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Abstract 
The chapter opens with a discussion on all sources of uncertainty that affect the bridge structure first at 
the design stage, and then during its lifetime after it has been constructed and put into service.  The 
probabilistic modeling of these uncertainties are taken up next.  Following this, the main subject of the 
chapter, reliability of bridge structures is approached.  Concepts of limit states are introduced and 
various limit states relevant to bridge structures are listed. Limit state exceedance probabilities, i.e., the 
probabilities of failure, are defined. Various computational techniques of for computing reliabilities are 
discussed.  Once bridge reliability is computed, the question of whether it is safe enough is brought in.  
The notion of risk and what constitutes acceptable risk are introduced.  Acceptable failure probabilities, 
and thus target reliabilities to be achieved in bridge design, are then discussed. The next section centers 
around translating the above concepts of uncertainty, limit states, probabilities of failure and acceptable 
risk into a practical tool in the form of design equations. The development of reliability based partial 
safety factor design equations are discussed for given load combinations and load and strength 
statistics. Once the bridge is put into service, its load characteristics may change and the structure may 
be subjected to various forms of deterioration.  The time dependent behaviour of bridge reliability due 
to aging and how maintenance can ensure that reliability does not fall below acceptable limits are 
highlighted. The utility of partial safety factor type rating for in-service bridges is discussed.  
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1 Overview 
In probability-based design, we explicitly account for uncertainties/vaiabilities in (i) the inputs (loads 
etc.), (ii) the properties (including strength), and (iii) the model of the system.   We then design or assess 
the system so that it satisfies its safety and performance objectives with acceptable probabilities for its 
intended function, under expected service condition and projected service life.  When a design code is 
used instead of an explicit probability based approach, such uncertainties are often accounted for 
indirectly in the form of partial safety factors, load combination schemes and other codal provisions.  

Consider the entire life of a bridge from its conception.  It starts with functional requirements. Say, the 
bridge should be part of the National Highway network at some location, over a major river, be able to 
carry 4 lanes of unrestricted traffic, plus shoulders on both sides.  The waterway below is used for cargo 
and passenger transport.  Thus, some clear span and height must be provided. The design life of the 
bridge has to be specified.  

 A concept design follows.  Economic considerations play a part here.  At some point in the design cycle, 
the owner has to justify if the bridge will be worth the expense.For the given geometry, location, design 
life and expected loading, the most economical material (among steel vs. prestressed vs. reinforced 
concrete) and form (box girder, truss, cable stayed etc.) are selected.  Material properties are required. 
A finite element model of the structure is developed.  

Loads have to be obtained.  Is the bridge going to be in earthquake prone area?  Will there be tidal 
waves? Scouring?  Barge impact? What kind of wind forces are we looking at?  What are the 
uncertainties in the loads and what load magnitudes shall we design for? How do we combine the 
loads?   Do we collect data?  How large should the data set be? 

The cycle of design and analysis continues until a final form is obtained.  Costs must be contained.  
Functional requirements have to be met.  Safety must be ensured.  How are failure criteria to be defined 
– both for collapse and functionality? And how safe is safe enough? Is an explicit dynamic analysis of the 
bridge structure necessary? Is the finite element model of the structure accurate enough? Does it 
account for nonlinearities near failure? Does it represent realistic boundary conditions? What are the 
uncertainties in the model?  

Construction begins and quality must be maintained. Once construction is complete, the bridge is put 
into service. Then occasional maintenance needs to be performed, sometimes major maintenance.  Is 
the bridge deteriorating?  Is traffic becoming heavier? How often should we inspect the bridge, and how 
extensively should we repair? Can the bridge be kept closed to traffic – for a month, for a day, for 6 hrs? 
Should the bridge be made stronger or more durable at the construction stage so that maintenance 
actions can be minimized? 

Finally the bridge may become too unfunctional or too costly to maintain and/or too risky to operate.  It 
is then demolished and a new one takes its place.  The cycle restarts.   

In this chapter, we isolate the key concepts from the above discussion and treat them systematically.  
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2 Uncertainty in bridge modeling and assessment 

2.1 Probabilistic modeling of uncertain phenomena 
In the context of probability theory, the “sample space” is the universal set of all possible events. 
Probabilities are assigned to an appropriately defined collection of subsets or “events” (called a sigma 
algebra) of the sample space.  A (random) experiment implies the occurence of an event. When the 
outcome of an experiment can be given in numerical terms, then we have a random variable (RV) in 
hand.  Any possible outcome of a random variable is called a “realization.”  A random variable can be 
either discrete, or continuous.  If a quantity varies randomly with time, we model it as a stochastic 
process.  A stochastic process can be viewed as a family of random variables indexed by time. If a 
quantity varies randomly in space, we model it as a random field, which is the generalization of a 
stochastic process in two or more dimensions.  It is assumed that the reader is familiar with the basic 
concepts of probability theory and random variables and processes, and may refer to standard texts [1-
3] for a refresher. 

2.1.1 Common random variables encountered in structural reliability 
A random variable is governed by its probability laws.  The probability law of a RV can be described by 
any of the following equivalent ways:CDF (cumulative distribution function), PDF/PMF (probability 
density function for continuous RVs, probability mass function for discrete RVs), CF (characteristic 
function), MGF (moment generating function) etc.  

Although any non-decreasing function bounded by 0 and 1 can be a candidate cumulative distribution 
function for a random variable X, only  a few models (e.g., Normal, Poisson, Geometric, Weibull etc.) are 
commonly used by the scientific and engineering community in their work.  This is because the 
underlying process appears repeatedly in a wide class of problems.  Deriving models solely from data, 
without basing it on the underlying physics, will be very expensive and often inconclusive. 

The uniform distribution arises naturally when there is no reason to favour one outcome over another 
from the sample space – making all sample points equally likely.  This distribution also corresponds to 
the state of maximum  Shannon entropy.  

The Bernoulli trial refers to a binary outcome:  X =0 (often called “failure”) that occurs with probabilty q 
and X = 1 (often called “success”) that occurs with probability p, so that p + q = 1.  A sequence of 
independent and identical Bernoulli trials can help model large classes of phenomena of  engineering 
interest.  The number of trials to the first success gives rise to the Geometric distribution.  Generalizing,  
the number of trials to the rth success gives rise to the Pascal (or negative binomial) distribution.  The 
number of successes in a fixed number of Bernoulli trials, on the other hand, follows the Binomial 
distribution.   

The concept of “mean (or average) return period” (also called “mean recurrence interval”) arises from a 
sequence of IID Bernoulli trials. Let “success” in the Bernoulli trial refer to the occurrence of an event  A 
(so that “failure” means non-occurrence of A) – typically a relatively rare phenomenon, like annual 
rainfall exceeding 50 inches, annual maximum wave height exceeding  20 m, annual maximum wind 
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speed exceeding 150 km/hr, earthquake magnitude exceeding 7 on the Richter scale, etc.  The time (or 
more literally the number of trials), T,  between successive occurrences of the event A in a sequence of 
Bernoulli trials is a random variable.  T follows the geometric distribution due to the IID (independent 
and identically distributed) nature of the trials, hence the mean of T is 1/p time units where p is the 
probability of occurence of A in each trial (or, time unit).  In the continuous time scenario, the time 
between occurrences is exponentially distributed and the mean occurrence time is the reciprocal of the 
occurrence rate of the underlying Poisson process.  

The Gaussian (or, normal) distribution appears as the limiting form for the sum of a number of random 
variables, subject to certain conditions [4], and is the most widely used model for continuous random 
variables. In structural engineering, dead loads are almost exclusively modeled as Gaussian.  In fact, in 
the absence of evidence to the contrary, the Gaussian distribution is the default choice. The 
exponentiated Gaussian gives the lognormal random variable and is popular in the literature of 
structural reliability, especially for non-negative quantities.  Extreme value theory has given rise to three 
limiting forms [5] – Gumbel, Frechet and Weibull – and are often adopted for the distribution of the 
maximum (like wind, wave, traffic etc.) or the minimum (like strength) of a process.  

The typical loads considered in bridge analysis and design are dead load, live load (mostly traffic load [6-
10], wind load and earthquake loads.  Dead loads represent the gravity loads (i.e., self weight) of various 
components of the bridge starting from prefabricated elements and cast insitu members to wearing 
surfaces and fixtures. Depending on the location of the bridge, snow load, wave load, impact load etc. 
may also be considered.  NBS 577 [11] lists the mean bias and coefficient of variation and distribution 
for common material resistance and load random variables and these are widely adopted in the 
structural reliability literature. 

Uncertainties in material properties, and to a lesser extent those in geometries, lead to uncertainties in 
strength.  Uncertainties in boundary condition, e.g., the extent of joint fixity, are typically listed under 
modeling uncertainties.  

2.1.2 Common stochastic processes encountered in structural reliability 
Various types of stochastic processes appear in the analysis of structural reliability. Mostly, they 
represent load processes. In some cases, however, strength degradation also need to be modelled as 
stochastic processes.  Broadly, load processes are either sustained or intermittent.  The sustained kind 
can be further subdivided into (approximately) time-invariant such as dead loads, and fluctuating such 
as occupant live loads.  The sustained loads can be modeled as random variables.  Intermittent loads are 
present during a very short duration compared to the life of the structure, such as seismic loads. In the 
limit, intermittent loads can be modeled as pulses with random magnitudes occuring at random instants 
of time.  Wind loads and traffic loads can have both fluctuating components (low level continuous) and 
intermittent pulses (storms and heavy trucks).  In many cases, it is only the life-time maximum of the 
fluctuating or intermittent load processes, rather than detailed temporal characteristics, that may be 
required in structural reliability analysis. In such cases, the said maximum is modelled as a random 
variable.  The corresponding design quantity is a characteristic value of the distribution of the random 
variable which may be defined as n-year return period value or some other quantile.  
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Pulse processes, occuring randomly in time with random pulse magnitudes, are particularly suited for 
modeling the occurrence of heavy trucks, high winds, high waves and earthquakes  on bridges – as long 
as the “within event variations” are not important.  If the within event variations need to be considered, 
e.g., to determine the response history (of the order of a minute) of a bridge due to a strong motion 
earthquake, then the occurrence can still be modeled as a pulse, but the frequency content, envelope 
function etc. of the load time history will also be needed.  The Poisson process is the most common 
model of pulse processes.       

The stationary Gaussian process is the most common model for continuous stochastic processes. It can 
be fully defined in terms of the mean and the covariance functions. Non-stationary and/or non-Gaussian 
processes may be created through various transformations and filtering of the stationary Gaussian 
process [12-14]. 

2.2 Types of uncertainty 
Uncertainties in engineering problems occur as a result of natural variability, incomplete information or 
imperfect knowledge. A traditional classification system for uncertainties is Type I vs. Type II.  Type I 
uncertainties (also known as natural, inherent or aleatory uncertainties) cannot be reduced as they are 
intrinsically associated with the quantity.  Type II uncertainties (also known as modeling or epistemic 
uncertainties), on the other hand, can be reduced with increased information or sophistication.  A more 
modern classification of uncertainty is Statistical vs. Parameter vs. Modeling and is preferred since it 
gives a greater resolution to the analyst.  

Regardless of classification, the mathematical representation of uncertainty must follow the laws of 
probability and is generally described by random variables. Apart from the type of distribution, two 
dimensionless constants are popularly used to describe a random variable: the mean bias, B, which is 
the ratio of the mean to the nominal (or predicted or handbook) value, 

 
n

B
X
µ

=  [1] 

(the median bias can also be defined similarly) and the coefficient of variation (COV) which is the 
normalized standard deviation, 

 V σ
µ

=  [2] 

2.2.1 Statistical uncertainty 
Suppose the mathematical model of a phenomenon requires the use of a random variable X with the 
distribution function XF .  We do not wish to probe further where the uncertainty in X  is coming from.  

We are happy with treating X  as random and XF  as a black box.  We can either use an “empirical” 
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form for XF , or assume a parametric form (e.g., Normal, Weibull etc.) and obtain its parameters from 

data.   Most random variables used in structural reliability problems represent this kind of uncertainty. 

2.2.2 Parameter uncertainty 
Suppose we know from analytical, subjective or experimental considerations that a random variable X 
follows the distribution g that is governed by a set of parameters, θ .  However, there may be 
uncertainties about the exact value of θ .  Ιn that case, for any fixed value of θ, we say that g is the 
conditional distribution of X.  If the parameters are now expressed as a random variable, Θ, then we can 
write: 

 
all 

[ | ] ( ; )

( ) [ ] ( ; ) ( )X

P X x g x

F x P X x g x f d
θ

θ θ

θ θ θΘ

≤ Θ = =

= ≤ = ∫  [3] 

to obtain the unconditional distribution of X. 

Zio and Apostolakis [15] say that some model uncertainties can in fact be used as parameter 
uncertainties, e.g., when using a Monte Carlo simulation, a flag can be used to switch some models on 
or off – or just use a “switch case” kind of parameter that will select one model at a time in repeated 
simulations. It may also not always be possible to separate model uncertainties for parameter 
uncertainties – say, there are parameters whose values need to be estimated from available data, but 
how the estimates themselves are computed may depend on the model chosen in the first place. 

Regardless of the classification, probability theory allows us to treat all uncertainties as random 
variables.  For some, though, conditional distributions may be necessary. 

2.2.3 Modeling uncertainty 
Analysis tools for predicting global response, stress analysis etc. are commonly deterministic in nature.  
The model predictions deviate from the actual due to three broad classes of reasons: mathematical 
idealizations, numerical errors and ignorance.  Mathematical idealization includes simplifications such as 
neglect of non-linearities, etc.  Ignorance effectively leads one to neglect a group of variables. The 
difference between idealization and ignorance is that in the former one knows what is being left out, 
while in the latter, one does not.  Gallegos and Bonano [16] named these respectively as: a) 
mathematical model uncertainty, b) conceptual uncertainty, and c) computer code uncertainty.  

All three introduce new random variables into the reliability problem, and hence into the limit state. 
Ditlevsen [17]incorporated modeling uncertainty in the limit state equation by transforming the vector 
of basic variables into another random vector of the same dimension, i.e., by substituting the basic 
variables X with V(X). 

In the aggregate sense, the model uncertainty, M, in predicting some property or response may be 
expressed as: 
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 actual (predicted 0)
predicted (or nominal)

M = ≠  [4] 

M is a random variable because the exact deviation is unknown.  Of course, in many situation, “actual” 
results may just not be available, e.g., failure pressure of an actual nuclear power plant containment 
under pressurization due to an actual core meltdown.  For such phenomena, we can have only 
competing models, and in some cases, scaled model test results under idealized conditions.  

Some modeling uncertainty distributions cannot be estimated from data.  They can only be estimated 
from subjective probabilities given by a group of experts [18-20].   

Examples of treatment of modeling uncertainty 

(i) A simple example is the yield strength [11], Y, of a steel member, which is commonly modeled as the 
product of three random variables representing intrinsic and extrinsic uncertainties, and the nominal 
value, Yn: 

 P M F nY B B B Y=  [5] 

where BP accounts for professional or modeling error,  BM is  the material variability, and BF is the 
fabrication error.  For example, if these three factors are considered to be mutually statistically 
independent and Lognormally distributed, then the yield strength Y also is Lognormal.  

(ii) Nikolaidis and Kaplan [21] performed a survey of uncertainties in FEA in marine and other industries 
(automobile, aerospace etc).   Their conclusions and findings are the following: Depending on the 
loading case, the mean bias in FEA of containership ranged from 0.9 to 1.4, and the COV from 0.1 to 0.4. 
For aerospace structures, the stress modeling uncertainty is uniformly distributed with mean 1.0 and 
COV 0.12.  In automobile industry, FEA underestimates flexibility of a car body.  The error in predicting 
deflection due to bending or torsion ranges between 10 - 20%.   For offshore structures, the uncertainty 
in modeling members forces has a mean bias between 0.8 and 1.1 with COV between 0.2 and 0.4.  

(iii) In fatigue strength computation [22], the permissible stress range, ∆σP , in a component may be 
determined by the use of several adjustment factors on the S-N curve-based reference stress range, 
∆σR, which corresponds to N=2x106 

 max P R n m R t s w cf f f f f f fsss  ∆ ≤ ∆ = ∆  [6] 

where the factors: 

 fn takes into account the effect of the stress spectrum (compared to the constant amplitude assumption 
of the S-N curve);  fm  accounts for material type; fR accounts for the mean-stress effect; ft accounts for 
the plate thickness effect; fs accounts for imperfections; fw accounts for weld shape improvements; and  
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fc accounts for corrosive environments. Of the above, the factors fn , fR and ft may be considered as 
representing modeling uncertainty. 

(iii) Similar approaches have been taken to derive strain-based limit states for nuclear power plant 
containments.  [23] adopted the Hancock model in his fragility analysis of steel containments.  They 
defined the equivalent plastic strain at failure, εfail , in terms of the uniaxial fracture ductility, εf,uni , and 
four correction factors (f1, …, f4) as follows: 

 , 1 2 3 4fail f uni f f f fε ε= × × × ×  [7] 

where f1 =1.6 exp(-3σm/2σvon) accounts for multiaxial stress state, f2 accounts for model sophistication 
(i.e., modeling error), f3 accounts for material variability, f4 accounts for variability in corrosion 
degradation (reduction of ductility).  This failure criteria can be applied locally in conjunction with a 
finite element analysis. 

(iv) In seismic design, the target displacement, δt, of the control node at roof-top of a building may be 
calculated as [24]: 

 
2

0 1 2 3 24
e

t a
TC C C C Sδ
π

=  [8] 

C0  = modification factor to relate spectral displacement and expected maximum inelastic displacement 
at the roof ; C1 = modification factor to relate expected maximum inelastic displacements to 
displacements calculated for linear elastic response; C2 = modification factor to represent the effects of 
stiffness degradation, strength deterioration, and pinching on the maximum displacement response; C3 

= modification factor to represent increased displacements due to dynamic second order effects; Sa = 
response spectrum acceleration at the effective fundamental period and damping ratio of the building; 
Te = effective fundamental period of the building in the direction under consideration calculated using 
the secant stiffness at a base shear force equal to 60% of the yield force. The factors C1 C2 and C3 serve 
to modify the relation between mean elastic and mean inelastic displacements where the inelastic 
displacements correspond to those of a bilinear elastic plastic system. The factors C0 through C3 may be 
considered as representing modeling error. 

(iv) The environmental load-effect due to sea-load, wind, ice and earthquake is [25]: 

 1 2...S KC C Eα=  [9] 

where K = constant, C1 = transfer from environmental condition to load, C2 = transfer from load to load 
effect, E = characteristic environmental parameter and α is a constant. E usually follows an extreme 
value distribution, e.g., Gumbel.  K, C1,C2, … are generally random, and may be assumed Lognormal. 
Each of the transfer functions above may be decomposed into a nominal value and a modeling error 
variable.  
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(v) In seismic code development, Cornell et al. [26]  separated uncertainty in four parts: DUβ  

(uncertainty in estimating the median demand), DRβ  (the record to record variability in demand), CUβ  

(the uncertainty in estimating the capacity), CRβ  (the randomness in capacity) so that the total 
uncertainty (in the lognormal standard deviation sense) in demand and capacity are respectively: 

 

2 2 2

2 2 2
D DU DR

C CU CR

β β β

β β β

= +

= +  [10] 

DUβ  and CUβ   correspond to modeling uncertainty type, while DRβ  and CRβ  correspond to the 
statistical uncertainty type.  In a related work, Yun et al. [27] took into account 𝛽𝑁𝑇𝐻, the uncertainty in 
non-linear time history analysis and assumed it to be 0.15, 0.20, and 0.25 for 3-, 9-, and 20-story 
buildings, respectively.  

3 Reliability of bridges 
For a structure with several critical locations subject to time dependent loads and possessing time- and 
space- dependent material properties, the reliability function estimates the probability that the 
capacity, C, exceeds the demand, Q, at all locations at all times that the structure is in service: 

 Rel( ) 1 ( ) ( , ) ( , ), (0, ), ,j j
ft P t P C x Q x t x j Jt t t = − = ≥ ∀ ∈ ∀ ∈Ω ∈   [11] 

where Ω is the set of critical locations of the structure and t  is total time horizon. Both capacity and 
demand of the structure are generally functions of space and time and constitute a multidimensional 
stochastic process.  Capacity can change randomly due to aging or other time-dependent effects, and 
can recover due to maintenance operations.  Further, there may be several modes of failure j (e.g., 
shear, flexural, deflection etc.), as indicated by the superscript to C and Q, associated with any given 
location.  The demand represents the effect of all loads acting simultaneously on the structure (e.g., 
dead, live, wind etc.) and may be expressed either in load space or in load effect space: 

 ( , ) ( , ) ( , ) ( , ) ...j j j jQ x DL x LL x WL xττττ   = + + +  [12] 

The “+” sign indicates combination, not necessarily superposition, and thus may involve non-linear 
effects.   

The structural reliability problem in its most general formulation is thus infinite dimensional both in time 
and space which of course makes it computationally intractable; hence engineering judgment and 
various simplifications and restrictions are adopted.  For example, if there were only one critical location 
with only one failure mode, and demand and capacity were time invariant as well, Eq [11] would boil 
down to a time-independent element level reliability problem in two random variables: 
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 0 0Rel [ 0]P C Q= − >  [13] 

which could easily be computed with the help of the joint PDF of C0 and Q0: 
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∫
∫

 [14] 

Thus, the way to making the general reliability problem [11] tractable is to identify only the key sets of 
(i) failure modes, (ii) load combinations, (iii) critical locations, and (iv) temporal statistics of important 
processes, so that only a manageable number of failure events need to be analyzed and checked against 
acceptance criteria.  

Figure 1 shows the important steps involved in structural reliability analysis. The concept of limit states, 
various solution techniques for the reliability problem, and introduction of explicit time-dependence 
into the reliability problem are discussed next.  

 



Baidurya Bhattacharya, Indian Institute of Technology Kharagpur 

 

Figure 1: General scheme for reliability analysis 

 

3.1 Limit states 
One of the first steps in a structural reliability analysis is to identify the failure modes (or, more 
generally, non-performance modes) of the structure.  A limit state is the boundary between the safe (or 
acceptable) and failed (or unacceptable) domains of structural performance in the failure mode under 
consideration.   It is represented with the help of the limit state function (also called “performance 
function”), g(X), in the following manner: 
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The boundary between the two regions, g(X)=0,  is called the limit state equation.  X is the set of basic 
variables which consist of the complete set of quantities used to describe structural performance in the 
failure mode under consideration.  They may include material properties, loads or load-effects, 
environmental parameters, geometric quantities, modeling uncertainties, etc. Basic variables in a limit 
state are usually modeled as random variables, however, those with negligible uncertainties may be 
treated as deterministic.  

Limit states may be defined for elements as well as the system.  The difference between “element” and 
“system” in reliability analysis has less to do with the scale and complexity of the participating 
component/assembly/sub-structure, and more to do with the form of the limit state function and 
whether one needs to undertake Boolean combinations, discussed next.  

 

 

Figure 2: Limit state functions (a) for an element, (b) for a series system.  The failure domain is 
indicated by the hashing.  

  

3.1.1 Structural limit states and load combinations used in bridges 
There are broadly two kinds of failure for a structure: irreversible and reversible.  Irreversible failure can 
be divided into two types:  

(i) Overload – e.g., ultimate failure that happens under a single high loading event.  Design 
codes refer to these as strength/extreme/accidental limit states.  This type of failure is 
irreversible in nature.  The structure needs to be replaced/repaired after such failure.  
Consequences of such failure is serious, even catastrophic.  

(ii) (ii) Cumulative damage – e.g., fatigue cracking.  It too is irreversible in nature and the 
structure needs to be replaced/repaired after such failure.  Consequence of such failure can 
be serious.  However, this damage proceeds gradually and can be detected through 
inspection before failure occurs.   

Reversible structural damage is temporary in nature and have typically to do with functional 
requirements of the bridge (e.g., deflection, vibration etc.). There is no lasting damage, but the structure 
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is not available for the duration of this kind of failure.  Consequence of such failure is usually minor.  
Most serviceability limit states listed in design codes come under this category.  

Strength and serviceability limit states can be formulated both as element and system level limit states 
depending on the objective and available information.  For each of these, several load combinations 
need to be evaluated (Eq [12]). For example, the AASHTO bridge LRFD code [28] specifies five strength 
type load combinations (involving dead loads and various live loads with or without wind loads), two 
extreme event load combinations (involving dead loads and reduced live loads with earthquake or 
ice/collision/flood etc. loads), four service load combinations (involving dead loads, various live loads, 
wind loads etc.) and two fatigue load combinations (involving only live loads).   

Eq [11] therefore simplifies to checking the following groups of limit states one at a time: 

 ' '
' ' '

'' ''
'' '' ''

overload:    ( ) ( ;LC ( ))

cumulative: ( ) ( ,LC ( ))
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j j
i i k

j j
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
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 [16] 

 

3.1.2 Element level limit states 
 If it is possible to define a single differentiable performance function g(X) of the basic variables for a 
given failure mode, then we have what is known as an element reliability problem at hand.  An element 
reliability problem is most naturally realized in the case of a  single critical cross-section of one structural 
component in a single failure mode (such as flexural failure); in such cases the function g is commonly 
derived from analytical/mechanistic modeling. It can be the same function used in a corresponding 
deterministic analysis, with some or all of the variables now treated as random variables.   However, it is 
entirely possible that the performance function corresponding to the roof displacement of a tall building 
under wind loading can be derived in the form of a single response surface given in terms of a relevant 
set of basic variables (obtained from a set of finite element analyses of the structure); in this case, the 
reliability problem of excessive roof displacement for the building too will qualify as an element 
reliability problem.  

The simple two-variable linear problem as in Eq [13] is an element reliability problem, the basic variables 
are 0 0[ , ]TX C Q= , and the limit state equation is: 

 0 0( )g X C Q= −  [17] 
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Typical modes of failures in bridge structures that give rise to element reliability problem include 
yielding, crushing, buckling, fatigue failure etc.  Element reliability problems are easy are to formulate 
and inexpensive to compute. 

Example 1: A small structural design problem. 

 Consider a cable (8 inch diameter) in a suspension bridge made of 
A36 steel with random yield strength Y (time invariant). Let Y be 
Weibull distributed with COV 15%. It is a one RV problem. No 
modelling uncertainty is considered. The axial load q = 1600 kip 
and the cross sectional area a = 50.3 in2  are deterministic. Let 
cable failure be defined as yield of the gross section. Find the 
failure probability of the cable. The target failure probability is 
0.001. Redesign if necessary. 
 

Figure 3: A cable in tension 
 

 

Given Y is Weibull distributed with COV 15%. The mean yield strength of A36 steel is 38 ksi. The shape 

and location parameters of Y are therefore, 15% 8YV k= ⇒ =  and ,          
( )

38 40.4 ksi
1 1/ 8 .94

u µ
= = =

Γ +
. 

The failure event is: 

 {Failure}= q Y
a

 > 
 

 [18] 

The probability of failure, 

 
8

2

31.8
40.4

1600kip[failure]
50.3in

[ 31.8] 1 0.14

fP P P Y

P Y e
 − 
 

 
= = < 

 

= < = − =

 [19] 

is solved using the Weibull CDF.  

Since it is required that [failure] .001P < , the cable is inadequate. Reliability can be increased in four 

ways for this problem: increasing the area, reducing the load, increasing the mean strength, and 
decreasing the variability of strength. Of these, the second is not possible without restricting traffic, and 
the third and fourth would require a different material and possibly be very expensive. Thus, we decide 
to first try to increase the cross-sectional area.  

q 
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The revised cross-sectional area can be found by finding the inverse of the CDF at the target Pf: 

 
8

40.4.001 1 .001.new

q
a

new

qP Y e
a

 
−  

 
 

∴ < = ⇒ − = 
 

 [20] 

which yields, 

 21600 93.9in
40.4 .4217newa = =

×
 [21] 

Suppose the resultant diameter, about 11 inches, proves to be impractical. The next option is to try a 
different grade of steel without changing the diameter.  Assume the distribution of Ynew remains Weibull 
and its COV remains 15%.  The approach now is to select a new mean.  The target probability of failure 
remains 0.001: 

 .001new
qP Y
a

 < =  
 [22] 

 which yields: 

 
( )

8
31.8exp .999

75.4
75.4 1 1/ 8 70.9 ksi

new

new

new

u

u
µ

  
 − = 
   

⇒ =

⇒ = Γ + =

 [23] 

The new mean strength is acceptable provided this new grade of steel has sufficient ductility, corrosion 
resistance and other desirable properties. Otherwise, a totally new design may need to be adopted. 

3.1.3 System level limit states 
As should be clear by now, the difference between an element and a system in a reliability analysis 
context is somewhat arbitrary and largely dependent on the available information and scale of interest. 
Indeed, a problem of tensile failure of a prismatic rod made of a brittle material that can be treated as a 
simple element reliability problem from a continuum viewpoint may amount to an intractable system 
reliability problem from micro-structural considerations.  For practical purposes, it is mostly the 
availability of a single, differentiable and closed-form performance function that separates an element 
reliability problem from a systems one. 

It would be highly desirable, then, to somehow cast the performance of a structural system in terms on 
a single limit state (perhaps using approximate numerical techniques such as a response function fit) and 
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thereby take advantage of the speed, elegance and accuracy of element reliability solution techniques; 
such formulation unfortunately remains elusive more often than not.  Needless to add that structural 
system failure events are thankfully so rare (and in any case, structural systems can hardly be deemed to 
constitute a nominally identical sample) that the other alternative – a frequentist interpretation of 
structural system reliability – is not feasible.  The usual systems reliability formulation therefore is 
presented in terms of Boolean combinations of element limit states depending on the logical construct 
of the system in terms of its components and the definition of failure at the systems level[29].  

If the system failure event can be cast as an intersection of m element failure events (i.e., a classical 
parallel system), then the system failure probability is: 

 ,
1

Parellel system:  0
m

f sys i
i

P P g
=

 
= ≤ 

 


 [24] 

Where ig ’s are the element limit state surfaces in the basic variable space (X). For a series system type 

configuration, the system failure probability is: 

 ,
1

Series system:  0
m

f sys i
i

P P g
=

 
= ≤ 

 


 [25] 

For systems more general than the simple series and parallel organizations, the greatest challenge is to 
identify the minimal cut sets (at least the dominant ones), particularly in light of the circumstances 
peculiar to structural systems mentioned above. A set of elements of a system is a cut set if the failure of 
all members of the cut set causes system failure [30]. A minimal cut set is one that if any element is 
removed from it, the subset no longer remains a cut set.   

 If the cut sets , 1, ,i cC i n=   can be identified for the system, the system failure probability becomes: 

 ,
1 1 1

Series-parallel system:     0
c c in n n

f sys i ij
i i j

P P C P g
= = =

     = = ≤   
      

  

 [26] 

where ijg is the jth limit state in cut set i.  Exact solution of Eq. [26] may be impossible, thus bounds on 

system reliability, based on marginal events[31], pairs of joint events[32] or triplets of joint events [33] 
are available.  Cut sets, without regard to an ordering of element failure events, are possible to be 
determined for elastic-perfectly plastic structures.   

The binary nature of elements (being either in failed or safe states), though not a necessity, facilitates 
the use of standard methods such as fault or event trees (or a combination of the two), including their 
variants to suit the peculiarities of structural systems, to describe system failure in terms of component 
failure events, and hence to identify minimal cut and/or minimal path sets of the system.  System 
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reliability computation for structures is not straightforward since the component failures are not 
mutually independent events on account of (i) active redundancy in the structure leading to load 
sharing, (ii) load path dependence in case of successively applied multiple yet sustained loads, (iii) load 
redistribution after initial member failures for redundant structures, (iv) non-linear behavior and non-
brittle failure of the components, (v) failure sequences of different probabilities for the same cut set in a 
progressive collapse or incremental loading situation, and (vi) possible statistical dependence among the 
basic variables.     

3.2 Computation of reliability 
The failure probability corresponding to Eq [15] is given by the multidimensional integral in the basic 
variable space: 

 
( ) 0

( ( ) 0) ( )f X
g x

P P g X = f x dx
<

= < ∫  [27] 

where fX(x) is the joint probability density function for X. The reliability of the structure would then be 
defined as Rel=1−Pf. 

Closed-form solutions to Eq [27] are generally unavailable.  Two different approaches are widely in use: 
(i) analytic methods based on constrained optimization and normal probability approximations, and (ii) 
simulation based algorithms with or without variation reduction techniques and both can provide 
accurate and efficient solutions to the structural reliability problem.  The first kind, grouped under First 
Order Reliability Methods (or FORM), holds a distinct advantage over the simulation based methods in 
that the design point(s) and the sensitivity of each basic variable can be explicitly determined.  

3.2.1 First order reliability method 
FORM calculates the reliability of a system by mapping the failure surface onto the standard normal 
space and then by approximating it with a tangent hyperplane at the design point (defined as the point 
on the limit state surface in the standard normal space that is closest to the origin) [34].  Provided the 
limit state surface is well-behaved, the solutions obtained by FORM are reasonably close to that 
obtained by the relatively expensive simulation based solutions.  

The two important steps of FORM are described in detail in the following.  

1. Map the basic variables X on to the independent standard normal space Y and hence g(X) to 
g1(Y). Several mappings are possible, such as(i) Hasofer-Lind [35]or second moment 
transformation which uses information only on the first two moments of each X, (ii) Nataf 
transformation [36]which uses marginal distribution of each X and the correlation matrix of the 
X vector, (iii) Rosenblatt transformation [36]which uses nth order joint distribution information, 
a special case of which is the so-called full distribution transformation valid when the X are 
mutually independent,  (iv) the Rackwitz-Fiessler[37] transformation which converts each X 
point-by-point into an equivalent normal U through a marginal distribution and density 
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equivalence, and then the vector U into the independent standard normal vector Y through a 
Nataf type transformation.  

2. Locate on g1 the point  y* closest to the origin,  

 
1subject to 

min

( ) 0

T yF

G g

y

y= =

=
 [28] 

Let the solution to this optimization problem be y*and let β  be the distance of this optimal point 
from the origin.  This minimum norm point y*, is known as the checking or the design point.  The 
limit state surface g1 can be approximated by a tangent hyperplane at y*, yielding the 
approximate probability of failure as 

 [ ]( )1sgn (0)fP gβ= Φ −  [29] 

The signum function determines whether the origin is in the safe domain or not. The drawback 
of FORM is that it provides the exact solution only if the original limit state is linear and the basic 
variables are normally distributed. Otherwise, the extent of error depends on the curvature of 
the limit state and the method of mapping of X onto Y. 

 After performing a FORM analysis, the design point y* can be transformed back into the basic variable 
space, yielding the “checking point”, x* which cannot be obtained from simulation based solutions. It is 
implied that if the structural element in question is designed using this combination x*, the reliability of 
the component would be β(within the approximations of FORM). This, in fact is the basis of load and 
resistance factor design, discussed subsequently. 

The gradient projection method, originally developed by Rosen [38], is well-suited to tackle the 
constrained non-linear optimization problem in Eq [28].  

3.2.2 Monte Carlo simulations 
Except in very special situations, closed form solution to the structural reliability problem (Eq. [27] ) does 
not exist and numerical approximations are needed.  The true probability of failure, fP ,  

 { } ( ) { } ( )
all all 

Failure Failuref X U
x u

P f x d x f u du=   =     ∫ ∫   [30] 

can be estimated using basic (or “brute-force” or “crude”) Monte Carlo simulations (MCS) in practice as: 

 ( )( )
1

1ˆ 0
N

f i
i

P g T U
N =

 = < ∑   [31] 
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where a zero-mean normal vector U  with the same correlation matrix ρ as the basic variables is 
generated first and then transformed element by element according to the full distribution 
transformation: 

 ( )  ( ) ( )
iX i iT u x F x u= ⇒ = F  [32] 

The use of the same ρ for U as for X results in error, but the error is generally small [39].  N  is the total 
number of times the random vector U  is generated, and Ui  is the ith realization of the vector.  It is well-
known that the basic Monte-Carlo simulation-based estimate of Pf has a relatively slow and inefficient 
rate of convergence. The coefficient of variation (COV) of the estimate  is : 

 ˆ ˆ( ) (1 ) ( ) 1 ( )f f f fV P P NP NP= − ≈  [33] 

which is proportional to 1 N and points to an inefficient relation between sample size and accuracy 
(and stability) of the estimate.  Such limitations of the basic Monte Carlo simulation technique have led 
to several “variance reducing” refinements.  Notable among them are Latin hypercube sampling [40], 
importance sampling along with its variants [41, 42], subset simulations  [43], which, if performed 
carefully, can significantly reduce the required sampling size.  Nevertheless, importance sampling and 
other variance reducing techniques should be performed with care, as their results may be quite 
sensitive to the type and the point of maximum likelihood of the sampling distribution, and an improper 
choice can produce erroneous results [44].    

3.2.3 System reliability computation 
An ordered sequence of failure events from a cut set is variously termed in structural systems reliability 
analyses, sometimes with subtle differences among them, as failure sequence or failure path.  To be 
specific, a failure sequence under incremental loading accounts for load redistribution after each 
component failure while a failure path does not, and leads to different events whenever load 
redistribution occurs after each successive component failure[45].  The terms failure mode and collapse 
mode, unfortunately, have been used in the literature to denote a cut set both with and without regard 
to ordering of failure events and have led to confusion in some cases.  We prefer “collapse mode” to 
imply a cut set without reference to failure order, and “failure sequence” to imply an ordered sequence 
from a cut set.  A path set is sometimes referred to as a stable configuration [46]  although this 
approach is rarely taken in structural problems.   

Depending on the structural complexity and desired accuracy of the solution, the dominant failure 
sequences (or collapse modes) can be found in a variety of ways: some of these involve only a 
deterministic analysis of the structural system while some employ a fully probabilistic analysis, and still 
others that use some limited probabilistic information.  The assumption of rigid perfectly plastic material 
behavior is fairly popular in structural system reliability analysis as it eliminates load history 
dependence.  It is well-known that deterministic plastic mechanism analysis can lead to collapse mode 
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identification in case of rigid-plastic framed structures, although the number of modes generated 
quickly becomes huge [47, 48].  Such deterministic rules have been variously adapted to search for the 
probabilistically dominant collapse modes by (i) creating linear combinations of those basic mechanisms 
that have the lowest reliability indices (the beta-unzipping method [49]), (ii) using linear 
programming[50], (iii) stochastic programming [51], (iv) genetic algorithms [52] etc.  The probabilistically 
dominant failure sequences can be searched using truncated enumeration schemes that include the 
branch and bound method [49] and, importantly, the incremental loading method[53, 54].  The 
incremental loading method is particularly useful (and often the only way out) when component failure 
is multistate instead of the usual binary [55], material behavior is brittle, semi-brittle or non-linear  
instead of ideal plastic [56], and system failure occurs not due to formation of a mechanism, but due to 
excessive deformation or a specified drop in structural stiffness with regard to specified degrees of 
freedom.  Nevertheless, one potential drawback of the incremental analysis method is its quasi-static 
assumption of structural behavior: the load duration needs to be sufficiently long to allow potential 
redistribution of load effects throughout the system.   

3.3 Specifying target reliabilities for design and assessment 
It has become increasingly common to express safety requirements, as well as some functionality 
requirements, in reliability based formats. A reliability based approach to design, by accounting for 
randomness in the different design variables and uncertainties in the mathematical models, provides 
tools for ensuring that the performance requirements are violated as rarely as considered acceptable.   
Such an approach comes under the broad classification of performance design (PBD).  In structural 
engieering, PBD has most enthusiastically been espoused in the seismic engineering community as 
evident in  SEAOC [57], ATC-40[58], FEMA 273 [59], FEMA 350 [60] etc.  

Mathematically, we go back to Eq [16], and set a lower limit to the reliability, or equivalently, an upper 
limit to the failure probability for each limit state: 

 * 11 Rel( ) ( ) ( )f f Tt P t P β−− = ≤ = Φ −  [34] 

where *
fP  is the maximum permissible failure probability and βT is the equivalent target reliability index. 

The cause, reference period, and consequences of violation of different limit states may vary, and if a 
reliability approach is taken, the target reliability for each limit state must take such difference into 
account  [61-64]. For  example,  If the structure gives appropriate warning before collapse, the failure 
consequences reduce and that in turn can reduce the target reliability for that mode [62, 65].  
Functionality target reliabilities may be developed exclusively from economic considerations.  The safety 
target reliability levels required of a structure (i.e., in strength or ultimate type limit states), on the other 
hand,  cannot be left solely to the discretion of the owner, or be derived solely from a minimum total 
expected cost consideration, since structural collapse causing a large loss of human life and/or property, 
even if an “optimal” solution in some sense, may not be acceptable either to the society or the 
regulators. Design codes, therefore often place a lower limit on the reliability of safety related limit 
states [63, 66].   
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3.3.1 Code specified target reliabilities 
Conventional structures that have a history of successful service, such as concrete buildings, highway 
bridges and steel vessels, can be deemed sufficiently safe, and their calculated reliability levels may be 
used as the targets for new structures of the same kind.  This, in principle, is done when a new 
reliability-based code is developed for a given class of structures having a successful history of use and a 
wide knowledge-base about their performance [67].  The objective is to produce more uniform levels of 
safety and more optimal structures.  ISO 2394 [61], and later JCSS [62], proposed three levels of 
requirements with appropriate degrees of reliability: (i) serviceability (adequate performance under all 
expected actions), (ii) ultimate (ability to withstand extreme and/or frequently repeated actions during 
construction and anticipated use), (iii) structural integrity (i.e., progressive collapse in ISO 2394 and 
robustness in JCSS).  Target reliability values were suggested based on the consequences of failure (C) 
and relative cost of safety measure (S) [62]. In ultimate limit state, these ranged from 10-3/ year for 
minor C and large S, to 10-5/year for moderate C and normal S, down to 10-6/year for large C and small S. 
In serviceability limit state, the maximum annual failure probability ranged from 0.1 (high S) to 0.01 (low 
S).  

The Canadian Standards Association[68] defines two safety classes and one serviceability class (and 
corresponding annual target reliabilities) for the verification of the safety of offshore structures (i) Safety 
class 1- great risk to life or high potential for environmental pollution or damage, 2) Safety class 2-small 
risk to life or low potential for environmental pollution or damage, and 3)  Serviceability Impaired 
function and none of the other two safety classes being violated.  Det Norske Veritas [65] specifies three 
types of structural failures for offshore structures and target reliabilities for each corresponding to the 
seriousness of the consequences of failure.  The American Bureau of Shipping [69] identified four levels 
of failure consequences for various combinations of limit states and component class for the concept 
Mobile Offshore Base and assigned target reliabilities for each.  

3.3.2 Bridge Structures 
Ghosn & Moses [70]  suggest three levels of performance to ensure adequate redundancy of bridge 
structures corresponding to functionality, ultimate and damaged condition limit states, while Nowak et 
al.[(71)] recommend two different reliability levels for bridge structures corresponding to ultimate and 
serviceability limit states.   

Nowak et al. [71]  recommend a (life-time) target component reliability index of 3.5 and a target system 
reliability index of 5.5 in the ultimate limit states for bridge structures.  For serviceability limit states, 
they recommend a target component (i.e., girder) reliability index of 1.0 in tension and 3.0 in 
compression.  They also compute component reliabilities of different kind of bridges (reinforced 
concrete, prestressed concrete and steel built to AASHTO 1992 and BS 5400 specifications) in bending, 
shear and serviceability limit states.  

Ghosn and Moses [70] suggest the following reliability requirements to ensure adequate redundancy of 
a highway bridge structure: 
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 1 1 10.85, 0.25, 2.7u f dβ β β β β β− ≥ − ≥ − ≥ −  [35] 

The subscripts 1, f, u and d refer, respectively, to first member failure, functionality limit state, ultimate 
state and damaged condition limit state.   

The design of the Confederation Bridge (Northumberland, Canada) required that load and resistance 
factors be calibrated to "a β of 4.0 for ultimate limit states, for a 100 year life” [72].  Sarveswaran and 
Roberts [73] chose an acceptable annual failure probability of bridge collapse in UK equal to 2x10-5 
which corresponded to an FAR of 2 (FAR is discussed in Section 3.3.4). 

3.3.3 Loss based approaches 
The risk of an undesirable event is commonly defined as: 

 Risk p C= ×  [36] 

where, p = probability of occurrence of the event and C = Consequence of event (lives lost, lost revenue, 
monetary compensation, lost utility etc.). Eq. [36] is valid when there is only one level of undesirable 
consequence. A more general expression would be: 

 Risk i ip C= ×∑  [37] 

The term “risk” is also used in the sense of an individual’s probability of death in the public health and 
actuarial literature. Definition of risk and what constitutes consequences of failure depend on whose 
risk is it – the public’s, a corporation’s or an individual’s.  Once the tolerable risk R* is known, and C can 
be quantified, the maximum permissible failure probability can be set: 

 
*

*
f

RP
C

=  [38] 

The actual risk from an activity may be markedly different from the risk perceived by the public. 
Society's general reaction to hazards of different levels can range from indifference, to rational to dread.  
If exposure to an activity is voluntary, the acceptable level of risk is generally higher. Involuntary 
activities on the other hand have a much lesser acceptable risk to an individual. In the absence of proper 
information about a perceived hazardous activity, the public may have a “dread risk.”  Appreciating this, 
the maximum tolerable risk suggested in the Netherlands for existing situations is 10-5/person/year 
while for new situations it is 10-6/ person/year[74]. However, it needs to be underlined that a society’s 
sense of tolerable risk for a given activity may change with time.   
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3.3.4 Fatality based approaches 
When the loss from failure is measured in terms of human lives lost, there are several fatality based 
approaches to setting target reliabilities.  It is controversial to put a monetary value to human life. 

Various agencies and researchers have investigated levels of probability that are acceptable to society 
for events causing fatalities, as described in the following.  The acceptable probabilities depend on the 
nature of the hazard, and decrease with increasing number of fatalities.   

As reported in MSC 72/16 [75], UK’s HSE suggests 10-4/person/year as the limit of fatality risk to 
members of the general public. In a CIRIA [76] report, Flint developed an empirical formula for setting 
the annual target failure probability as: 

 /s
f

r

KP p yr
n

′=  [39] 

where: p' = basic annual probability of death accepted by an individual member of society. Ks accounts 
for the voluntary nature of hazardous activity (a person may be willing to increase his exposure by a 
factor of Ks) and its typical value is 5. nr = aversion factor defined as the number of lives involved. Public 
aversion to an accident is assumed to be directly proportional to the number of lives involved.  
However, other non-linear relations have also been proposed. For example, Allen [77]  proposed a 
somewhat different formula for annual target failure probability that incorporated the nature of 
warning available for the impending failure:  

 510 /f
r

AP yr
W n

−=  [40] 

where, nr = aversion factor, A = activity factor, and W = warning factor.  The factor 10-5 was ascertained 
from data on building collapse in Canada. For normal activities, A ranges from 1 (buildings) to 10 (high 
exposure structures like offshore structures) and equals 3.0 for bridges.  W ranges from 0.01 (fail safe 
condition) to 1.0 (for failure without warning).  Note that Eq [40] uses √nr rather than nr in the 
denominator implying that the rate of growth in risk aversion decreases with the number of fatalities.  
Later, ISO [61] tied the acceptable failure probability to the square of the number of lives involved, 
signifying perhaps a decrease in the public’s sense of tolerable risk in engineered systems.  

A somewhat different measure of hazardous activities that accounts for exposure time is the fatal 
accident rate (FAR).  The FAR for an activity is the number of fatalities per 100 million hours of exposure 
to that activity (i.e., 1000 people working 2500 hours a year and having working lives of 40 years each): 

 8FAR=10 [ ] / hP F T  [41] 
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where P[F] is probability of fatality, and Th is the exposure time in person-hours.  Typical values of FAR in 
the UK [78] range from 5 (chemical processing industry) to 67 (construction industry).   FARs for various 
activities in Japan[79] range from 0.2 for fires, 4.3 for railway travel to 46.3 for civil aviation.     

4 Reliability based design codes of bridges 

4.1 Partial safety factors 
Reliability based partial safety factor (PSF) design is intended to ensure a nearly uniform level of 
reliability across a given category of structural components for a given class of limit state under a 
particular load combination[80]. We approach the topic of optimizing PSFs by noting that any arbitrary 
point, xa, on the limit state surface, by definition, satisfies: 

 ( ) 0ag x =  [42] 

We can, for example, choose each member of xa to correspond to a particular quantile of the respective 
element of the random vector X, such that Eq [42] defines a functional relation among these quantiles. 
By choosing different values for xa,  we can effectively “move” the joint density function of X with 
respect to the limit state surface. Clearly, this relative “movement” in the basic variable space affects 
the limit state probability.  In other words, by specifying a functional relation among quantiles (or some 
other statistics) of the basic variables X we can affect the reliability of the structure.  

Extending this idea, a “design point” xd on the limit state surface can be carefully chosen so that it 
“locates” the limit state in the space of basic variables such that a desired target reliability is ensured for 
the design.  The ensuing design equation: 

 ( ) 0dg x =  [43] 

is essentially a relationship among the parameters of the basic variables and gives a minimum 
requirement type of tool in the hand of the design engineer to ensure target reliability for the design in 
an indirect manner. Since nominal or characteristic values of basic variables are typically used in design, 
Eq. [43] may be rewritten as: 

 1
1 1

1

.., , , ,... ., 0k k

nn
n nk

k
m mxg xx xg g

g g + +

 
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 
 [44] 

where the superscript n indicates the nominal value of the variable. We have partitioned the vector of 
basic variables into k resistance type and m – k action type quantities.  The partial safety factors, ig , are 
typically greater than one: for resistance type variables they divide the nominal values while for action 
type variables they multiply the nominal values to obtain the design point:  
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 [45] 

If the design equation ([44])  can be separated into a strength term and a combination of load-effect 
terms, the following safety checking scheme may be adopted for design: 
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, 1,...,
n m k

q ni
n i is

ii

SR i k l Qγ
γ

−

=

   
= ≥   

  
∑  [46] 

where Rn = the nominal resistance and a function of factored strength parameters, l = load-effect 
function, n

iS =nominal value of ith strength/material parameter, s
ig  = ith strength/material factor, n

iQ = 

the nominal value of the ith load and q
ig  = ith load factor.  Note that there is no separate resistance factor 

multiplying the nominal resistance (as in LRFD) since material partial safety factors have already been 
incorporated in computing the strength.   

The nominal values generally are fixed by professional practice and thus are inflexible.  Some of the m 
partial safety factors (often those associated with material properties) can also be fixed in advance.  The 
remaining PSFs can be chosen by the code developer so as to locate the design point, and hence locate 
the limit state as alluded to above, and hence achieve a desired reliability for the structure.   

4.2 Calibration of partial safety factors 
By normalizing the limit state with the design equation in a two variable problem, the reliability problem 
can be written as: 

 
1 1

1 1

Find ,..., , ,..., such that

0 ( )
( ,..., ) ( ,..., )

s s q q
k m k

Tn s s n q q
k m k

C QP
C Q

γγγγ  

β
γγγγ  

−

−

 
− ≤ = F − 

 

 [47] 

where Tβ is the target reliability index, C is the random capacity and Cn is its nominal value.  Of course, 

this is an under-defined problem and even though some of the PSFs may be fixed in advance as stated 
above, it has an infinite number of solutions.  Additional considerations are needed to improve the 
problem definition.  Such considerations naturally arise when PSFs are needed to be “optimized” for a 
class of structures and are discussed next.  

It is common to expect that the design equation be valid for r representative structural components (or 
groups). Let wi be the weight (i.e., relative importance or relative frequency) assigned to the ith such 
component  (or group). These r representative components may differ from each other on account of 
different locations, geometric dimensions, nominal loads, material grades etc.  For a given set of PSFs, 
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let the reliability of the ith group be βi.  Choosing a new set of PSFs gives us a new design, a new design 
point, and consequently, a different reliability index.  If there has to be one design equation, i.e., one set 
of PSFs, for all the r representative components, the deviations of all βi’s  from Tβ must in some sense 

be minimized.  The design equation [44], when using the optimal PSFs obtained this way, can ensure a 
nearly uniform reliability for the range of components.  Several constraints may be introduced to the 
optimization problem to satisfy engineering and policy considerations (as summarized in [81]).  
Moreover, some partial safety factors, such as those on material strengths, may be fixed in advance as 
stated above.  The PSF optimization exercise has the following form: 
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1 1
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 [48] 

The weighted squared error from the target reliability index over all groups is minimized while ensuring 
that the lowest reliability among all the groups does not drop by more than β∆ below the target.  The 

material PSFs are fixed while the load PSFs have upper and lower limits. 

5 Bridge life cycle cost and optimization 
In life cycle cost analysis of bridges, cost to owners (“agency”) as well as the public (“users”) need to be 
taken into account[82].  Agency costs include design, construction, maintenance, repair and 
replacement (less salvage value). If failure occurs, then costs may include compensation, clean up etc.  
For users, costs arise from accidents, delay and detours.  Since some costs are fixed (i.e., deterministic) 
while some are outcome dependent (i.e., random), the total cost (i.e., life cycle cost),  

 ( ) ( )
i j

T I M i U j F
n n

C C C t C t C= + + +∑ ∑  [49] 

is probabilistic in nature. CF is either the replacement cost (Crep) at the end of life, or the failure cost (Cf) 
which occurs at some random instant Tf. The maintenance and user costs, CM and CU, are also uncertain 
as they depend on future loading and aging effects and whether the bridge fails before design life or 
not. Hence, the total expected cost can be written as: 

 [ ] [ ( ) ( )] [ ( ) ( )] (1 )
i j

T I M i i U j j f rep f f
n n

E C C E C t I t E C t I t P C P C= + + + − +∑ ∑  [50] 
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The indicator function I verifies if the bridge has survived up to the indicated time or not. Discounting of 
future costs can also be included[83]. In a decision context, the total expected cost is minimized, 
subjected to constraints like available budget, target reliability etc.  

Decisions regarding new design as well as maintenance therefore require explicit determination of the 
bridge’s time-dependent reliability function which is discussed next.  

5.1 Time dependent structural reliability 

5.1.1 Descriptors of the time to failure 
Let T denote the random time to failure (or TTF, also known as failure-free operating time, or life-time) 
of an item. The reliability function Rel(t) evaluated at time t is the probability that the item survives 
beyond t (cf. Eq. [11]): 

 Rel( ) [ ] ( )Tt
t P T t f dt t

∞
= > = ∫  [51] 

where Tf  is the probability density function of T. The hazard function, h(t), which is the conditional 
density of the TTF, presents the same information differently and can be very useful in revealing unsafe 
conditions: 

 
0

( )( ) so that Rel( ) exp ( )
Rel( )

tTf th t t h d
t

t t = = −  ∫  [52] 

Statistics of T are routinely obtained for electronic/electrical components through (accelerated) testing 
programs.  This is possible because (i) an abundant number of nominally identical specimens can be 
obtained, (ii) a large number of test data can be generated in a relatively short time, (iii) tests can be 
performed in near actual conditions, (iv) tests are not hazardous and (v) tests are relatively inexpensive.   

For civil engineering structures, very seldom are all five points above satisfied. Actual failure data are 
also, thankfully, rare. In the parlance of system reliability, structures constitute active redundant 
systems with load sharing and dependence – the most difficult type of system to model for reliability 
analysis.  

Nevertheless, time dependent reliability functions are useful for civil engineering systems not only at the 
new design stage, but also for scheduling future maintenance, for posting load restrictions and for 
managing life cycle costs as explained above. The reliability function is obtained from the mechanics of 
the problem where time varying behaviour of some of the basic variables is now brought into the 
picture explicitly.  
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5.1.2  Capacity and demand both vary non-randomly in time 
Without loss of generality, we look at only one critical location and one failure mode of the structure in 
Eq. [11]. For multiple critical locations and failure modes, the limit state below can be augmented by 
unions of individual failure events.  

At a given location and for a given failure mode, let the capacity and demand vary deterministically in 
time: 

 0

0

( ) ( )
( ) ( )

C C d
Q Q h

ττ
ττ

=
=

 [53] 

C0 and D0 are random variables, and d, h are non-random functions of time,  0, 0d h> > . That is, if the 

process ( )C t  is known at any instant t1, its value can be known precisely at all other instants of time; 

likewise for ( )Q t .  Due to the non-random nature of d and h, the reliability function, 

 0 0Rel( ) [ ( ) ( ) 0, for all (0, ]]t P C d Q h tt t t= − > ∈  [54] 

 can be written as: 

 0 0 0

( )Rel( ) [ max 0]
( )t

ht P C Q
dt

t
t< ≤

= − >  [55] 

d is commonly the “aging” function. Its form can be derived from the mechanics of damage growth (e.g., 
corrosion loss [84], fatigue crack growth[85] etc.) and the loading history. d=1 implies the capacity does 
not degrade with time, and h=1 implies the load is sustained in time. The above approach will be still 
valid for several simultaneously occurring loads (cf. Eq. [12]) if : 

 (1) (2) (3)
0 0 1 0 2 0 3( ) ( ) ( ) ( ) ...Q h Q h Q h Q hττττ   = ⋅ + ⋅ + ⋅ +  [56] 

in which the h’s are non-random functions of time and the initial load magnitudes ( )
0

iQ are random 

variables. 

Example 2: We define a time-dependent problem based on Example 1. The cable is subject to uniform 
corrosion causing its radius, whose initial value r0 = 4 in, to deteriorate as: 2

1( ) br t b t∆ =  where 
2

1 20.1in / yr , 0.9bb b= =  are the corrosion law constants. The cross-sectional area thus deteriorates 

according to: 2
0( ) ( )a t r rπ= − ∆ . The cable is made of A36 steel, whose yield strength Y is now assumed 

to be normally distributed with mean Yµ = 38 ksi and COV YV =  15%. The load, Q0, is invariant and 

sustained in time, and is now considered a normal random variable. Its mean is Qµ = 1000 kip and the 
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COV is QV = 20%. In the context of Example 1, the mean bias of the load is then  1000/1600= 0.625.  The 

load and capacity are independent.  The reliability function (Eq. [55]) for this problem can be simplified 
as follows: 
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 [57] 

Note that due to the monotonically decreasing nature of ( )d t , the limit state is evaluated only at the 
right end point of the interval (0,t].  In any other situation this simplification would be wrong and would 
lead to dangerous overprediction of reliability.  

The margin process M is normally distributed being a linear combination of normals.  Its mean and 
variance at time t are: 

 
2 2 2 2

( ) ( )

( ) ( )
M Y Q

M Y Q

t a t

t a t

µ µ µ

σ σ σ

= −

= +
 [58] 

The reliability function therefore can be expressed as the normal CDF: 

 ( )Rel( )
( )

M

M

tt
t

µ
σ

 
= Φ 

 
 [59] 

Differentiating the reliability function leads to the hazard function: 

 2

( )
( ) ( ) ( ) ( ) ( )( )
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M M M M M
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t
t t t t th t
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µφ
σ µ σ µ σ

σµ
σ

 
 

− = −
 

Φ 
 

   [60] 

These two functions are plotted in Figure 4.  The choice of normal distribution for both random variables 
in the problem led to the closed form expressions for reliability and hazard functions above. For other 
distributions, FORM or Monte Carlo simulations may be adopted.  
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Figure 4: Reliability and hazard functions of corroding cable 

 

5.1.3 Load occurs as a pulsed sequence with random magnitudes 

5.1.3.1 Known number of load pulses and no aging 

We first consider the case when C is time invariant (i.e., 1d ≡  in Eq. [53]) and the load occurs as pulses 
of random magnitude 1 2 ( ), ,..., n tQ Q Q  with the number of load pulses n in time t being known.  We 

assume that the loads are IID, that is iQ ’s are mutually independent and each  iQ  has the same 

distribution QF .  Further, the loads are independent of the capacity. The reliability function, 

 1 0 2 0 3 0 ( ) 0Rel( ) [ , , ,..., ]n tt P Q C Q C Q C Q C= < < < <  [61] 

can be simplified by first conditioning it on an arbitrary value of C0, and using the IID property of the iQ
’s: 

 ( )
0Rel( | ) [ ( )]n t

Qt C c F c= =  [62] 

T he total probability theorem is then applied to yield: 
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5.1.3.2 Q is a Poisson pulse process and no aging 

A point process N(t) on the line + = [0, )∞  is a set of randomly occuring points such that (i) any finite 

interval contains a finite number of points with probability 1, and (ii) the number of points in disjoint 
intervals is the sum of the individual counts[86].   The points are commonly designated as “arrival 
times”: T1,T2, ...,  Ti 0.≥  The inter arrival times are  1 1 2 2 1, ,....T T Tt t= = −  so that nT = 1 2 nt t t+ + + .  

The point process can be described by the joint distribution of (i) the arrival times, (ii) the interarrival 
times, or (iii) the increments in disjoint intervals. N(t) is a renewal process if the interarrival times are 
mutually independent and identically distributed.  A renewal process is Poisson if the interarrival times 
are exponentially distributed, or equivalently, if the increments in disjoint intervals are independent.  

A Poission process N(t) is completely defined by its rate of occurrence, l.  The Poisson random variable, 
Nt, with its mean being equal to lt, represents the number of arrivals in the Poisson process N(t) in the 
interval (0,t].  The joint distribution of the interarrival times T1, T2 , …Tn  given N(t) = n is [87]: 

  
1 2

1
, ,..., | ( ) 1 2

! 0 ...
( , )

0, otherwise
n

nn
T T T N t n n

n t t t
f t t t t=

 < < < <= 


  [64]  

We generalize the above situation and consider the loads to occur according to a Poisson pulse process 
(with rate l). As before, the magnitude of the pulses are IID and independent of capacity.  No aging is 
considered.  Since the number of pulses in time interval (0,t] is random, the reliability function is 
expressed as: 
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 [65] 

By using the form of the Poisson PMF, the reliability function simplifies to: 

 
0

(1 ( ))

0

Rel( ) ( )Qt F c
Ct e f c dcl

∞
− −= ∫  [66] 

5.1.3.3 Q is a Poisson pulse process and structure ages deterministically 

We now introduce aging, as in Eq. [53]. Figure 5 shows a schematic of this situation. Since the loads 
occur as a Poisson pulse, the occurrence times, Ti,  are random in nature, and the individual limit states 
are evaluated at these random instants of time: 
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Since these random occurrence times are ordered, 1 2 1... ...i iT T T T +< < < < < , their conditional joint PDF 

given that n pulses occurred in (0,t] is 1/ nt  (cf. Eq [64]). The reliability function, conditioned on a fixed 
value of C0, then can be written as: 
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By using the form of the Poisson PMF, and removing the conditioning on C0, the reliability function 
simplifies to: 
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l t t
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Note that Eq [69] reduces to Eq [66] when d is identically equal to 1. 

 

Figure 5: Deteriorating capacity and Poisson pulse loads with random magnitudes 
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5.1.4 Load and capacity both vary randomly in time 
This is the most general case and constitutes a first passage problem [88, 89].  The rate at which the 
margin process ( ) ( ) ( )M C Qt t t= −  crosses the zero barrier (i.e., enters or leaves the “safe” domain) at 

an arbitrary time t is given by the joint PDF of the process and its derivative, M at that instant: 

 0 ( ) ( )( ) ( ) (0, )M t M tt m t f m dmν
∞

−∞

= ∫ 

    [70] 

If the margin process is statistically stationary, the passages into the unsafe domain becomes 
asymptotically Poisson, so that the reliability function represents the probability of the first passage into 
the unsafe domain beyond time t: 

 ( ) 0R( ) 1 (0) t
Tt F e ν −−= −  [71] 

where (0)TF  is the probability that the margin is negative at t = 0. In this stationary case, the constant 

rate of downcrossing (into the unsafe domain) is: 

 0
0

(0, )MMmf m dmν
∞

− = ∫ 

    [72] 

Further, if the margin is stationary Gaussian, it is independent of its derivative at the same instant, and 
the downcrossing rate becomes: 

 0
1 if  is stationary Gaussian

2
MM

M M

M
s µnf

ss π
−  
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 

  [73] 

 

5.2 Reliability based maintenance of bridges 
Reliability-based maintenance of non-repairable systems is preventive in nature, as opposed to 
corrective maintenance performed to maintain availability of repairable systems.  Consider the reliability 
function shown in Figure 4. If the target reliability is 0.9 and the remaining life is 10 years, then this item 
becomes unacceptable in around ut = 8 years.  Four options are available: 

1) Replace item by new item at ut  

2) Repair item will before  ut  (preventive maintenance) 
3) Make a stronger item, so that no repair becomes necessary. 
4) Or, restrict loads.  
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This Section is about the second option.  It can be placed in the context of minimizing the total expected 
cost (Eq. [50]) subject to constraints like budget and reliability.  Repair can be either perfect (in which 
the item is made as new), or partial (only a fraction of original strength is restored).  The question is, 
how is the reliability function altered due to periodic maintenance? In other words, we are looking to 
describe the conditional reliability 0:Rel( | )tt M  given the maintenance plan, M, up to time t. Please note 

that we are still looking into the future when we are trying to predict 0:Rel( | )tt M , i.e., the analyst’s 
position on the time axis is t = 0.  Thus the conditional reliability function would still have the essential 
properties of the unconditional reliability, namely, it is a non-increasing function that drops from 1 to 0 
with time.   

Although not recommended, but as some authors do, one could also add the survival history up to time 
t and repeat the question.  The difference is subtle but important. This would happen if the analyst  
were placed at some point in time in the future, say at t0, and asked how the reliability function would 
behave henceforth.  That is, one would estimate the conditional reliability 0: 0:Rel( | , )t tt M S  where S gives 

the survival information up to time t. The plot of 0: 0:Rel( | , )t tt M S  would no longer behave 
monotonically, but would jump to 1 at each discontinuous point t0 where the structure is known to have 
survived.  It is easy to show that this jump would happen even in the absence of any maintenance  
operation, but just due to the fact that the structure survived up to t0. 0: 0:Rel( | , )t tt M S  is not a reliability 
function in the strict sense, rather it is a piecewise juxtaposition of several reliability functions, and must 
be interpreted cautiously. 

To illustrate, we assume that only one maintenance operation is performed on the structure, which 
occurs at time tR. It is convenient to start with the hazard function.  It is altered due to the maintenance 
operation: 

 0

1

( ),
( )

( ),
R

R

h t t t
h t

h t t t
<

=  ≥
 [74] 

The reliability function (Eq [52]) then becomes: 
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Rel( ) exp ( ) ,
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t h d t tt t
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 [75] 

If perfect repair is undertaken at tR, then the hazard function undergoes a time shift: 

  1 0Perfect repair at : ( ) ( ) ,R R Rt h t h t t t t= − ≥  [76] 

and the reliability function is repeated as a scaled version of itself: 
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 100% Rel( ),
Perfect repair at : Rel( | )

Rel( ) Rel( ) ,R

R
R t

R R R

t t t
t t M

t t t t t
<

=  ⋅ − ≥
 [77] 

The event 100%
Rt

M  signifies 100% repair at time tR.  We repeat example 2 above with 100% repair 

performed at 5 years (the red lines in Figure 6).   It is clear that due to the repair, the reliability function 
stays above 0.9 at the end of the 10 year life as required.  However, note that the reliability function 
never increases with time: at tR, its slope changes to a more benign value due to repair.  

Generalizing, if the repair is imperfect, we start with the second factor in Eq. [75]  for Rt t≥  and rewrite it 

as: 
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where '
1h  is a legitimate hazard function (generally different from h0 due to the imperfect nature of the 

repair) and Rel’(t) is the corresponding reliability function which is generally different from (and less 
benign than) Rel(t).  The reliability function due to imperfect repair can then be written as: 
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 [79] 

%
Rt

M α represents imperfect repair at time tR in which the strength is restored to α% of the initial value.  

The green lines in Figure 6 correspond to α = 90.  The effect is not as good as perfect repair, as can be 
expected.  

If in addition, the condition is imposed that the structure is found to survive at tR, then the conditional 
reliability starts from 1 at tR as stated before, and all past information is erased: 
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Figure 6: Effect of perfect and partial repair on reliability and hazard functions 

6 Load and resistance factor rating methodology 
As part of periodic inspection, a bridge may need to be rated for load carrying capacity.  Load rating a 
bridge gains urgency in the face of changed traffic pattern, or due to any change in health of the bridge. 
When load rating a bridge, the best model is the bridge itself.   By monitoring the bridge, one can gather 
in-service traffic and performance data and conduct in-service evaluations.   

NCHRP Project 12-46 [90] led to the development of a reliability based bridge rating Manual [91] that 
was consistent with AASHTO’s reliability-based LRFD approach for design of new bridges. The method 
was termed load and resistance factor rating (LRFR), and like LRFD, LRFR specifications were still based 
on design parameters and non-site-specific data. Nevertheless, they did open the door for using site 
specific information to load rate bridges, e.g., by using weigh-in-motion data and obtaining site specific 
live load factors. The recent AASHTO Manual for Bridge Evaluation [92] includes the older deterministic 
allowable stress and load factor rating methodologies, in addition to the modern LRFR approach for 
condition evaluation of bridges.  

The load rating equation for existing bridges is of the general form [93]: 

 
( )
n D n

L n n

C DRF
L I

φ γ
γ

−
=

+
 [81] 

where Cn is the nominal capacity, Dn is the nominal dead load, Ln is the nominal live load and In is the 
nominal impact.  φ, gD, gL are respectively the capacity, dead load and live load factors. The rating may be 
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performed at various live load levels – inventory, operating etc. The factors may be derieved from 
probabilistic considerations.  

It may be relatively time consuming and expensive to inspect and instrument every bridge in a 
jurisdiction’s inventory [94].  If in-service response from a limited number of sites can be deemed 
representative of a larger suite of bridges, the rating factors can be “optimized” for the entire suite of 
bridges (similar to the principle applied in LRFD and LRFR), and bridge owners may determine the safety 
of bridges in their inventory using such optimized rating equations. The factors can be adjusted to take 
care of aging [95] and system[96] effects.  

7 Summary 
Various sources of uncertainty affect a bridge structure during its life: first at the design stage, then 
during construction, and then throughout its useful life after it has been put into service. These 
uncertainties are modeled as random variables, random processes or random fields as appropriate. 
Performance requirements of a bridge are described in terms of limit state functions. The exceedance 
probabilities of these limit states, i.e., the probabilities of non-performance, need to be kept within 
acceptable limits. Reliability-based design and maintenance, whether through first principles or by using 
codes of practice, can ensure compliance. There are various methods of deciding acceptable failure 
probabilities (or, equivalently, target reliabilities). Once the bridge is put into service, its load 
characteristics may change and the structure may be subjected to various forms of (generally random) 
deterioration. Time dependent reliability analyses of an aging bridge, coupled with preventive 
maintenance, can ensure that reliability does not fall below acceptable limits. A suit of bridges can be 
rated in service by optimized site-specific partial safety factors. 

8 References 
1. Ang, A.H.S. and W.H. Tang, Probability Concepts in Engineering Planning and Design Vol. 01. 

1975, New York: Wiley. 
2. Papoulis, A. and S.U. Pillai, Probability , Random variables , and  Stochastic Processes. 2002, New 

York:  McGraw-Hill. 
3. Hines, W.W., et al., Probability and Statistics in Engineering. 2003, Hoboken ,NJ: Wiley. 
4. Resnick, S., A Probability Path. 1999, Boston: Birkhauser. 
5. Galambos, J., The Asymptotic Theory of Extreme Order Statistics. 2 ed. 1987, Malabar, FL: 

Krieger. 
6. Wen, Y.-K., Structural Load Modeling and Combination for Performance and Safety Evaluation. 

Developments in Civil Engineering. 1990, Amsterdam: Elsevier. 
7. Bhattacharya, B., The Extremal Index and the Maximum of a Dependent Stationary Pulse Load 

Process Observed above a High Threshold. Structural Safety, 2008. 30(1): p. 34 - 48. 
8. Guzda, M., B. Bhattacharya, and D. Mertz, Live Load Distribution on Highway Bridges using In-

service Bridge Monitoring System. Journal of Bridge Engineering, 2007. 12(1): p. 130 - 134. 
9. Nowak, A.S., Live load model for highway bridges. Structural Safety, 1993. 13: p. 53-66. 
10. Enright, B., C. Carey, and C.C. Caprani, Microsimulation evaluation of Eurocode load model for 

American long-span bridges. Journal of Bridge Engineering, ASCE, 2013. 18(12): p. 1252-1260. 



Chapter 7: Risk and reliability in bridges, Innovative Bridge Design Handbook, editor: A Pipinato. Elsevier, 2015.  
ISBN 9780128000588 
 
11. Ellingwood, B.R., et al., Development of a Probability Based Load Criterion for American National 

Standard A58, NBS Special Publication 577, 1980, U.S. Department of Commerce, National 
Bureau of Standards: Washington, D.C. 

12. Shinozuka, M. and Y. Sato, Simulation of Nonstationary Random Processes. Journal of 
Engineering Mechanics Division, ASCE, 1967. 93(EM1): p. 11-40. 

13. Ghanem, R.G. and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach. 2012: Dover. 
14. Vanmarcke, E., Random Fields: Analysis and Synthesis. 1983, Cambridge, MA: MIT Press. 
15. Zio, E. and G.E. Apostolakis, Two methods for the structures assessment of model uncertainty by 

experts in performance assessments of radioacive waste repositories. Reliability Engineering and 
System Safety, 1996. 54: p. 225-241. 

16. Gallegos, D.P. and E.J. Bonano, Consideration of uncertainty in the performance assessment of 
radioactive waste disposal from an international regulatory perspective. Reliability Engineering 
and System Safety, 1993. 42(2-3): p. 111-123. 

17. Ditlevsen, O., Model Uncertainty  in Structural Reliability. Structural Safety, 1982. 1: p. 73-86. 
18. Lind, N.C. and A.S. Nowak, Pooling expert opinions on probability distributions. Journal of 

Engineering Mechanics, 1988. 114(2): p. 328-341. 
19. Cooke, R.M. and L.L.H.J. Goossens, TU Delft expert judgment data base. Reliability Engineering 

and System Safety, 2008. 93: p. 657-674. 
20. Keeney, R.L. and D.v. Winterfeldt, Eliciting probabilities from experts in complex technical 

problems. IEEE Transactions on Engineering Management, 1991. 38(3): p. 191-201. 
21. Nikolaidis, E. and P. Kaplan, Uncertainties in stress Analyses on Marine Structures, 1991: 

Washington, DC. 
22. Fricke, W. and A. Muller-Schmerl, Uncertainty modeling for fatigue strength assessment of 

welded structures. Journal of Offshore Mechanics and Arctic Engineering, 1998. 120: p. 97-102. 
23. Cherry, J.L. and J.A. Smith, Capacity of steel and concrete containment vessels with corrosion 

damage, NUREG/CR-6706, 2001: Washington, DC. 
24. Whittaker, A., M. Constantinou, and P. Tsopelas, Displacement estimates for performance-based 

seismic design. Journal of Structural Engineering, 1998. 124(8): p. 905-912. 
25. Moan, T. Current trends in the safety of offshore structures. in 7th ISOPE Conference. 1997. 

Honolulu. 
26. Cornell, C., et al., Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel 

Moment Frem Guidelines. Journal of Structural Engineering, ASCE, 2002. 128(4): p. 526-533. 
27. Yun, S., et al., Seismic Performance Evaluation of Steel Moment Frames. Journal of Structural 

Engineering, 2002. 128(4): p. 534-545. 
28. AASHTO, LRFD Highway Bridge Design Specifications, 6th ed. 1 ed. 2012, Washington, D.C.: 

American Assoc. of State Highway and Transportation Officials. 
29. Bhattacharya, B., Q. Lu, and J. Zhong, Reliability of Redundant Ductile Structures with Uncertain 

System Failure Criteria: a Study on a Highway Steel Girder Bridge. Sadhana, Indian Academy of 
Sciences, 2009. 34(6): p. 903 – 921. 

30. Birolini, A., Reliability  Engineering    theory and practice. 1999: Springer-Verlag New York, Inc . 
31. Cornell, C.A., Bounds on the reliability of structural systems. Journal of the Structural Division, 

ASCE, 1967. ST1: p. 171-200. 
32. Ditlevsen, O., Narrow reliability bounds for structural systems. Journal of Structural Mechanics, 

1979. 7(4): p. 453-472. 
33. Hohenbichler, M. and R. Rackwitz, First-order concepts in system reliability. Structural Safety, 

1983. 1: p. 177-188. 
34. Shinozuka, M., Basic analysis of structural safety. Journal of Structural Engineering, ASCE, 1983. 

109(3): p. 721-740. 



Baidurya Bhattacharya, Indian Institute of Technology Kharagpur 

35. Hasofer, A.M. and N.C. Lind, Exact and invariant second-moment code format. Journal of 
Engineering Mechanics, ASCE, 1974. 100(1): p. 111-121. 

36. Melchers, R.E., Structural Reliability Analysis and Prediction. 1987, Chricester, UK: Ellis Horwood. 
37. Rackwitz, R. and B. Fiessler, Structural reliability under combined random load sequences. 

Computers and Structures, 1978. 9: p. 489-494. 
38. Rosen, J.B., The gradient projection method for nonlilnear programming. Part II. Nonlinear 

constraints. . Journal of the Society for Industrial and Applied Mathematics 1961. 9(4): p. 514-
532. 

39. der Kiureghian, A. and P.-L. Liu, Structural reliability under incomplete probability information. 
Journal of Engineering Mechanics, ASCE, 1986. 112(1): p. 85-104. 

40. Ayyub, B.M. and R.H. McCuen, Simulation-based reliability methods, in Probabilistic Structural 
Mechanics Handbook : Theory and Industrial Applications, C. Sundararajan, Editor. 1995, 
Chapman Hall: New York. 

41. Melchers, R.E., Radial importance sampling for structural reliability. Journal of Engineering 
Mechanics, ASCE, 1990. 116(1): p. 189-203. 

42. Bjerager, P., Probability integration by directional simulation. Journal of Engineering Mechanics, 
ASCE, 1988. 114(8): p. 1285. 

43. Au, S. and J. Beck, Estimation of small failure probabilities in high dimensions by subset 
simulation. Probabilistic Engineering Mechanics, 2001. 16: p. 263-277. 

44. Sen, D. and B. Bhattacharya, On the Pareto optimality of variance reduction simulation 
techniques in structural reliability. Structural Safety, Elsevier, 2015. 53: p. 57-74. 

45. Bjerager, P., A. Karamchandani, and C.A. Cornell. Failure tree analysis in strucutral system 
reliability. in ICASP 5. 1987. Vancouver, Canada. 

46. Bennet, R.M. and A.H.-S. Ang, Formulation of structural system reliability. Journal of Engineering 
Mechanics, ASCE, 1986. 112(11): p. 1135-1151. 

47. Watwood, V.B., Mechanism generation for limit analysis of frames. Journal of the Structural 
Division, ASCE, 1979. 109(ST1): p. 1-15. 

48. Gorman, M.R., Automatic generation of collapse mode equations. Journal of Structural Division, 
ASCE, 1981. 107(ST7): p. 1350-1354. 

49. Thoft-Christensen, P. and Y. Murotsu, Application of Structural Systems Reliability Theory. 1986, 
Berlin: Springer-Verlag. 

50. Corotis, R.B. and A.M. Nafday, Structural system reliability using linear programming and 
simulation. Journal of Structural Engineering, ASCE, 1989. 115(10): p. 2435-2447. 

51. Zimmerman, J.J., J.H. Ellis, and R.B. Corotis, Stochastic optimization models for structural 
reliability analysis. Journal of Structural Engineering, ASCE, 1993. 119(1): p. 223-239. 

52. Shao, S. and Y. Murotsu, Approach to failure mode analysis of large structures. Probabilistic 
Engineering Mechanics, 1999. 14: p. 169-177. 

53. Karamchandani, A., Structural System Reliability Analysis Methods, in Reliability of Marine 
Structures Program1987, Department of Civil Engineering, Stanford University: Stanford, CA. 

54. Moses, F., Problems and prospects of reliability-based optimization. Engineering Structures, 
1997. 19(4): p. 293-301. 

55. Karamchandani, A. and C.A. Cornell, Reliability analysis of truss structures with multistate 
elements II. Journal of Structural Engineering, ASCE, 1992. 118(4): p. 910-925. 

56. Karamchandani, A. and C.A. Cornell, An event-to-event strategy for nonlinear analysis of truss 
structures I. Journal of Structural Engineering, ASCE, 1992. 118(4): p. 895-909. 

57. SEAOC, Vision 2000, Performance based seismic engineering of buildings, 1995, Structural 
Engineers Association of California. 



Chapter 7: Risk and reliability in bridges, Innovative Bridge Design Handbook, editor: A Pipinato. Elsevier, 2015.  
ISBN 9780128000588 
 
58. ATC, ATC-40 Siesmic evaluation and retrofit of existing concrete buildings, 1996, Applied 

Technology Council, Redwood City (CA). 
59. FEMA, FEMA-273 NEHRP guidelines for the siesmic rehabilitation of buildings, 1997, Federal 

Emergency Management Agency. 
60. FEMA, FEMA-350 Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, 

2000, Federal Emergency Management Agency. 
61. ISO, ISO 2394 General Principles on Reliability for Structures. 2 ed. 1998: International 

Organization for Standardization. 
62. JCSS. Probabilistic Model Code, 12th Draft. 2001  [cited 2015 16 August]; Available from: 

http://www.jcss.byg.dtu.dk/Publications/Probabilistic_Model_Code. 
63. Bhattacharya, B., R. Basu, and K.-t. Ma, Developing target reliability for novel structures: the case 

of the Mobile Offshore Base. Marine Structures, 2001. 14(12): p. 37-58. 
64. Wen, Y.-K., Minimum lifecycle cost design under multiple hazards. Reliability Engineering and 

System Safety, 2001. 73: p. 223-231. 
65. DNV, Structural Reliability Analysis of Marine Structures, Classification Notes no. 30.6., 1992: Det 

Norske Veritas, Norway. 
66. Galambos, T.V., Design Codes, in Engineering Safety, D. Blockley, Editor. 1992, McGraw Hill. p. 

47-69. 
67. Ellingwood, B.R. and T.V. Galambos, Probability-based criteria for structural design. Structural 

Safety, 1982. 1: p. 15-26. 
68. CSA, General Requirements, Design Criteria, the Environment, and Loads. A National Standard of 

Canada, 1992, Canadian Standards Association. 
69. ABS, Draft Mobile Offshore Base Classification Guide, 1999, American Bureau of Shipping, 

Houston, TX. 
70. Ghosn, M. and F. Moses, Redundancy in highway bridge superstructures, Report 406, 1998, 

Transportation Research Board: Washington, DC. 
71. Nowak, A.S., M.M. Szerszen, and C.H. Park. Target safety levels for bridges. in 7th International 

Conference on Structural Safety and Reliability. 1997. Kyoto, Japan. 
72. MacGregor, J.G. and D.J. Laurie Kennedy, et al., Design criteria and load and resistance factors 

for the Confederation Bridge. Canadian J. of Civil Engineering, 1997. 24: p. 882-897. 
73. Sarveswaran, V. and M. Roberts, Reliability analysis of deteriorating structures - the experience 

and needs of practising engineers. Structural Safety, 1999. 21(357-72). 
74. Bottelberghs, P.H. QRA in the Netherlands. in Conference on Safety Cases, IBC/DNV. 1995. 

London. 
75. IMO, Formal Safety Assessment, 2000. 
76. CIRIA, Construction Industry Research and Information Association. Rationalization of safety and 

serviceability factors in structural codes, CIRIA, Report No. 63, 1977: London. 
77. Allen, D.E. Criteria for design safety factors and quality assurance expenditure. in Third 

International Conference on Structural Safety and Reliability. 1981. , Trondheim, Norway. 
78. Mander, J. and D. Elms. Quantitative risk assessment of large structural systems. in Sixth 

International Conference on Structural Safety and Reliability. 1993. , Innsbruck, Austria. 
79. Suzuki, H. Safety target of very large floating structure used as a floating airport. in Third 

International Workshop on Very Large Floating Structures. 1999. Honolulu, Hawaii. 
80. Ellingwood, B.R., LRFD: implementing structural reliability in professional practice. Engineering 

Structures, 2000. 22: p. 106-115. 
81. Agrawal, G. and B. Bhattacharya, Optimized partial safety factors for the reliability based design 

of rectangular prestressed concrete beams. Journal of Structural Engineering, SERC Madras, 
2010. 37(4): p. 263-273. 

http://www.jcss.byg.dtu.dk/Publications/Probabilistic_Model_Code


Baidurya Bhattacharya, Indian Institute of Technology Kharagpur 

82. NCHRP, Bridge life-cycle cost analysis, 2003, Transportation Research Board, National Research 
Council: Washington, DC. 

83. Lind, N.C. Target reliability levels from social indicators. in 6th International Conference on 
Structural Safety and Reliability. 1993. Innsbruck, Austria. 

84. Bhattacharya, B., D. Li, and M.J. Chajes, Bridge rating using in-service data in the presence of 
strength deterioration and correlation in load process. Structure and  Infrastructure Engineering, 
Taylor and Francis,, 2008. 4(3): p. 237-249. 

85. Kwon, K. and D.M. Frangopol, Bridge fatigue assessment and management using reliability-
based crack growth and probability of detection models. Probabilistic Engineering Mechanics. 
26(3): p. 471-480. 

86. Kovalenko, I.N., N.Y. Kuznetsov, and V.M. Shurenkov, Models of Random processes: A Handbook 
for mathematicians and engineers 1996, Boca Raton: CRC Press,Inc. 

87. Kingman, J.F.C., Poisson Processes 2002: Oxford  
88. Ditlevsen, O. and P. Bjerager, Methods of structural systems reliability. Structural Safety, 1986. 

3: p. 195-229. 
89. Lin, Y.K., Probabilistic Theory of Structural Dynamics 1976, Huntington, NY: Krieger. 
90. NCHRP, Calibration of load factors for LRFR bridge evaluation, Report 454, 2001, Transportation 

Research Board, National Research Council: Washington, D.C. 
91. AASHTO, Guide Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) 

of Highway Bridges. 2003, Washington, DC: American Assoc. of State Highway and 
Transportation Officials. 

92. AASHTO, Manual for Bridge Evaluation. 2015, Washington, DC: American Assoc. of State 
Highway and Transportation Officials. 

93. Wang, N., et al., Bridge rating using system reliability assessment. I: assessment and verification 
by load testing. Journal of Bridge Engineering, ASCE, 2011. 16(6): p. 854-862. 

94. Bhattacharya, B., et al., Reliability-Based Load and Resistance Factor Rating Using In-Service 
Data. Journal of Bridge Engineering, ASCE, 2005. 10(5): p. 530-543. 

95. Bhattacharya, B., L. D., and M.J. Chajes, Bridge rating in the presence of strength deterioration 
and correlation in load process. Structure & Infrastructure Engineering, 2008. 4(3): p. 237-249. 

96. Wang, N., et al., Bridge rating using system reliability assessment. II: Improvements to bridge 
rating practices. Journal of Bridge Engineering, ASCE, 2011. 16(6): p. 863-871. 

 

 


	Abstract
	1 Overview
	2 Uncertainty in bridge modeling and assessment
	2.1 Probabilistic modeling of uncertain phenomena
	2.1.1 Common random variables encountered in structural reliability
	2.1.2 Common stochastic processes encountered in structural reliability

	2.2 Types of uncertainty
	2.2.1 Statistical uncertainty
	2.2.2 Parameter uncertainty
	2.2.3 Modeling uncertainty


	3 Reliability of bridges
	3.1 Limit states
	3.1.1 Structural limit states and load combinations used in bridges
	3.1.2 Element level limit states
	3.1.3 System level limit states

	3.2 Computation of reliability
	3.2.1 First order reliability method
	3.2.2 Monte Carlo simulations
	3.2.3 System reliability computation

	3.3 Specifying target reliabilities for design and assessment
	3.3.1 Code specified target reliabilities
	3.3.2 Bridge Structures
	3.3.3 Loss based approaches
	3.3.4 Fatality based approaches


	4 Reliability based design codes of bridges
	4.1 Partial safety factors
	4.2 Calibration of partial safety factors

	5 Bridge life cycle cost and optimization
	5.1 Time dependent structural reliability
	5.1.1 Descriptors of the time to failure
	5.1.2  Capacity and demand both vary non-randomly in time
	5.1.3 Load occurs as a pulsed sequence with random magnitudes
	5.1.3.1 Known number of load pulses and no aging
	5.1.3.2 Q is a Poisson pulse process and no aging
	5.1.3.3 Q is a Poisson pulse process and structure ages deterministically

	5.1.4 Load and capacity both vary randomly in time

	5.2 Reliability based maintenance of bridges

	6 Load and resistance factor rating methodology
	7 Summary
	8 References

