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Abstract

The accumulation of damage within a structure due to service loading or environmental conditions is a random phenomenon. Continuum

damage mechanics (CDM) enables macroscopic manifestations of damage to be related to microscopic defects and discontinuities present

within a material. This permits margins of safety to be assessed prior to the time at which damage becomes visible or detectable. Under fairly

general thermodynamic conditions, equations of damage growth can be formulated in terms of the Helmholtz free energy. Spatial and

temporal ¯uctuations in the state variables, caused ®rst by the intrinsic variations in the material microstructure and second to environmental

and loading conditions, are modeled by treating the Helmholtz free energy as a random process. This leads to a stochastic differential

equation (SDE) of random damage growth, the solution of which describes the evolution of time-dependent random ductile damage and

residual strength. Available experimental results are used to validate the CDM formulation. q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The state of damage within a structure and damage

growth rate both are random, owing to the inherent random-

ness in the material microstructure, coupled with the

randomness (if it exists) in the loading process and environ-

mental ¯uctuations. Continuum damage mechanics (CDM)

relates the effects of microstructural defects (voids, discon-

tinuities, inhomogeneities) to quantities (stiffness, Poisson's

ratio) that can be observed and measured at the macroscopic

level. CDM is particularly useful in modeling accumulation

of damage in a material prior to formation of a detectable

defect, such as a crack. With the formation of a macroscopic

defect, the essential assumption of CDM, i.e. that damage

growth is a volume-wide degradation of the material micro-

structure, breaks down. A CDM-based approach to damage

growth in the pre-localization stage can take care of its

intrinsic randomness in a natural way.

In CDM, damage is represented by a state variable, D,

de®ned as the density of defects within a cross-section of a

component, ampli®ed by their stress-raising effects [1]. In

general, damage is represented by a tensor due to its direc-

tional nature [2]. When the weighted fractional loss of area

on a cross-section is the same regardless of the orientation of

the cross-section, then damage is isotropic and D becomes a

scalar variable, taking values between 0 and 1. Damage is

considered isotropic in the sequel. The constitutive law for a

damaged material is de®ned by the concept of effective

stress and the principle of strain equivalence [3, 4, 1]. For

example, in a uniaxially loaded component, the effective

stress is de®ned as:

~s � s

1 2 D
(1)

where s is the nominal far-®eld stress. Applying the prin-

ciple of strain equivalence, the damage variable and the

fractional loss in stiffness are related by:

D � 1 2
~E

E
(2)

where ~E is the elastic modulus of the damaged material, and

E is the elastic modulus of a comparable undamaged mate-

rial. The fractional loss of stiffness, ~E/E, can be measured by

one of several conventional non-destructive methods,

including direct tension tests, ultrasonic pulse velocity, or

change in electrical resistivity, and provides the relation

between damage at the microscopic and structural scales.

Existing CDM-based approaches to analysis of damage

growth generally start from one of two points: (i) a kinetic

equation of damage growth, or (ii) a dissipation potential

function. The equations of damage accumulation that result

from either approach usually lack continuity with the ®rst

principles of thermodynamics and mechanics, and introduce

unknown material constants [5]. The present method

addresses these shortcomings, by starting from fundamental
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thermodynamic conditions. This approach will be validated

using experimental data.

The amount of published research on stochastic CDM is

small compared to the work available involving purely

deterministic CDM models. CDM-based approaches are

relatively new in modeling damage growth, and experimen-

tal data on random damage growth are scarce. Among the

CDM-based studies of random ductile damage growth,

Carmeliet and Hens [6] introduced randomness in a deter-

ministic kinetic-equation-type formulation of damage

growth in a strain-softening material by modeling the initial

damage threshold and the ultimate strain as a bivariate

Nataf-type random ®eld distributed over the material. This

assumption introduces complete stochastic dependence

between the damage variable at two different stages of

damage growth. They employed a stochastic ®nite element

analysis for predicting the structural response of damaged

components. Woo and Li [7] modeled damage growth from

an assumed dissipation potential function; the stochasticity

was modeled as a diffusion process with the drift term iden-

tical to the deterministic damage growth rate and the diffu-

sion term equal to the drift term multiplied by a constant.

However, no solutions were obtained for any physical

damage accumulation process. In a later article, Woo and

Li [8] demonstrated the statistical nature of ductile damage

growth experimentally from static stress±strain tests on 45

specimens of 2024-T3 aluminum. It is apparent that stochas-

tic CDM has not yet attained its full potential for modeling

random structural damage growth in the pre-localization

stage of damage accumulation.

2. Thermodynamic model of damage accumulation

Accumulation of damage is a dissipative process that is

governed by the laws of thermodynamics [9]. Reviewing the

deterministic formulation [5], the rate of energy dissipation

for a system in diathermal contact with a heat reservoir is

derived from the ®rst and second laws of thermodynamics:

G ; 2 _KE 1 _W 2
2C

2e
´ _e 2

2C

2D
_D $ 0 (3)

where W is the work done on the system, KE is its kinetic

energy, and the Helmholtz free energy, C (u , e, D), is a

function of the temperature u , the damage variable, D,

and the symmetric strain tensor, e. If the above system is

subject to damage-causing processes that take place

suf®ciently close to equilibrium (in the pre-localization

stage), the ®rst variation of the free energy can be taken

equal to zero [5].

The near-equilibrium system undergoes rapid and contin-

uous transitions among its microstates. This causes random

¯uctuations in the state variables (which occur around their

mean values), and the evolution of the free energy must be

described by a stochastic process [10]. Using Eq. (3) the ®rst

variation of the free energy can be written as:

dC�t� � d
Zt

t0

� _W 2 _KE�dt 2 d
Zt

t0

Gdt 1 dB�t� . 0 (4)

in which t0 is the initial equilibrium state, t is an arbitrary

instant of time greater than t0 and B(t) is a random process

representing the random ¯uctuation in the free energy. In a

more detailed analysis, the ¯uctuation B(t) might be decom-

posed into several processes, possibly correlated, each

representing contributions from individual sources such as

micro-structural and environmental uncertainties. Here,

however, all sources of uncertainty are assumed to be vested

in B(t) for simplicity.

Eq. (4) can be expressed as the difference of two integrals

(with the help of Eq. (3)):

dC�t� � d
Zt

t0

I1�t 0�dt 0 2 d
Zt

t0

I2�t 0�dt 0

�
Zt

t0

dI1�t 0�dt 0 2
Zt

t0

dI2�t 0�dt 0 . 0 (5)

where the commutability of variation and integration has

been used. Terms I1 and I2 in Eq. (5) are de®ned as:

I1 � _W 2 _KE 1
2C

2D
_D 1 _B (6)

I2 � _W 2 _KE 2
2C

2e
´ _e (7)

where _B�t� is de®ned in the mean-square sense. In a deform-

able body where damage accumulates close to thermo-

dynamic equilibrium within and along its boundary, the

second integrand, d I2, can be shown to vanish at every

instant [5]. Consequently, we are left with:Zt

t0

dI1�t 0�dt 0 . 0: (8)

Assuming that d I1(t
0) � 0 at every instant t 0 [ [t0,t], the

following equation can be established [5] for a deformable

body undergoing isotropic damage accumulation caused by

uniaxial loading:

s1 1 cD

dD

de
1 sb � 0 (9)

where s1 is the far-®eld stress acting normal to the surface,

cD is the partial derivative of the free energy per unit

volume, c , with respect to D, and sb � (2 2B)/(2e2V).

While the analysis is capable of handling randomness in

s1, this was not done in the present study because all

experimental data used in the subsequent validations were

obtained for deterministic stresses. The quantity sb, which

has dimensions of energy per unit volume per unit strain,

may be interpreted as a random ¯uctuation imposed on the

stress ®eld existing within the deformable body.

It is assumed that (i) sb is a zero-mean process with equi-

probable positive and negative values, (ii) the mean-square
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¯uctuation in sb is independent of strain (or time), and (iii)

the rate of ¯uctuation in sb is extremely rapid in comparison

with the macroscopic rate of change in damage. The above

assumptions are satis®ed if sb is described by the Langevin

equation:

dsb

de
� 2c1sb 1

���
c2

p
j�e� (10)

where j (e ) is a Gaussian white noise indexed with strain

and c1, c2 are positive constants. The process sb becomes

stationary with variance c2/(2c1), if c1 is suf®ciently large.

Since the ¯uctuations in sb are extremely rapid compared to

the scale of time (or strain) of usual interest in structural

mechanics, we can write the following stochastic

differential equation (SDE) for damage growth [11]:

dD�e� � 2
s1
cD

de 2

���
c2
p

=c1

cD

dW�e� (11)

where W(e ) is the standard Wiener process. Note that if the

strain rate is known, the random damage growth may be

indexed with time, rather than with strain; here, we use

strain because of the nature of the experimental data used

in the subsequent veri®cation of the CDM model. The

Langevin equation assumption for the ¯uctuation sb is

responsible for the white noise in the damage growth rate

(11); however, this is not a severe restriction on the char-

acteristics of the noise. If the noise is colored, Eq. (11) under

very general conditions can be coupled with an auxiliary

equation describing the colored noise as the output of a

linear ®lter with white noise as input.

The above formulation of damage growth admits the

possibility of negative damage increments at the microscale,

the probability of which depends on the relative magnitude

of the drift and diffusion terms. However, in the absence of

repair, the predicted increment of damage should be non-

negative over a ®nite interval of time. Of course, this prop-

erty should be veri®ed in every situation in which the model

is applied.

3. Stochastic ductile damage growth

The free energy per unit volume for uniaxial monotonic

loading is:

c �
Z
sde 2 g (12)

where g denotes the energy of formation of discontinuities

per unit volume due to damage growth. The ®rst term in Eq.

(12) can be estimated by adopting the Ramberg±Osgood

monotonic stress±strain relation:

e � ~s

E
1

~s

K

� �M

(13)

which separates the total strain into its elastic (e e) and

plastic (e p) components, and K, M are the hardening

modulus and exponent respectively. The second term in

Eq. (12) is estimated as:

g � 3

4
sf D (14)

under the assumptions that (i) the discontinuities are micro-

scopic spheres of different sizes which do not interact with

each other, (ii) the force±displacement relation is linear at

the microscale, and (iii) stress ampli®cation effects can be

neglected [5]. The term s f is the true failure stress. Note that

all parameters in Eqs. (12)±(14) can be de®ned from readily

available handbook data, thus obviating the need for the

kinetic equation or potential function approaches to damage

modeling.

Applying the principle of strain equivalence, the free

energy per unit volume can be written as:

c �
Z

~Eeedee 1
Z

~Ke�1=M�p dep 2
3

4
sf D (15)

where ~E � E(1 2 D) and ~K � K(1 2 D) for e p $ e 0, and e 0

is the threshold plastic strain for damage initiation [1]. Eq.

(11) can then be written as:

dD�ep� � A�ep��1 2 D�ep��dep 1 B�ep�dW�ep�: (16)

To simplify the notation, we drop the subscript p and note

that e denotes plastic strain in the following. The coef®-

cients A and B in Eq. (16) are:

A�e� � e
1
M

e11
1
M

1 1
1

M

1 C

; B�e� � � ���
c2
p

=c1�=K
e11

1
M

1 1
1

M

1 C

(17)

in which the constant:

C � 3

4

sf

K
2

e
11

1
M

0

1 1
1

M

� � (18)

incorporates the simpli®cation K/(2E) , 0, which is valid

for most aluminum and steel alloys.

Eq. (16) describes a time-dependent Ornstein±Uhlenbeck

process. Since the diffusion term is independent of D, its Ito

and Stratonovich solutions are identical [11]:

D�e� � 1 2 �1 2 D0�
�3=4��sf =K� 1 1

1

M

� �
e11

1
M 1 1 1

1

M

� �
C

1
� ���

c2
p

=c1�=K
e11

1
M

1 1
1

M

1 C

�W�e�2 W�e0�� (19)
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where D0 � D(e 0) � the initial damage. If the material

properties V � {e 0, s f, K, M} are considered deterministic

(this assumption will be relaxed later), and D0 is either

deterministic or Gaussian, then damage is a Gaussian

process. This notion is consistent with the de®nition of the

damage variable; assuming that the random sizes of the

numerous microscopic voids giving rise to damage are

statistically independent of each other, damage, by its de®-

nition, can be shown to approach in distribution a normal

variable when the number of defects is large.

The conditional mean of the damage process is:

mDuV�e� � 1 2 �1 2 mD0
� �3=4��sf =K�

e11
1
M

1 1
1

M

1 C

(20)

which is identical to the solution found in a previous deter-

ministic formulation [12] in which the mean initial damage,

mD0
� 0. The conditional variance is:

s2
DuV�e� � s2

D0

�3=4��sf =K�
e11

1
M

1 1
1

M

1 C

0BBBB@
1CCCCA

2

1�e 2 e0�

� � ���
c2
p

=c1�=K
e11

1
M

1 1
1

M

1 C

0BBBB@
1CCCCA

2

(21)

where s2
D0

is the variance in the initial damage, which is

equal to zero if the initial condition is deterministic. Finally,

the autocovariance function of the process, for e 2 $ e 1 $ e 0,

is:

cov�D�e1�;D�e2�uV�

� s2
D0

�3=4��sf =K�
e

11
1
M

1

1 1
1

M

1 C

0BBBB@
1CCCCA

�3=4��sf =K�
e

11
1
M

2

1 1
1

M

1 C

0BBBB@
1CCCCA

1 �e1 2 e0�
� ���

c2
p

=c1�=K
e

11
1
M

1

1 1
1

M

1 C

0BBBBB@
1CCCCCA

� ���
c2
p

=c1�=K
e

11
1
M

2

1 1
1

M

1 C

0BBBBB@
1CCCCCA

(22)

which reduces to s2
DuV(e ) when e � e 1� e 2. Ductile damage

growth is clearly a non-stationary process.

4. Validation with experimental data

To validate the proposed approach, we compare our

predictions of ductile damage growth in 2024-T3 alumi-

num with experimental results from Woo and Li [8].

Performing uniaxial load tests on 45 specimens of 2024-

T3 aluminum obtained from the same batch, Woo and Li

[8] obtained the means and standard deviations of ~E and ~n
(damaged Poisson's ratio) at ®xed intervals of e (1%, 2%,

..., 25%). They also obtained the ®rst four moments of the

initial (undamaged) values of s y (yield stress), E and n .

They however did not compute the autocovariance func-

tions of ~E and ~n , which would have led to a more

complete characterization of the random damage growth

process. Interestingly, Woo and Li [8] reported a very

high coef®cient of variation for the threshold strain,

Ve0
� 1.05.

The material parameters initially are treated determin-

istically in the validation, and are equated to their nominal

values. The uniaxial stress±strain curve of 2024-T3

aluminum is described by the Ramberg±Osgood material

parameters whose nominal values are: E � 74 500 MPa,

K � 680 MPa and M � 5.5. The nominal failure stress,

s f � 435 MPa (the four preceding parameters are from

Hansen and Schreyer [9]), and the nominal threshold strain,

e 0 � 0.016 [1]. The initial damage is assumed to be zero

(mD0
� 0, sD0

� 0) since the experiments were performed

on previously unstressed virgin specimens. The applied

stress was deterministic, increasing monotonically from

zero. The quantity
���
c2
p

=c1, which is related to the ratio of

the variance and the correlation length of the ¯uctuating

quantity sb, was selected to model the overall magnitude

of the standard deviation in damage [8], and unless

otherwise noted, equals 20 MPa in the following.

Fig. 1 shows the predicted m2
DuV�e� and s2

DuV�e� for ductile

damage growth. The (conditional) mean function, which is

identical to the deterministic solution, agrees well with the

experimental mean damage from Woo and Li [8]. It also
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compares well with data reported by Lemaitre [1];

unfortunately, statistical information about Lemaitre's

data is unavailable. The predicted (conditional) standard

deviation in damage growth also agrees well with Woo

and Li's [8] experimental results and, in particular, predicts

correctly the decelerated growth in the experimental stan-

dard deviation with increasing strain.

Fig. 2 illustrates the (non-stationary) conditional covar-

iance function of the damage process for different strain

lags, t � e 2-e 1, at four different values of e 1. At any

given value of the lag, t , the covariance function is seen

to increase with increasing e 1. The non-symmetry about t �
0 arises from the non-stationary nature of stochastic damage

accumulation. Experimental data needed to con®rm the

predicted correlation structure of random ductile damage

growth in 2024-T3 aluminum were not available.

If the joint probability density of V is known, then the

unconditional mean and variance of the damage process

B. Bhattacharya, B. Ellingwood / Probabilistic Engineering Mechanics 14 (1999) 45±54 49
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may be obtained as:

mD�e� �
Z

¼
Z
mDuV�e�fV�v�dv (23)

s2
D�e� �

Z
¼
Z
s2

DuV�e�fV�v�dv (24)

using the theorem of total probability. D(e) is generally non-

Gaussian in this case and the unconditional distribution and

covariance structure of D(e) must be obtained numerically.

When a material parameter is treated as a random variable

in the subsequent analysis, its mean is assumed equal to the

nominal value. When considered as random, s f, K, and M

are assumed to be normal variables (with coef®cient of

variation assumed to be 20% in each case), and e 0 is

assumed to be lognormal with coef®cient of variation

100% (based on [8]).

Fig. 3(a)±(d) show the effect of treating e 0, s f, K and M as

random, one at a time. The noise parameter,
���
c2
p

=c1 �
20 MPa, as before. (The plotting symbols in Fig. 3, and in

Figs 4 and 5 that follow, are as de®ned in Fig. 1.) It is

observed that the mean damage is not appreciably different

in any of the four cases. The standard deviation of damage is

quite insensitive to the randomness in e 0 or M, but increases

when s f or K is considered random. These ®ndings are

consistent with the sensitivity analyses performed on the

deterministic version of the present model [5].

Fig. 4(a)±(c) show the effect of treating all four vari-

ables as random but with varying degrees of correlation.

When the random variables are `perfectly correlated' (Fig.

4(a)), the correlation matrix of ln(e 0), s f, K, M is the

identity matrix; and when `moderately correlated' (Fig.

4(b)), the off-diagonal terms of the correlation matrix

are all taken to be 0.5. The noise parameter in the

model is
���
c2
p

=c1 � 20 MPa and the experimental data

points are the same as before. These Figures may be

compared with Fig. 1 where the parameters are all deter-

ministic. It is observed that treating the parameters as

random and varying the correlation among them has

almost no effect on the mean damage. However, the stan-

dard deviation of D(e) is signi®cantly affected by random-

ness in all variables, and is highest when the random

variables are considered to be mutually statistically inde-

pendent (Fig. 4(c)). It may therefore be useful to know the

correlation structure of the initial condition and material

parameters to obtain accurate predictions of damage accu-

mulation. Considering them as independent may over-esti-

mate the scatter in damage by a factor of 2.

Fig. 5(a)±(c) show the effect of the noise intensity,���
c2
p

=c1, on the damage growth process in the presence of

moderate correlation (r � 0.5) among the random variables

ln(e 0), s f, K, M. Several values of the unknown noise inten-

sity
���
c2
p

=c1 were tried, and their effects on the sample paths

of damage growth were observed while holding all para-

meters as deterministic. Values above 40 MPa produced

occasional but signi®cant negative damage increments,

and consequently the noise parameter was restricted to

below 40 MPa. In particular, Fig. 5(a) pertains to the case

when the noise is entirely absent. These Figures (Fig. 5(a)±

(c)) may be viewed together with Fig. 4(b) where
���
c2
p

=c1 �
20 MPa and correlation is moderate. It is observed that the

intensity of the noise has no effect on the mean of the

process (as predicted by Eq. (20)), but has a signi®cant

effect on the standard deviation of damage.

Excellent agreement with experimental results was

achieved with several combinations of the noise intensity,

the correlation coef®cients and the marginal distributions,

suggesting that with proper parameter identi®cation, this

method can reproduce experimentally observed stochastic

damage accumulation. Additional experimental data and

validation studies clearly are necessary to take full advan-

tage of the method for condition assessment of structural

components and systems.
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5. Limit states and reliability in ductile deformation

Failure occurs when damage reaches the critical value Dc,

which corresponds to localization in the damage growth

process. In other words, `failure' in CDM implies the break-

down of the continuum assumption, which occurs with the

formation of the ®rst macroscopic defect. This de®nition of

failure enables damage mechanics to predict structural dete-

rioration in the so-called initiation phase, unlike many exist-

ing methods (for example, the Paris law in fatigue) which

require a measurable ¯aw to be useful. The critical damage

is often considered to be a material property in the literature
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(e.g. [13]), with a value that usually ranges between 0.15

and 0.85 for engineering alloys [14]. In a stochastic formu-

lation, Dc should be treated as a random variable.

The cumulative failure probability (CFP) at strain e ,

Fef
�e�, is:

Fef
�e� � 1 2 P�D�e 0� # Dc;;e 0 [ �0; e�� (25)

where e f is the failure strain. Mathematically, this is a ®rst

passage problem.

The probability of a negative damage increment in the

present formulation depends on the drift and diffusion terms

in Eq. (16) and also on the time (or strain) interval of obser-

vation. If the drift in damage growth is large compared to its

diffusion, then the growth rate is almost always positive.

The increment in damage, DD(e ;De), over an interval of

plastic strain, [e ,e 1 De ], is a random quantity. Its

conditional mean and variance are:

E�DD�e;De�uV� � A�e��1 2 mDuV�e��De (26)

var�DD�e;De�uV� � �A�e��2De2�sDuV�e��2 1 �B�e��2De:
(27)

The conditional probability of a negative damage

increment over the range De :

P�DD�e;De� # 0uV� � F
2A�1 2 mDuV����������������������

A2s2
DuV 1 B2=�De

q
�

264
375 (28)

in which F (´) is the standard normal cumulative distribution

function (CDF), is a function of the position as well as the

length of the interval. Fig. 6 shows the probability of a

negative damage increment over different interval sizes as
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a function of strain for 2024-T3 aluminum with the same

material properties as before. As the interval size, De ,

approaches zero, the instantaneous growth rate approaches

a 50% probability of attaining negative values, caused by

the special nature of the white noise (i.e., in®nite variance).

However, as De increases, the probability rapidly falls off to

negligible quantities ( , 10210 for De � 0.1). Under this

condition, the sample paths of D(e ) which cross Dc (from

below) for the ®rst time at e 1 , e , may be expected to stay

above that barrier at e . This becomes more and more likely

the larger the interval (e 2 e 1) gets. In such cases, the CFP

can be simpli®ed as the CDF of the damage function

evaluated at the critical damage:

Fef
�e� . 1 2 P�D�e� # Dc�: (29)

Fixing the vector of initial condition and the material

parameters, V1 � {D0, e 0, s f, K, M, Dc}, the cumulative

failure probability can be written as:

Fef uV1
�e� � 1 2 F

Dc 2 mDuV1
�e�

sDuV1
�e�

 !
(30)

where mDuV1
�e� and sDuV1

�e� may be obtained by setting

mD0
� D0 and sD0

� 0 in Eq. (20) and Eq. (21) respectively.

The theorem of total probability may be used to remove the

conditioning on V1 if their joint probability density is

known.

Fig. 7(a)±(b) illustrate the CFP (25) for 2024-T3

aluminum, showing that the failure strain, e f, now becomes

a random variable. In Fig. 7(a), only Dc is treated as random

(a normal random variable, with mean 0.23 equal to the

deterministic value from Lemaitre [1], and a coef®cient of

variation 0.10 based on Woo and Li [8]) while the other

parameters (e 0, s f, K, M) are held constant at their nominal

values. In Fig. 7(b), all ®ve parameters are considered

random (with marginal distributions and statistics the

same as before) with moderate correlation (r � 0.5)

between each pair. The noise intensity is 20 MPa in both

Figures. To give a visual sense of the scatter in the damage

accumulation process, a few sample functions of D(e )

(selected at random) are shown in the Figures; these sample

functions were obtained numerically from Eq. (16) using an

interval size De � 0.01. No sample function returns to the

safe region once it has exited that region, reinforcing the

assumption of non-negative damage growth. The scatter in

the sample functions is greater in Fig. 7(b) than in Fig. 7(a),

as may be expected intuitively.

The relation between D and e is non-linear, since it

involves the Wiener process appearing in the SDE of

damage growth, and cannot be inverted explicitly. The

CDF of e f is obtained numerically (from Eq. (16)) using

step size De � 0.01, following which its probability density

function is obtained by numerical differentiation. The mean

and standard deviation of e f are found to be, respectively,

0.237 and 0.034 in the ®rst case (Fig. 7(a)) and 0.247 and

0.052 in the second case (Fig. 7(b)), values which are of the

same order as those generally observed for engineering

metals (e.g., [15]). As may be expected, the scatter in e f

increases when all the parameters are considered as random

variables.

6. Conclusion

Starting from ®rst principles of thermodynamics and

recognizing the intrinsic energy ¯uctuations in matter, a

stochastic differential equation of ductile damage growth

in a deformable body is obtained. The proposed approach

deals with two different aspects of randomness: one that

pertains to the initial conditions and material parameters,

and the other that is associated with the instantaneous

growth rate of the process (in the form of a stochastic

noise). A knowledge of both sources of randomness is

required for a satisfactory description of stochastic damage

growth. Dependence among the material parameters and

their correlation structure were found to play a signi®cant

role in the scatter of the damage growth process. Finally a

scheme to perform reliability analyses was outlined. Agree-

ment with available experimental results by other

researchers was good.

The proposed method also has yielded encouraging

results in predicting damage growth and random crack

initiation in fatigue loading and for high-temperature

creep deformation [5]. Additional experimental data to

further validate the model would be desirable to enhance

its use as a tool for condition assessment and service life

prediction of structural components and systems.
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