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The crack initiation period in an originally defect-free component can be a significant portion of its
total fatigue life. The initiation phase is generally believed to constitute the nucleation and growth of
short cracks, but the threshold crack length at which initiation occurs lacks a uniform definition.
Moreover, available methods for predicting fatigue damage growth usually require an existing flaw (e.g.
Paris law) and may be difficult to apply to the initiation phase. This paper presents a continuum
damage mechanics-based approach that estimates cumulative fatigue damage, and predicts crack initiation
from fundamental principles of thermodynamics and mechanics. Assuming that fatigue damage prior to
localization occurs close to a state of thermodynamic equilibrium, a differential equation of isotropic
damage growth under uniaxial loading is derived that is amenable to closed-form solution. Damage, as
a function of the number of cycles, is computed in a recursive manner using readily available material
parameters. Even though most fatigue data are obtained under constant amplitude loading conditions,
most engineering systems are subjected to variable amplitude loading, which can be accommodated
easily by the recursive nature of the proposed method. The predictions are compared with available
experimental results. 1998 Elsevier Science Ltd. All rights reserved

(Keywords: continuum damage mechanics; cyclic loads; deformation; engineering mechanics; fatigue; steel;
structural engineering; thermodynamics; variable amplitude loading)

INTRODUCTION

The total fatigue life,NT, of an initially defect-free
structure can be written as the sum,

NT = NI + NP (1)

where NI is the crack initiation period, andNP is the
crack propagation period which includes the stable as
well as the accelerated stages of fatigue crack growth.
In many loading situations (for example, in high-cycle
fatigue), the crack initiation period is the most
important factor determining the total service life of a
structure. The initiation phase of fatigue life in a virgin
material is often assumed1 to constitute the growth of
short cracks up to the sizeath, which is the transition
length of short cracks into long cracks.

The growth rate of long fatigue cracks (in the stable
crack growth stage), along with the condition of their
non-propagation, can be successfully modelled by the
Paris–Erdogan law2. However, the preceding phase of
fatigue, when initiation and growth of short cracks
occur, is more difficult to model. Linear elastic fracture
mechanics (LEFM)-based crack growth concepts break
down at short crack sizes3. Short cracks grow at stress
intensities below the long crack threshold stress inten-
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sity, DKth. Moreover, depending on the stress ratio,R
= smin/smax, short cracks may grow at rates higher
than those for long cracks4. Ignoring the short crack
growth stage, or using long crack growth rate para-
meters for short crack growth ‘can lead to potential
dangerous over-prediction of (fatigue) life’5.

The threshold crack length,ath, below which LEFM
(and consequently the Paris–Erdogan law) is not valid,
may be estimated approximately as2:

ath =
1
p SDKth

2Se
D2

(2)

where the endurance limit,Se, and DKth are both
evaluated for fully reversed cycling (i.e. atR = − 1).
However, the threshold crack initiation length,ath,
lacks a universally accepted definition6,7. The comment
of Kujawski and Ellyin8 highlights this point: “Usually
the crack initiation stage is associated with an arbitrary
specified crack length. The crack length ranging from
grain diameter to about 50–100mm is used, depending
on the material and physical scale of interest”. How-
ever, a wider range of values have been selected for
ath in the literature, for example: 0.5 mm for structural
welds6; 1 mm for En7A steel5; 120 mm for BS250A53
steel1; and 51mm for carbon steel9. In fatigue inspec-
tion of structures, the crack detection threshold usually
ranges between 1/8 and 1/4 in (| 3–6 mm), and crack
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sizes in this range are also taken as the end of
‘initiation’ in many engineering analyses10.

Empirical approaches are available for predicting
crack initiation in a virgin material under fatigue load-
ing, among them: (i) AnS–N type approach, where
the number of cycles correspond to the formation
of an arbitrary threshold crack length under constant
amplitude stress or strain cycling; and (ii) a Paris–
Erdogan type of short crack growth law with different
parameters than those used to predict growth of long
cracks1. The first approach does not provide any meas-
ure of residual strength at various stages of damage
accumulation prior to initiation. The second approach
is extremely sensitive (as illustrated in Kaynaket al.,
1996)5 to the initial crack length that, likeath, lacks a
standard definition.

Although most fatigue data have been obtained under
constant amplitude load cycling conditions, in most
engineered systems applied stresses (or strains) seldom
alternate between constant limits; instead the operating
conditions lead to variable amplitude loading10. The
problems in predicting cumulative fatigue damage
under variable amplitude loading have long been recog-
nized (e.g. Grover, 1954)11. A recent state-of-the-art
review of the subject12 makes it clear that there are
considerable uncertainties associated with existing rules
for predicting damage under variable amplitude load-
ing.

Miner’s rule13 is often applied to assess cumulative
fatigue damage under variable amplitude loading, due
to its simplicity and its dependence only on readily
available constant amplitude fatigue data. Making the
assumption that damage,D, occurs in linear increments:

D = ONB

i = 1

ni(Si)
Ni(Si)

(3)

= 1 at failure (4)

Here ni and Ni denote, respectively, the number of
applied cycles at stress levelSi, and the number of
cycles to initiation or failure at constant amplitude
stress level,Si (utilizing the experimentally determined
S–N curve for the structural detail of interest).NB

denotes the number of different stress levels applied.
The linear damage increment rule has been called into
question by numerous experimental observations12,14,15.
It has been found, for example, that the major portion
of service-life may be spent without any manifestation
of reduced capacity so that damage becomes apparent
and grows visibly at an accelerating rate only towards
the end of the life-time16–18. Moreover, Miner’s rule
does not account for load sequencing effects on fatigue,
where it has been observed that a few cycles (n2) at
a high stress level (S2) followed by cycling at a lower
level (S1, n1) causes greater damage than when the
order is reversed (Figure 1). Several improvements in
Miner’s linear damage rule have been suggested14,19–

21, which have met with varying degrees of success
for specific applications.

The continuum damage mechanics (CDM)-based
analysis of fatigue crack initiation developed in this
paper is independent of threshold crack sizes and
empirical growth parameters for microscopic cracks. It
can provide estimates ofNI in terms of macroscopically

Figure 1 Two-level fatigue load cycling,S2 > S1

obtained material parameters, and can accommodate
variable amplitude fatigue loading in a natural and
non-empirical way.

CRACK INITIATION AND CDM

Continuum damage mechanics (CDM), a relatively new
development in solid mechanics, deals with the distri-
bution, characterization and growth of microstructural
defects in terms of macroscopic state variables22–24.
Physically, the CDM damage concept represents a loss
of material integrity which reduces the capacity of a
damaged component to bear applied stresses. In CDM,
the damage variable,D(n̂), on an elemental cross-
sectional plane (with unit normal (n̂)) is quantified by
the surface density of cracks and voids, weighted by
the effects of stress concentration at the edges of
discontinuities and the interaction among the defects.
In general,D(n̂) is a tensor; however, if the weighted
fractional loss in cross-sectional area is the same in
every orientation within the material, then damage is
independent of (n̂) and is said to be isotropic. Isotropic
damage is quantified by the scalar variable,D,
assuming values between zero and one. Damage is
considered to be isotropic in this paper.

The accumulation of damage, so defined, is a dissi-
pative (i.e. irreversible) process that obeys the laws of
thermodynamics25. The overall damage variable is a
non-decreasing function of time in the absence of
corrective human intervention. Failure occurs whenD
reaches the critical damageDc # 1. In the context of
CDM, ‘failure’ is not necessarily fracture, but is the
condition when one assumption essential to continuum
damage mechanics—that damage arises out of a vol-
ume-wide degradation of the material microstructure—
loses its validity. Chaboche (1988)26 described this
condition as the ‘breaking up of the continuum volume
element’. At this point, the damage-causing process
becomes localized and leads to the growth of a domi-
nant defect, which, in the context of fatigue loading,
signals the initiation of a crack in an originally defect-
free component17,27–29. Thus, CDM is able to model
damage growth in the initial ‘defect-free’ stage, unlike
methods that need a measurable flaw to be useful. The
CDM-based interpretations of failure allowDc to have
values less than unity, as opposed to state variable-
type phenomenological models (including Miner’s rule)
that, in effect, requireDc = 1 for failure to occur. A
postulate of CDM29 is that Dc is an intrinsic material
property, and that its value determined from a simple
experiment (e.g. a static tension test) for a given
material and temperature can be used to predict failure
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(i.e. crack initiation) in a more complex situation such
as fatigue loading. Experimentally determined values
of Dc range between 0.15 and 0.85 depending on
the material30.

The stress distribution within a damaged material is
related to the state of damage within the material26,31

through the concept of effective stress, defined as

s̃ =
s

1 − D
(5)

where s is the nominal stress. With the assumption
that the principle of strain equivalence26 can describe
satisfactorily the constitutive law for the damaged
material of interest (as it indeed has for many engineer-
ing alloys)30, the elastic modulus of the damaged
component can be described as a linear function of
the damage variable27:

Ẽ = E(1 − D) (6)

where E is the original (undamaged) modulus of elas-
ticity of the component, and the Poisson’s ratio is
assumed to be unaffected by damage32. An appropriate
gauge length including the damaged zone in the
component may be necessary to measure the change in
stiffness accurately, and hence the CDM-based damage
variable. Equation (6) provides a means to monitor the
state of damage in a component in service by measur-
ing its change of stiffness. In the context of fatigue
loading, this measurement can be used for early
detection/prediction of crack initiation in a structure.

THERMODYNAMIC MODELLING OF DAMAGE
ACCUMULATION

Assume that damage growth is occurring prior to local-
ization in a deformable bodyR (having the closed
boundary∂R) which is in diathermal contact with a
heat reservoir at constant absolute temperatureu. Let
W be the work done onR, and U, KE and S be
the internal energy, kinetic energy and entropy of
R, respectively.

The Helmholtz free energy function ofR, given by
C = U − uS, determines the maximum work that can
be obtained in a given isothermal process33. It is a
function of the absolute temperature, the damage vari-
able, and the symmetric strain tensor,eij. The
Helmholtz free energy is stationary for a system
undergoing a reversible process in diathermal contact
with a heat reservoir34. The first variation in the free
energy ofR at an arbitrary instantt2 is given by

dC(t2) = dC(t1) + dE
t2

t1

(Ẇ − K̇E)dt − dE
t2

t1

Gdt (7)

where G is the rate of energy dissipation, which may
be expressed, with the help of the first and second
laws of thermodynamics and withu̇ = 0, as35:

G ; − K̇E + Ẇ −
∂C

∂eij

·ėij −
∂C

∂D
·Ḋ $ 0 (8)

Assuming the initial condition (at timet1) is one of
thermodynamic equilibrium (i.e.dC(t1) = 0), the vari-
ation given by Equation (7) can be expressed as:

dC(t2) = E
t2

t1

dI1(t)dt − E
t2

t1

dI2(t)dt (9)

where the commutability of integration and variation
has been used, and

I1 = Ẇ − K̇E +
∂C

∂D
Ḋ (10)

I2 = Ẇ − K̇E −
∂C

∂eij

ėij (11)

The term

dC(t2) = g(u,eij ,D,du̇,dėij ,dḊ;t) . 0 t P [t1,t2] (12)

depends on the state of the system as well as on the
choice of the variations in temperature, strain rate and
damage, and is generally non-zero for an irreversible
process or for a system yet to achieve equilibrium.
However, we assume that damage growth prior to
localization of defects occurs slowly and close to equi-
librium; thus the functiong(·) is assumed to vanish
for a suitable set of variations. Under this assumption,
which has been validated for load-induced ductile dam-
age35, it can be shown that,

dI2 = E
R

(Fi + sij ,j − rai)du̇idV + E
∂R1

(Ti − sij nj )du̇idh

(13)

where∂R1 , ∂R is the free surface, andnj (j = 1,2,3)
is the unit normal out of∂R. The quantitiesu̇i and ai

denote, respectively, the velocity and acceleration at a
point; r is the density;Fi(t) and Ti(t) are, respectively,
the body forces inR and the surface traction on∂R1.
The stress tensorsij = ∂c/∂eij

36, where c is the free
energy per unit volume.

The right hand side of Equation (13) is zero as the
terms in parentheses constitute the equilibrium equa-
tions of a deformable body (damaged or otherwise) on
R and ∂R1, respectively37. Therefore the first term in
Equation (9) must also vanish.

Assuming that dI1(t) vanishes at allt, we apply
small variations in the velocity field (consistent with
the boundary conditions) that do not alter the instan-
taneous force, acceleration and strain distributions of
the body, and do not affect the rate of change in the
free energy with respect to damage,cD = ∂c/∂D, at
that instant. Noting thatdḊ = d(dD)/dt and dD =
(∂D/∂eij)deij, we arrive at the set of coupled partial
differential equations,

Ti + cD

∂D
∂eij

nj = 0 on ∂R1 (14)

The solution to Equation (14) if the body is subjected
to multiaxial straining is feasible but generally compu-
tationally difficult. However, the uniaxial form of Equ-
ation (14),

dD
de

= −
s`

cD

(15)
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in which s` is the far-field stress acting normal to the
surface, is amenable to close-formed solutions as
shown subsequently. The solution to uniaxial loading
is of particular interest here because experimental
fatigue data available to validate the analysis have
been obtained mainly for uniaxial loading.

ISOTROPIC FATIGUE DAMAGE GROWTH
UNDER UNIAXIAL LOADING

The growth of fatigue damage is intimately connected
to load cycling. With each cycle, additional damage is
introduced in the material, provided the cyclic stress
range (in that cycle) exceeds the endurance limit,Se.
The damage at the end of cyclei acts as the initial
damage for the increment in cyclei + 1:

Di + 1 = Di + DDi, DDi $ 0, i = 1,…,NI − 1 (16)

Note that the similarities of Equation (16) to Miner’s
rule are more apparent than real, since in the CDM
formulation DDi need not be equal during each cycle
under equal stresses (or strains). Crack initiation occurs
when the critical value for damage is reached:

DNI − 1 , Dc

DNI
$ Dc

(17)

It is assumed that the unloading portion of a hyster-
esis loop and compressive stresses do not to contribute
to damage growth (Figure 2), and that damage grows
only during the reloading section above the endurance
limit in the positive stress region (similar assumptions
regarding fatigue damage increment are also found in
Kachanov, 198631 and Lemaitre, 1984)27. The equation
of fatigue damage growth in cyclei can therefore be
written as (cf. Equation (15)):

dD
de

= H − s`/cD ; s` $ Se $ 0, ė > 0

0 ; otherwise
(18)

with the initial damageD = Di−1. The free energy per
unit volume in cyclei is,

c = E
e

e0i

sde9 − (g − gi − 1) (19)

where g is the surface energy of formation of defects
within the material, ande0i

is the threshold strain of

Figure 2 Stress–strain coordinates in one load cycle

damage increment in cyclei27, which depends on the
accumulated damage and the endurance limit. An esti-
mate of g can be obtained by assuming that defects
within the damaged material are spherical voids (of
different sizes) distributed uniformly in space within
the material volume, that the force–displacement
relation at the microscale is linear, and that a void is
formed when the stress on its impending boundary
equals the true failure stresssf. It can then be
shown that35:

g =
3
4

sfD (20)

Equation (20) is a simple way of estimating the surface
energy of formation of voids in terms of readily
obtained quantities, and is suitable for use until more
accurate information regarding the number, shapes,
sizes and interaction of the voids as a function of time
becomes available.

The integral expression in Equation (19) is computed
using a Ramberg–Osgood type equation for the hyster-
esis loop in cyclei:

Dei =
Ds̃i

Ei

+ 2SDs̃i

2Hi
DM9

i

(21)

The first term in Equation (21) represents the elastic
strain range,Deei

, while the second term represents the
plastic strain range,Depi

, and their sum is the cyclic
strain range,Dei. The quantity Ds̃i is the effective
stress range,Ei is the elastic modulus, andHi,Mi9 are
the cyclic hardening modulus and the cyclic hardening
exponent respectively. The subscripti emphasizes the
fact that these quantities, along with the lower and
upper loop-tip coordinates,emin, smin and emax, smax

(illustrated inFigure 2), may vary from cycle to cycle,
depending on cyclic softening or hardening of the
material and loading conditions. Since the damage
equations are applied incrementally, the changes in
stress–strain behavior as the material cyclically softens
or hardens can be taken into account (by using cycle-
dependent values forEi,Hi,Mi9); however, for sim-
plicity, we assume that it is sufficient to use the values
(E,H,M9) from a stabilized cyclic stress–strain curve.

The value of (emin, smin), of course, is constant
within any given cycle, and consequently, we can
write, de = dDe and dD/de = dD/dDe for that cycle.
Using the principle of strain equivalence and assuming
dD/dDe . dD/dDep, the differential equation of damage
growth in cycle i, providedsmaxi

$ Se, is35,

dD
1 − D

=

hK9(Dep)1/M9 − K9(Dep1i
)1/M9jdDep

F K92

2E
hDe2/M9

p − De2/M9
0i

j +
K9

1 + 1/M9
hDe1 + 1/M9

p − e1 + 1/M9
p0i

j

−
K92

E
De1/M9

p1i
(De1/M9

p − De1/M9
0i

)

− K9De1/M9
p1i

(Dep − De0i
) + 3

4 sfG (22)

with the initial conditionD = Di−1 at Dep = De0i
. The

parameter,K9 = 21 − 1/M9H. The damage at the end of
cycle i, Di, is the solution of Equation (22) at
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Dep = Depmi
, which is the maximum plastic strain range

for that cycle (Figure 2). AssumingK9/E | 0 (i.e. H/E
| 0, which is valid for most engineering materials),
the closed-form solution is:

Di = (23)








1−(1−Di−1)

1
1+1/M9

De1+1/M9
0i

−De1/M9
p1i

De0i
+Ci

1
1+1/M9

De1+1/M9
pmi

−De1/M9
p1i

Depmi
+Ci

; smaxi
$ Se

Di − 1 ; otherwise

where,

Ci =
3
4

sf

K9
−

De1 + 1/M9
p0i

1 + 1/M9
+ De1/M9

p1i
Dep0i

(24)

The proposed model of fatigue damage growth in
Equation (23) computes fatigue damage in a recursive
manner. The damage aftern cycles is computed as

Dn = 1 − (1 − D0) P
n

i = 1
f(ei;V) (25)

where ei represents the strain limits in cyclei, V =
{ E,H,M9,Se,sf} is the set of material parameters, and
D0 is the initial damage existing at the onset of fatigue
cycling. For a virgin material,D0 = 0. The cycle-
dependent function,f(ei;V), is

f (ei;V) = (26)










1
1+1/M9

De1+1/M9
0i

−De1/M9
p1i

De0i
+Ci

1
1+1/M9

De1+1/M9
pmi

−De1/M9
p1i

Depmi
+Ci

;smaxi
>Se

1 ;otherwise

FATIGUE DAMAGE GROWTH UNDER
CONSTANT AMPLITUDE LOADING

Table 1presents tensile and cyclic stress–strain proper-
ties for four engineering materials used in subsequent
comparisons of predicted and observed fatigue
behavior. The first three materials are used in constant
amplitude load cycling examples in this section; the
SAE 4130 steel is used in a later load-sequencing
example.

Figure 3 presents results from constant-amplitude
fully reversed strain-controlled fatigue cycling of SAE
4340 aircraft quality quenched and tempered steel.
This material softens under constant-amplitude strain-

Table 1 Tensile and cyclic material properties

Material Source E GPa H MPa M9 sf MPa Se MPa sy MPa

SAE 4340 steel 38 192.9 1812 7.1 1911 542 1180
A106 Gr-B steel 39 196.5 1994 7.74 539 310 301
(288°C in air)
2024-T4 Al 38 70.4 856 9.1 683 138 304
SAE 4130 steel 40 221 1366 7.25 1692 530 780

Figure 3 Fatigue crack initiation and failure under constant ampli-
tude strain-controlled load cycling of SAE 4340 steel

controlled cycling. The theoretical threshold crack
length is ath = 27 mm (Equation (2), withDKth = 10
MPa√m)2. The predictedNI is obtained with the help
of Equation (25) and material properties fromTable
1, using the initiation condition described by Equation
(17). Since an experimental value of critical damage
of SAE 4340 steel was not available, two different
values, 0.15 and 0.46, are used in Equation (17). The
former, Dc = 0.15, is the same as that observed at
fatigue crack initiation in AISI 1010 carbon steel and
AISI 316 stainless steel30. The latter,Dc = 0.46, was
obtained analytically from a CDM model of monotonic
ductile damage growth that used standard tensile
properties of SAE 4340 steel, as described by Bhattach-
arya (1997)35. The prediction of crack initiation, as
illustrated in Figure 3, is not especially sensitive to
Dc. The predictedNI corresponding toDc = 0.46
compares very well with the number of cycles to the
initiation of a 38mm crack in the same nominal grade
of material but with different material properties, e.g.
sy = 650 MPa2. The number of cycles required for
the growth of the above cracks to (i) 125mm and (ii)
to failure are also plotted.Figure 3 also compares the
proposed model with the empirical Coffin–Manson law,
which predicts fatigue life under constant-amplitude
strain-controlled cycling:

De

2
=

sf9

E
(2N)b + ef9(2N)c (27)

in which the empirical constants are:
sf9 = 1758 MPa,ef9 = 2.12, b = − 0.0977 andc = −
0.7742. Equation (27) separates the total strain ampli-
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tude, De/2, into its elastic (Dee/2) and plastic (Dep/2)
components, so that the first term in Equation (27) can
be said to model the crack initiation stage, and the
second term the crack propagation stage2. The total
fatigue life predicted by the Coffin–Manson law agrees
well with the results of Topper and Morrow41. How-
ever, the Coffin–Manson prediction of crack initiation
is not satisfactory, particularly in the low-cycle region,
whereas the CDM-based Equation (25) predicts the
Dowling crack initiation data more accurately.

Figure 4 describes fully reversed strain-controlled
fatigue cycling of A106 grade B steel (a steel com-
monly used in nuclear power plant piping) at 288°C
in air. The predictedNI is obtained from Equation (25)
(using material properties fromTable 1) and Equation
(17) (assumingDc = 0.25). The predictedNI agrees
well with the number of cycles to initiate a 0.18 mm
crack9. Figure 4 also plots the predictedNT = NI +
NP, in which NP is obtained by integrating the Paris
law (with parametersC = 6.9 × 10−9 mm/cycle, m=
3.0) between the limitsath (Equation (2) withDKth=6.0
MPa√m) and af = 6.35 mm, subject to the condition
Kmax # min(Kc,√EsydT

), where Kc = 66 MPa√m and
dT = 0.04 mm2,42. The predictedNT is compared with
the experimentalNT from Majumdar et al. (1993)9 and
N25 (the number of cycles to a 25% drop in the peak
tensile stress, a point at which failure is imminent)
from Chopra et al. (1995)39 and Chopra (1996)43, and
is found to lie within the experimental scatter. The
CDM-based approach can therefore act as a comp-
lement to fracture mechanics in providing a complete
description of fatigue damage growth.

The rate of fatigue damage growth under constant
amplitude stress-controlled cycling is generally differ-
ent from that under strain-controlled cycling. This dif-
ference can be illustrated by the formulation presented
in this paper. In strain-controlled cycling, since the
strain range,Dem = emax − emin, remains constant, the
maximum plastic strain range in cyclei, Depmi

, is
obtained in terms ofDem by (numerically) solving the
following equation (cf. Equation (21)):

Depmi
+

K9

E
De1/M9

pmi
− Dem = 0 (28)

On the other hand, in purely stress-controlled cycling,

Figure 4 Fatigue crack initiation and failure under constant ampli-
tude strain-controlled load cycling of A106 Gr B steel

the maximum nominal stress range,Dsm = smax − smin

remains constant, andDepmi
is obtained in terms of

Dsm as,

Depmi
= S Dsm

K9(1 − Di − 1)
DM9

(29)

The solutions of Equations (28) and (29) are generally
different. The other plastic strain ranges used in Equa-
tions (23) and (24), namely,

Dep1i
= S Ds1i

K9(1 − Di − 1)
DM9

(30)

and

De0i
= S Ds1i

K9(1 − Di − 1)
+

Se

K9DM9

(31)

can also be shown to be different under strain-con-
trolled and stress-controlled load cyclings. Thus, even
with the same prior damage,Di−1, the same nominal
material propertiesV, and an equivalence betweenDs
and De in a given cycle (through Equation (21)), the
damage increments in the two situations are different.
Figure 5 shows the predicted damage growth over 20
cycles of fully reversed strain-controlled cycling
(without pre-straining) of SAE 4340 steel at an ampli-
tude of ± 0.005. The softening material stabilizes at a
stress amplitude of± 827 MPa (± 120 ksi)41 at De/2
= 0.005. If the cycling were conducted instead under
stress control at± 120 ksi, the predicted damage would
be about seven times larger after 20 cycles.Figure 5
also shows that increasing the stress ratio,R, while
keeping the stress amplitude constant at 120 ksi causes
the rate of damage accumulation under stress-controlled
cycling to increase significantly.

Figure 6 describes fatigue crack initiation and failure
of 2024-T4 aluminum under constant amplitude stress-
controlled cycling. As before, the predictedNI is
obtained using Equations (17) and (25) and material
properties from Table 1. The critical damage is
unknown, and two different values ofDc are used:
(i) 0.10 based on experimental observations on other
engineering alloys30; and (ii) 0.32, obtained from a

Figure 5 Predicted mean stress effects, and difference between
strain-controlled and stress-controlled cyclings
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Figure 6 Fatigue crack initiation and failure under constant ampli-
tude. stress-controlled load cycling of 2024-T4 Al

monotonic ductile damage growth model35 that used
standard tensile properties of 2024-T4 Al. As with the
SAE 4340 steel considered, the predicted crack
initiation is rather insensitive to the choice ofDc, and
agrees well the cycles to initiate a 15mm crack44,
which is of the same order as the grain size (20mm).

The capacity of a degraded structure can be related
explicitly to the CDM damage variable by Equation
(6). Thus, the residual strength of a fatigued component
(in the pre-crack initiation stage) can be predicted as
a function of elapsed cycles ifDn is known (cf.Figure
5). The decrease in strength clearly is non-linear with
respect to the elapsed number of cycles.

FATIGUE DAMAGE GROWTH UNDER
VARIABLE LOADING

Equations (25) and (26) can easily incorporate variable
amplitude stress (or strain) cycling, and predict the
number of cycles to a macro-crack initiation in con-
junction with Equation (17). The present research was,
however, unable to locate any published data that
indicated how the crack initiation life was affected by
load sequencing effects, though a sizeable set of results
are available for total fatigue life when the propagation
phase is included15,19,20, To investigate the role of load
sequencing effects on crack initiation, let us consider
the variable load occurring at just two levels:S1 for
n1 cycles andS2 for n2 cycles (cf.Figure 1). The load
level S1 represents two fixed limits of applied stress
(or strain) cycling as doesS2. When S1 is applied first
for n1 cycles, the damage is

Dn1
= 1 − (1 − D0) P

n1

i = 1
f(e1i

;V) (32)

Dn1
acts as the initial damage whenS2 is applied

for a furthern2 cycles; the total damage at the end of
n1 + n2 cycles is

Dn1,n2
= 1 − (1 − Dn1

) P
n1 + n2

i = n1 + 1
f(e2i

;V) (33)

= 1 − (1 − D0) P
n1

i = 1
f(e1i

;V) P
n1 + n2

i = n1 + 1
f(e2i

;V) (34)

Conversely, if S2 is applied first forn2 cycles, the
damage is

Dn2
= 1 − (1 − D0) P

n2

i = 1
f(e2i

;V) (35)

This is followed by S1 for n1 cycles. The total dam-
age is

Dn2,n1
= 1 − (1 − Dn2

) P
n1 + n2

i = n2 + 1
f(e1i

;V) (36)

= 1 − (1 − D0) P
n2

i = 1
f(e2i

;V) P
n1 + n2

i = n2 + 1
f(e1i

;V) (37)

It is obvious thatDn1,n2
in general is different from

Dn2,n1
. We can, however, find a condition that would

make these two equal, and the Miner linear cumulative
fatigue damage rule valid. Consider,

e1i
= e1,∀i P [1,n1 + n2] (38)

e2i
= e2,∀i P [1,n1 + n2] (39)

which means the strain limits in every cycle are inde-
pendent of the past. Under this condition,

Dn1,n2
= 1 − (1 − D0) P

n1

i = 1
f(e1;V) P

n1 + n2

i = n1 + 1
f(e2;V) (40)

= 1 − (1 − D0)f n1(e1;V)f n2(e2;V) (41)

and

Dn2,n1
= 1 − (1 − D0) P

n2

i = 1
f(e2;V) P

n1 + n2

i = n2 + 1
f(e1;V) (42)

= 1 − (1 − D0)f n2(e2;V)f n1(e1;V) (43)

Under these conditions, the two accumulated damages
are equal. In other words, if no strain hardening or
softening occurs during fatigue cycling, and if the
cycling takes place between exactly the same strain
limits for a given load level (irrespective of where in
the life of the component this load is applied), then
the load sequencing effect vanishes and Miner’s rule
is valid. Of course, these conditions may often be
unrealistic in practice.

Figure 7 shows two different (predicted) fatigue
damage growth trajectories in SAE 4340 steel under
stress-controlled cycling: one due to a high–low
sequence and the other due to a low–high sequence,
with S1 = ± 690 MPa (± 100 ksi), n1 = 100 andS2

= ± 827 MPa ( ± 120 ksi), n2 = 20. The damage
caused by the high–low sequence aftern1 + n2 = 120
cycles isDn2,n1

= 0.9 (Equation (37)), whereas the dam-
age caused by the low–high sequence after the same
number of cycles is much less (Dn1,n2

= 0.25 from
Equation (34)). This agrees with observed trends in
fatigue load-sequencing14.

Figure 8 shows the various combinations of cycle
ratios n1/N1 and n2/N2 that lead to (predicted) crack
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Figure 7 Effect of load sequencing on damage growth in stress-
controlled fatigue of SAE 4340 steel,S2 > S1

Figure 8 Predicted failure (i.e. crack initiation) in two-level stress-
controlled fatigue cycling of SAE 4340 steel

initiation after n1 + n2 cycles of two-level stress-
controlled cycling of SAE 4340 steel. As before,S1 =
± 690 MPa andS2 = ± 827 MPa; the predicted cycles
to crack initiation areN1 = 210 andN2 = 42, respect-
ively, corresponding toDc = 0.46. The initiation life
under two-level cycling is lower if the higher stress is
applied first, which is evident inFigure 8. As an
example, if 14 cycles ofS2 are applied first, only 124
cycles of S1 may be applied before crack initiation
occurs. However, the same 14 cycles ofS2 may be
preceded by 153 cycles ofS1 if S1 is applied first,
resulting in a 21% increase inNI. Miner’s rule, how-
ever, plots as a straight line and cannot distinguish
between the ordering of the blocks; it predictsNI =
154 regardless of where the large cycles occur.

Figure 9 shows the effect of high to low stress-
controlled cycling on fatigue crack initiation and failure
of SAE 4130 steel. Fatigue damage growth is computed
with the help of Equation (37) using material properties
from Table 1, and the initiation life is determined from

Figure 9 Effect of high to low load sequencing on crack initiation
and fatigue life of SAE 4130 steel

Equation (17) withDc = 0.24, obtained from a mono-
tonic ductile damage growth experiment on French
30CD4 (equivalent to SAE 4130) reported by Lemaitre
(1985)45. The predicted relation between applied and
remaining cycle ratios to crack initiation plots to the
left of the Miner line, and agrees qualitatively with
the corresponding experimental fatigue data.

CONCLUSION

Starting with the first principles of thermodynamics
and mechanics, a CDM-based model for predicting
fatigue crack initiation was developed in this paper.
The proposed model uses only readily available macro-
scopic material properties. Fatigue damage is computed
recursively as a function of elapsed cycles, which
facilitates the inclusion of variable amplitude loading
from cycle to cycle. The effects of strain-controlled
and stress-controlled load cyclings can be differen-
tiated, mean stress effects can be exhibited, and load
sequencing effects were predicted correctly. Although
the loading was treated deterministically in this analy-
sis, random loading can be incorporated without much
difficulty by treating s` in Equation (15) as a ran-
dom process.

The CDM analysis presented herein in based on
the notion of isotropic damage that is volumetrically
homogeneous prior to localization. There is evidence
that fatigue damage prior to initiation is a surface-
related rather than a volume-related phenomenon. The
prediction of crack initiation behavior herein agreed
reasonably well with experimental data. Additional
research aimed at incorporating any surface-related
effect within the CDM framework may lead to
further improvements.
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