] evaluates the expression within brackets so 
that: 

 
1, if [ ] is true

[ ]
0,  if [ ] is false

•⎧
• = ⎨ •⎩

I  (9) 

and is a convenient way to convert the domain of integration from the failure region to the entire range of x which is 
useful in simulation based estimates as described subsequently. 

cap,xM  and cap,yM are the moment capacities in x and y directions respectively. Likewise, app,xM  and 

app,yM are the applied moments.  As stated above, the moment capacity corresponds to collapse of the section. From 

this point forward, unless otherwise mentioned, all moments in this work are normalized by 2
ckf bD  and all forces 

by ckf bD . 
Before going into the details of the individual terms above, it is important to recall that the moment 

capacities and applied moments are mutually statistically dependent since the capacities are functions of the axial 
loads which in turn are linearly related to the applied moments in each load case.  In addition, the capacities in the x 
and y directions are strongly correlated as they are functions of the same material properties and some of the same 
axial loads. 
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As explained in Appendix A, app,xM  and app,yM  are defined respectively as 
* *max(abs( ),abs( ))xtop xbottomM M and * *max(abs( ),abs( ))ytop ybottomM M  and are functions of the applied moments Mxx ,Myy 

and Mxy caused by all load cases relevant to the load combination at hand. For example, we can have the load 
combination Dead (D) + Prestressing (Ps) + Ordinary Live (Lo) + Temperature (T)  + Accidental Pressure (Pa) giving 
us: 

 
, , , , ,

, , , , ,

, , , , ,

xx xx D xx Ps xx Lo xx T xx Pa

yy yy D yy Ps yy Lo yy T yy Pa

xy xy D xy Ps xy Lo xy T xy Pa

M M M M M M

M M M M M M

M M M M M M

= + + +

= + + +

= + + +

⎫
⎪⎪
⎬

+

+

+
⎪
⎪⎭

 (10) 

The normalized moment capacity, capM , is a function of the applied in-plane compression, material 
properties ( , , , ,c y c tf f E ε ε ) and geometric quantities ( / , / , / , /ck voidp f d D e D t D ):  

 cap , , , , , , , , , void
cap c y c t

ck

tp d eM M P f f E
f D D D

ε ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (11) 

Of these, the random terms are: the applied in-plane compressive force, P , the compressive strength of 
concrete, cf , the yield strength, yf , and the Young’s modulus, E, of the reinforcing steel. The compressive force 

P in turn is the algebraic sum of forces from all load cases in the load combination considered.  
The nominal or design values of the moment capacities, to be used in design equations discussed below,  

can be obtained by substituting the random quantities in Eq. [4.9] by their design values: 

 , cap , , , , , , , , ,yncd void
cap n n n c t

c s ck

ff tp d eM M P E
f D D D

ε ε
γ γ

⎛ ⎞
== ⎜ ⎟

⎝ ⎠
 (12) 

As stated above, in accidental pressure load case, the material safety factor on concrete compressive 
strength, γc is commonly taken to be 1.15, while that on yield strength of reinforcing steel, γs is commonly 1.0.   

The moment capacities ,cap xM and ,cap yM thus defined are implicit functions of four basic variables; their 
distributions and correlations with applied moments are obtained by numerical simulation, which in turn are used in 
the reliability analyses. 

 

Monte Carlo Simulations and Importance Sampling 

Except in very special situations, closed form solution to the structural reliability problem (Eq. (8) ) does 
not exist and numerical approximations are needed.  The true probability of failure, fP ,  

 { } ( ) { } ( )
all all 

Failure Failuref X U
x u

P f x d x f u du= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫I I  (13) 

can be estimated using basic (or “brute-force” or “crude”) Monte Carlo simulations (MCS) in practice as: 

 ( )( ) ( )( )
1

1ˆ 0 0
N

f x i y i
i

P g T U g T U
N =

⎡ ⎤= < ∪ <⎣ ⎦∑ I  (14) 

where a zero-mean normal vector U  with the same correlation matrix ρ as the basic variables is generated first and 

then transformed element by element according to the full distribution transformation: 
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 ( )  ( ) ( )
iX i iT u x F x u= ⇒ = Φ  (15) 

The use of the same ρ for U as for X results in error, but the error is generally small [36].  N  is the total number of 
times the random vector U  is generated, and Ui  is the ith realization of the vector.  It is well-known that the basic 
Monte-Carlo simulation-based estimate of Pf has a relatively slow and inefficient rate of convergence. The 
coefficient of variation (COV) of the estimate  is : 

 ˆc.o.v.( ) (1 ) ( ) 1 ( )f f f fP P NP NP= − ≈  (16) 

which is proportional to 1 N and points to an inefficient relation between sample size and accuracy (and stability) 
of the estimate.   

Such limitations of the basic Monte Carlo simulation technique have led to several “variance reducing” 
refinements.  Notable among them is Latin hypercube sampling (e.g., [37]), importance sampling (e.g.[38]) along 
with its variants (e.g., [39], [40])  which, if performed carefully, can significantly reduce the required sampling size.  
Nevertheless, importance sampling and other variance reducing techniques should be performed with care, as their 
results may be quite sensitive to the type and the point of maximum likelihood of the sampling distribution, and an 
improper choice can produce erroneous results.. In this work, we have adopted Importance Sampling to estimate the 
failure probability in Eq. (13).  

The mathematical formulation of importance sampling is simply obtained by modifying the basic 
expression of failure probability (Eq. (8)) as: 

 ( ) ( )
( ) ( )

{Failure} {Failure}

X
f X H

Hx x

f x
P f x d x f x d x

f x∈ ∈

= =∫ ∫  (17) 

where Hf  is any PDF not equal to zero in the region of interest.  A judicious choice of Hf  can ensure low variance 
of the estimated failure probability.  By a simple change of the variable of integration, the failure probability 
estimate is as before the computation of the expectation of the indicator function but now modified with a correction 
factor ( /U Hf f ): 

 ( )( ) ( )( ) ( )
( )1

1ˆ 0 0
N

U i
f x i y i

i H i

f h
P g T h g T h

N f h=

⎡ ⎤= < ∪ <⎣ ⎦∑ I  (18) 

It is important to note that this expectation as computed with respect to the sampling density Hf  and the estimate of 
failure probability is obtained by simulating vectors of H. The choice of Hf  is extremely important, and depending 
on the limit state function, an improper choice may lead to errors in the estimate of Pf.   
In this work, H has been taken as a jointly Normal random vector with the same correlation matrix ρ as U, but with a 
mean vector that is closer to the failure region. This mean vector is chosen carefully by comparing the IS results 
with basic MCS results for the range of problems encountered.  The variance of the estimate in Eq. (18) is: 

 2

( )1ˆvar ( ) var
( )

U i
f i

H i

f h
P

f hN
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ I  (19) 

which can be estimated during the sampling as: 

 
22 2 2

2
3 2

1ˆ ˆ( ) U H U H
f

f f f f
S P

NN N
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑I I
 (20) 

giving the coefficient of variation (COV) of the failure probability estimated through importance sampling as: 
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f
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f

S P
V P

P
=  (21) 

One of our stopping criteria for the Importance Sampling simulation in this work involves an upper limit on the 
COV of the estimated failure probability.  

Partial Safety Factors and their Optimization 

Reliability based partial safety factor (PSF) design is intended to ensure a nearly uniform level of reliability across a 
given category of structural components for a given class of limit state under a particular load combination [41]. We 
approach the topic of optimizing PSFs by noting that any arbitrary point, Xa, on the limit state surface by definition 
satisfies: 

 ( ) 0ag X =  (22) 

Conversely, a “design point” Xd on the limit state surface can be carefully chosen so that it “locates” the limit state 
in the space of basic variables such that a pre-defined target reliability is ensured for the design.  The ensuing design 
equation: 

 ( ) 0dg X =  (23) 

is essentially a relationship among the parameters of the basic variables and gives a minimum requirement type of 
tool in the hand of the design engineer to ensure target reliability for the design in an indirect manner. Since nominal 
or characteristic values of basic variables are typically used in design, Eq. (22) may be rewritten as: 

 1
1 1

1

, , , ,..., 0,   where ...
n nn

n n
k

dk

k
k m m

k
k

k

X X
g X

X
X Xγ γ

γ γ γ+ +

⎛
≥⎜

⎝
=

⎞
⎟
⎠

 (24) 

where the superscript n indicates the nominal value of the variable. We have partitioned the vector of basic variables 
into k resistance type and m – k action type quantities.  The partial safety factors, iγ , are typically greater than one: 
for resistance type variables they divide the nominal values while for action type variables they multiply the nominal 
values to obtain the design point:  

 

,

,

resistance PSFs : , 1,...,

action PSFs : , 1,...,

i n
i d

i
d
i

i
i n

X
i k

X

X
i k m

X

γ

γ

= =

= = +
 (25) 

If the design equation (23) can be separated into a strength term and a combination of load-effect terms, the 
following safety checking scheme may be adopted for design: 

 
1

, 1,...,
n m k

q ni
n i is

ii

S
R i k l Qγ

γ

−

=

⎛ ⎞ ⎛ ⎞= ≥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
∑  (26) 

where Rn = the nominal resistance and a function of factored strength parameters, l = load-effect function, 
n
iS =nominal value of ith strength/material parameter, s

iγ  = ith strength/material factor, n
iQ = the nominal value of the 

ith load and q
iγ  = ith load factor.  Note that there is no separate resistance factor multiplying the nominal resistance 

(as in LRFD) since material partial safety factors have already been incorporated in computing the strength.   
The nominal values generally are fixed by professional practice and thus are inflexible.  Some of the m 

partial safety factors (often those associated with material properties) can also be fixed in advance.  The remaining 
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PSFs can be chosen by the code developer so as to locate the design point, and hence locate the limit state as alluded 
to above, and hence achieve a desired reliability for the structure.  Such an exercise can be conveniently performed 
if the strength and load effect terms can be separated as above in which case the limit state equation can be 
normalized by the design equation: 

 cap app

cap app

0n n

M M
M M

− =  (27) 

The reliability problem now becomes: 

 
1 1

cap app

cap 1 app 1

Find ,..., , ,..., such that

0 ( )
( ,..., ) ( ,..., )

s s q q
k m k

Tn s s n q q
k m k

M M
P

M M

γ γ γ γ

β
γ γ γ γ

−

−

⎡ ⎤
− ≤ = Φ −⎢ ⎥

⎢ ⎥⎣ ⎦

 (28) 

where Tβ is the target reliability index.  Of course, this is an under-defined problem and even though some of the 
PSFs may be fixed in advance as stated above, it has an infinite number of solutions.  Additional considerations are 
needed to improve the problem definition.  Such considerations naturally arise when PSFs are needed to be 
“optimized” for a class of structures and are discussed next.  

It is common to expect that the design equation be valid for r representative structural components (or 
groups), and let wi be the weight (i.e., relative importance or relative frequency) assigned to the ith such component  
(or group). These r representative components may differ from each other on account of different locations, 
geometric dimensions, nominal loads, material grades etc.  For a given set of PSFs, let the reliability of the ith group 
be βi.  Choosing a new set of PSFs gives us a new design, a new design point, and consequently, a different 
reliability index.  If there has to be one design equation, i.e., one set of PSFs, for all the r representative components, 
the deviations of all βi’s  from Tβ must in some sense be minimized.  The design equation (Eq. (24) or Eq. (26)), 
when using the optimal PSFs obtained this way, can ensure a nearly uniform reliability for the range of components.  
Several constraints may be introduced to the optimization problem to satisfy engineering and policy considerations 
(as summarized in [42]).  Moreover, some partial safety factors, such as those on material strengths, may be fixed in 
advance as stated above.  The PSF optimization exercise adopted in this paper has the following form: 

 

( )( )2

1
1 1
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max

min ,..., where 1

subject to: min( ) , 1,...,

, 1,...,
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, 1,...,

r r
q q

i i m k T i
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i i

q
i i
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i i

w w

i r
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m i k

β γ γ β

β β

γ γ

γ γ
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−
= =

⎡ ⎤− =⎢ ⎥
⎣ ⎦

> =

≥ = −

≤ = −

= =

∑ ∑

 (29) 

NUMERICAL EXAMPLE  

An example problem based on the prestressed IC shells of typical 220 MWe Indian PHWRs has been set up to 
demonstrate the methodology developed in this paper.  A combination involving 5 load cases namely Dead Load 
(D), Pre-Stressing Load (Ps), Ordinary Live Load (L0), Accidental Temperature Load (T) and Accidental Pressure 
Load (Pa) has been considered. For each load case sets of six stress resultants (Nxx, Nyy, Nxy, Mxx, Myy, Mxy) have 
been obtained from linear elastic finite element analyses.  The FE model consisted of about 2500 elements.   

Four structural groups of the IC Shell have been selected for finding optimal PSFs (Group 1: dome general 
area between two SG openings, Group 2: SG opening, Group 3: dome general area between SG opening and ring 
beam, Group 4: IC wall).  The section depths (D) are respectively 500, 1200, 500 and 610 mm. For each group the 
critical element has been identified as the one having the lowest capacity demand ratio – by considering all nominal 
stress resultants for the given load combination.  The objective of the example is to obtain a set of partial safety 
factors for the 5 applied loads that satisfy a set of optimality criteria.   
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The statistical parameters and nominal values used in the problem are listed in Tables 1 – 4. The computed 
correlation coefficients for Group 1 obtained between the moment capacities and applied moments are listed in 
Table 5. Noticeable here is the high positive correlation between moment capacity and prestressing force and the 
high negative correlation between the moment capacity and the accidental pressurization force. The moment 
capacities in x and y directions are almost fully mutually dependent. These are consistent with our intuitive 
expectations from the mechanics of the problem.  The bias and COV of the moment capacities obtained for each 
group are provided in Table 6.  The optimization parameters (cf. Eq. (29)) are listed in Table 7.  While estimating 
the objective function in Eq. (29), a linear response was fitted around the given decision variable vector in order to 
smooth the sampling related fluctuations in the estimated reliability indices.  Table 8 lists the optimal results for this 
example problem.  

 
Table 1: Statistics of Basic Variables 

Random 
Variable Description Statistics 

Distribution(mean, COV) 
Source 

M’LC, xx 
M’LC, xy 
M’LC, yy 

normalized applied moments 
for each load case (LC) in given 
load combination, combined 
according to Wood’s criteria 

FEM Analysis of IC Shell 
Model 

P’LC,xx 
P’LC,xy 
P’LC,yy 

normalized force for each load case (LC) in given 
load combination 

FEM Analysis of IC Shell 
Model 

M’cap,xx 
M’cap,yy 

normalized moment capacity 
obtained through Interaction 
diagram (fn of P’LC,xx , P’LC,xy 

 and P’LC,yy) 

Structural Analysis of 
Prestressed concrete section 

fc 
compressive strength of 
concrete 

Normal, (max(fck+0.825sc, fck+4), 
sc)* 

[33] 

fy Yield strength of steel Lognormal(1.1133fyn,0.09) [43], [30] 
E Young’s modulus Normal(1.001103En,0.01)  [43] 

* sc=standard deviation for characteristic strength (in MPa) of concrete as given in IS 1343([34]) 

 
 

Table 2: Deterministic Parameters 
Parameter Description Values taken 
p Percent reinforcement 0.2%   

fck 
Characteristic compressive strength 
of concrete 45 MPa 

fcn = fck/1.5 Nominal compressive strength of 
concrete 30 MPa 

fyn 
Nominal yield strength of reinforcing 
steel 415 MPa 

En 
Nominal Young’s modulus of 
reinforcing steel 200 GPa 

e/D Eccentricity of prestressing force 0 
d/D cover depth 0.05 
void range no concrete due to PS cables 0.5D to 0.6 D 

 
Table 3: Distribution types of loads 

Load type Distribution type C.O.V Bias 
Dead Normal 0.1 1.0 
Pre-Stress Lognormal 0.15 1.2 
Live (Ordinary) Lognormal 0.15 1.0 
Temperature Gumbel 0.15 0.9 
Accidental Pressure Gumbel 0.15 0.8 
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Table 4: Nominal load effects for the critical element in each group 
Load case  Load effect 

  Nxx (ton/m) Nyy(ton/m) Nxy (ton/m) Mxx (ton-m/m) Myy (ton-m/m) Mxy (ton-m/m)
 Group 1 
D -9.61E+00 -1.22E+01 9.64E+00 -2.14E-01 -2.27E-01 3.91E-02 
Ps -4.44E+02 -4.77E+02 1.25E+02 1.53E+00 1.90E+00 -1.39E+00 
Lo -9.61E-01 -1.03E+00 2.82E-01 -3.37E-02 -3.63E-02 1.03E-02 
T 3.12E+00 2.75E+00 1.34E+00 3.38E+00 3.42E+00 -1.27E-01 
Pa 2.08E+02 2.26E+02 -7.09E+01 5.96E+00 6.29E+00 -1.30E+00 
  Group 2 
D -5.41E+01 -1.54E+01 2.80E+00 -8.11E+00 -1.31E+00 2.74E+00 
Ps -1.02E+03 -6.20E+02 -5.63E+01 3.55E+01 -5.00E+00 6.20E+00 
Lo -2.58E+00 -6.15E-01 3.18E-01 1.20E-02 1.27E-02 6.93E-02 
T 1.56E+00 -1.28E-01 -4.86E-01 1.17E+01 2.78E+00 -1.90E+00 
Pa 5.80E+02 1.50E+02 -7.01E+01 1.64E+01 -3.10E+00 -2.56E+01 
  Group 3 
D -2.65E+01 2.12E+00 6.12E+00 6.72E-01 -1.24E-01 -4.42E-02 
Ps -5.23E+02 -2.43E+02 2.42E+01 1.85E+01 8.95E+00 -2.07E+00 
Lo -1.04E+00 -3.24E-01 6.12E-02 -2.36E-02 -1.36E-02 -4.47E-04 
T -1.09E-01 5.88E+00 1.86E+00 4.56E+00 3.66E+00 -8.39E-02 
Pa 2.46E+02 6.23E+01 -1.91E+01 -1.47E-01 1.98E+00 5.85E-01 
  Group 4 
D 3.73E+00 -4.10E+01 2.24E-01 -1.34E-01 -6.23E-01 -1.18E-02 
Ps -6.70E+02 -5.32E+02 -1.89E+01 1.17E+00 -1.39E+01 -1.89E-01 
Lo 2.55E-01 -8.37E-01 -2.62E-03 -4.52E-03 -2.28E-02 -4.45E-06 
T 7.88E+00 5.93E-02 1.48E-02 5.01E+00 5.61E+00 -1.06E-02 
Pa 2.85E+02 1.80E+02 1.77E+00 2.91E+00 1.23E+01 -8.57E-02 

 
 

Table 5: Typical correlation matrix (group 1) 
 Dead Prestress Live Temperature Pressure Mcapxx Mcapyy 

Dead 1.0000 -0.0028 0.0005 0.0054 -0.0006 0.099 0.0117 
Prestress -0.0028 1.0000 -0.0028 -0.0093 0.0029 0.9156 0.9072 

Live 0.0005 -0.0028 1.0000 0.0049 -0.0053 0.0036 0.0023 
Temperature 0.0054 -0.0093 0.0049 1.0000 0.0060 -0.0176 -0.0156 

Pressure -0.0006 0.0029 -0.0053 0.0060 1.0000 -0.2935 -0.2972 
Mcapxx 0.0099 0.9156 0.0036 -0.0176 -0.2935 1.0000 0.9956 
Mcapyy 0.0117 0.9072 0.0023 -0.0156 -0.2972 0.9956 1.0000 

 
 
 

Table 6: Bias and COVs of moment capacities 
Group Mcapxx Mcapyy 

 Bias COV Bias COV 
1 1.82 0.159 1.41 0.157 
2 1.65 0.133 1.42 0.171 
3 1.40 0.137 1.59 0.149 
4 1.58 0.133 1.54 0.145 
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Table 7: Optimization parameters 
Parameter Value 
Target reliability, βT 3.5  
Tolerance on target reliability, 
∆β 

1.0 

Weights on four Groups, wi 0.25, 0.25, 0.25, 0.25 
Material PSF on concrete 
strength, γc 

1.3 

Material PSF on steel 
strength,γs 

1.0 

Lower bounds on load PSFs 1.0, 1.0, 1.0, 1.0, 1.3 
Upper bounds on load PSFs 1.2, 1.2, 1.3, 1.4, 1.8 

 
 

Table 8: Optimal results 
Parameter Optimal values 
Beta values at optimum (Groups 1 – 4 respectively) 2.41, 3.88, 4.51, 4.25 
Objective value (weighted squared error) 0.82 
Optimal PSFs (D, Ps, Lo, T, Pa) 1.19, 1.09, 1.24, 1.35, 1.51 

 

CONCLUSIONS 

A set of optimal partial safety factors (for collapse limit state) ensuring a nearly uniform level of reliability across 4 
groups of structural elements in a typical IC Shell of an Indian NPP have been obtained. The complete methodology 
for the same was developed from first principles. Correlations between demand and capacity terms owing to the 
structural mechanics underlying the problem were taken into account and the methodology developed accordingly. 
Analysis of the structural behavior of prestressed concrete section was formulated using recommendations provided 
in IS 1343 and SP 16. Monte Carlo simulations using (1) Importance Sampling and (2) a linear response surface fit 
for variance reduction was used to compute probabilities of failure. The load factors obtained in this example 
problem are in agreement with design practices from around the world, except the temperature load factor is 
typically lower than found here since thermal loads are categorized as secondary loads caused by geometric 
constraints and local yielding and micro-cracking ultimately result in redistribution of forces.  

ACKNOWLEDGMENTS 

Support from BARC, Mumbai, India under the project titled “Development of reliability based criteria for 
containment design” is gratefully acknowledged.   

REFERENCES 

1. Roy, R. and U. Verma, Design issues related to containment structures of Indian PHWRs. An International 
Journal of Nuclear Power, 2004. 18(4): p. 44-57. 

2. Ray, I., et al. Evaluation of ultimate load bearing capacity of the primary containment of typical 540MWe 
Indian PHWR. in Smirt 17. 2003. Prague. 

3. CSE-3, DESIGN OF NUCLEAR POWER PLANT CONTAINMENT STRUCTURE. 2007, Atomic Energy 
Regulatory Board, Mumbai. 

4. Shinozuka, M. and L.C. Shao, Basic probabilistic considerations on safety of prestressed concrete pressure 
vessels. Nuclear Engineering and Design, 1974. 29: p. 338-345. 

5. Ellingwood, B. and H. Hwang, Probabilistic descriptions of resistance of safety-related structures in 
nuclear plants. Nuclear Engineering and Design, 1985(88): p. 169-178. 

6. Hwang, H., et al., Probability-based load combinations for the design of concrete containments. Nuclear 
Engineering and Design, 1985. 86: p. 327-329. 



Transactions, SMiRT 21, 6-11 November, 2011, New Delhi, India     Div-VII: Paper ID# 804 

15 
 

7. Ellingwood, B., Issues related to structural aging in probabilistic risk assessment of nuclear power plants. 
Reliability Engineering and System Safety, 1998(62): p. 171-183. 

8. Pandey, M.D., Reliability-based assessment of integrity of bonded prestressed concrete containment 
structures. Nuclear Engineering and Design, 1997(176). 

9. Bhattacharya, B., R. Basu, and K.-t. Ma, Developing target reliability for novel structures: the case of the 
Mobile Offshore Base. Marine Structures, 2001. 14(12): p. 37-58. 

10. ISO, ISO 2394 General Principles on Reliability for Structures. 2 ed. 1998: International Organization for 
Standardization. 

11. JCSS, Probabilistic Model Code, 12th Draft. 2001, Joint Committee on Structural Safety. 
12. Wen, Y.-K., Minimum lifecycle cost design under multiple hazards. Reliability Engineering and System 

Safety, 2001. 73: p. 223-231. 
13. DNV, Structural Reliability Analysis of Marine Structures. 1992: Det Norske Veritas, Norway. 
14. Galambos, T.V., Design Codes, in Engineering Safety, D. Blockley, Editor. 1992. p. 47-69. 
15. Wen, Y.K., Collins, K.R., Han, S.W., Elwood, K.J., Dual-level designs of buildings under seismic loads. 

Structural Safety, 1996. 18(2/3): p. 195-224. 
16. CSA, General Requirements, Design Criteria, the Environment, and Loads. A National Standard of 

Canada. 1992, Canadian Standards Association. 
17. ABS, Draft Mobile Offshore Base Classification Guide. 1999, American Bureau of Shipping, Houston, TX. 
18. Ghosn, M. and F. Moses, Redundancy in highway bridge superstructures. 1998, Transportation Research 

Board: Washington, DC. 
19. Nowak, A.S., M.M. Szerszen, and C.H. Park. Target safety levels for bridges. in 7th International 

Conference on Structural Safety and Reliability. 1997. Kyoto, Japan. 
20. E.D.F, Design and Construction Rules for Civil Works of PWR Nuclear Islands, RCC-G, Volume 1-Design. 

1988, Electricite De France, Paris, France. 
21. USNRC, Seismic and Geologic Siting Criteria for Nuclear Power Plants, 10 CFR Part 100, Appendix A. 

1973, Recently revised on Jan 10,1997,US Nuclear Reculatory Commission. 
22. Cave, L. and W.E. Kastenberg, On the application of probabilistic risk assessment to reactors with 

inherently safe features. Nuclear Engineering and Design, 1991(128): p. 339-347. 
23. SEAOC, Visiion 2000, Performance based seismic engineering of buildings. 1995, Structural Engineers 

Association of California. 
24. ATC-40, Siesmic evaluation and retrofit of existing concrete buildings. 1996, Applied Technology Council, 

Redwood City (CA). 
25. FEMA, FEMA 273, NEHRP guidelines for the siesmic rehabilitation of buildings; FEMA 274, 

Commentary. 1996, Federal Emergency Management Agency. 
26. Kinali, K. and B.R. Ellingwood. Performance of non-seismically designed PR frames under earthquake 

loading. in Int. Conf. on Applications of Statistics and Probability (ICASP 10. 2007. Tokyo, Japan. 
27. Ghobarah, A., Performance based design in earthquake engineering:state of development. Engineering 

Structures, 2001. 23: p. 878-884. 
28. Raju, N.K., Prestressed Concrete, 4th Edition. 2007, New Delhi: Tata McGraw Hill. 
29. A.S Al-Harthy, D.M.F., Reliability assessement of prestressed concrete beams. Journal of Structural 

Engineering, 1994. 120(1). 
30. Hamann, R.A. and W.M. Bulleit. Reliability of prestressed high-strength concrete beams in flexure. in Fifth 

International Conference on Application of Statistics and Probability in Soil and Structural Engineering. 
1987. Vancouver. 

31. Varpasuo, P., The seismic reliability of VVER-1000 NPP prestressed containment building. Nuclear 
Engineering and Design, 1996. 160: p. 387-398. 

32. Wood, R.H., The reinforcement of slabs in accordance with a predetermined field of moments. Concrete 
(London), 1968. 2: p. 69. 

33. BIS, IS 456:2000 Indian Standard Plain and Reinforced Concrete-Code of Practice (fourth revision). 2000, 
Bureau of Indian Standards, New Delhi. 

34. BIS, IS 1343 Code of Practice for Prestressed Concrete. 2003, Bureau of Indian Standard, New Delhi. 
35. Neville, A.M., Properties of Concrete. 4th ed. 1995, New Delhi: Pearson Education. 
36. der Kiureghian, A. and P.-L. Liu, Structural reliability under incomplete probability information. Journal 

of Engineering Mechanics, ASCE, 1986. 112(1): p. 85-104. 



Transactions, SMiRT 21, 6-11 November, 2011, New Delhi, India     Div-VII: Paper ID# 804 

16 
 

37. Ayyub, B.M. and R.H. McCuen, Simulation-based reliability methods, in Probabilistic Structural 
Mechanics Handbook : Theory and Industrial Applications, C. Sundararajan, Editor. 1995, Chapman Hall: 
New York. 

38. Melchers, R.E., Importance sampling in structural systems. Structural Safety, 1989. 6: p. 3-10. 
39. Melchers, R.E., Radial importance sampling for structural reliability. Journal of Engineering Mechanics, 

ASCE, 1990. 116(1): p. 189-. 
40. Bjerager, P., Probability integration by directional simulation. Journal of Engineering Mechanics, ASCE, 

1988. 114(8): p. 1285. 
41. Ellingwood, B.R., LRFD: implementing structural reliability in professional practice. Engineering 

Structures, 2000. 22: p. 106-115. 
42. Agrawal, G. and B. Bhattacharya, Optimized partial safety factors for the reliability based design of 

rectangular prestressed concrete beams. Journal of Structural Engineering, SERC Madras, 2010. 37(4): p. 
263-273. 

43. Barakat, S., K. Bani-Hani, and M.Q. Taha, Multi-objective reliability-based optimization of prestressed 
concrete beams. Structural Safety, 2004. 26: p. 311-342. 

 
APPENDIX A: WOOD’S CRITERIA FOR MOMENT COMBINATION 
 

The design check is carried out in the principal plane with respect to stresses, which is inclined at an angle 
θ given by: 

 
2
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x y

N
N N
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−

   

On this plane shearing stresses are absent and the perpendicular (principal) stresses are given by: 
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The applied moments are converted to this plane according to standard tensor transformation procedures that lead to 
the following expressions: 
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The moment capacity in direction1 and 2 (or X and Y) are then computed from interaction diagrams with 
transformed dimensions, reinforcement areas and voids. The applied moments in directions X and Y are obtained 
using Wood’s Criteria. This outlines a procedure to obtain applied moments in X and Y direction at the bottom and 
the top of the section according to the following procedure: 

 
Bottom Reinforcement 
The bottom reinforcement can be calculated for following set of moments in x- and y- directions 
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 *
x XX XYM M M= +    

 *
y YY XYM M M= +   

If both *
xM  & *

yM  calculated as per the above equation are found to be negative, then both are assigned a zero value 

and not utilized for design.  If *
xM  is negative, then 
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If  *
yM  is negative, then 
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Top Reinforcement 
The top reinforcement can be calculated for following set of moments in x- and y- directions 

 *
x XX XYM M M= −   

 *
y YY XYM M M= −   

If both *
xM  & *

yM  calculated as per the above equation are found to be negative, then both are assigned a zero value 

and not utilized for design.  If *
xM  is negative, then 
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M M M
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If  *
yM  is negative, then 
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M
M M M

M
= − =   

The limit state in x direction (i.e, principal plane 1) and y directions are respectively: 
 
    * *

_ max(abs( ),abs( ))cap x xtop xbottomM M M−        

    * *
_ max(abs( ),abs( ))cap y ytop ybottomM M M−     

 


