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We  develop  reliability  based  partial  safety  factors  for  design  of  prestressed  containments.
Two  limit  states  – cracking  and  collapse  – are  considered  and  derived  from  first  principles.
The  PSFs  are  optimized  for  all  structural  groups  and  explicitly  satisfy  target  reliabilities.
Detailed  numerical  example  on  design  of  a typical  220  MWe  Indian  PHWR  is  provided.
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a  b  s  t  r  a  c  t

Partial  safety  factors  (PSFs)  used  in  reliability-based  design  are  intended  to  account  for  uncertainties
in  load,  material  and  mathematical  modeling  while  ensuring  that  the  target  reliability  is satisfied  for
the relevant  class  of  structural  components  in the  given  load  combination  and  limit  state.  This paper
describes  the  methodology  in detail  for developing  a set  of  optimal  reliability-based  PSFs  for  the  design
of  prestressed  concrete  inner  containment  shells  in  Indian  NPPs  under  Main  Steam  Line  Break  (MSLB)/Loss
of Coolant  Accident  (LOCA)  conditions  at two  performance  levels  in  flexure:  cracking  and  collapse.  The

methodology  follows  current  design  practices  in  the  country,  accounts  for uncertainties  in loads  and
material  properties  and  dependence  among  capacities  and  demands,  develops  the  limit  states  from  first
principles,  explicitly  lays  down  the target  reliabilities  and  criteria  for PSF  optimization.  The  optimization
of  the  PSFs  is  based  on  reliability  indices  for each  representative  group  of  components  obtained  from
importance  sampling  and  a local  linear  response  surface  fit.  A  detailed  numerical  example  on a  typical
220  MWe  Indian  PHWR  demonstrating  the  methodology  is provided.
. Introduction

Containment structures used in nuclear power plants consti-
ute the ultimate barrier to the emission of radioactive elements
n the case of an internal accident or an external hazard or hos-
ile event. Containments can in general be either a single structure
ith a metallic liner, or a double walled structure with or without

 metallic liner (the latter having evolved from the French design
odes). Most of the recent containments are shell-type structures

ade of prestressed concrete.
The design of containment shells for Indian Pressurized Heavy

ater Reactors (PHWRs) has evolved over the years, originating
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from a steel cylindrical shell capped with a steel dome (CIRUS Reac-
tor, Trombay), followed by the use of reinforced concrete walls
and pre-stressed concrete dome (Rajasthan Atomic Power Station)
to the use of pre-stressed concrete for the entire shell (Madras
Atomic Power Station) and pre-stressed concrete double contain-
ment shells (first employed in the Narora and Kakrapar Power
Stations). The Kaiga and Rajasthan Atomic Power Plants marked
a further improvement in the design philosophy with complete
double containment shells having independent domes (Roy and
Verma, 2004). The inner containment shells used in recent PHWRs
are cylindrical structures of 63 m height, with prestressed concrete
spherical domes containing 4 openings to facilitate the replace-
ment of steam generators (Ray et al., 2003). Until recently, nuclear

containment structures in India were designed using the French
RCC-G code. The raft of the PWHR at Tarapur was designed using
the ASME code and checked against RCC-G (Roy and Verma, 2004).
There is yet no formal Indian design standard for containment
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tructures. In 2007, the Atomic Energy Regulatory Board (AERB)
f India released the CSE-3 codes (AERB, 2007) which is currently
nder review. The design philosophy adopted from RCC-G follows
he limit state concept at two performance levels (serviceability
nd collapse). Structural analysis methodologies used to carry out
he design procedure focus chiefly on membrane stresses acting on
he shell structure of the cylindrical wall and spherical dome with
ue consideration given to stresses in the radial direction (along
he thickness) due to sudden thickness changes and embedding of
restressing cables.

Significant uncertainties exist in the structural behavior of the
C Shells of PHWRs, arising out of the random nature of material,
eometry, prestressing and loadings. As early as 1974, Shinozuka
nd Shao (1974) conducted a probabilistic assessment of pre-
tressed concrete pressure vessels using the first order second
oment approximation. Uncertainties in loads and in the mate-

ial and geometry of the vessels were considered while short term
ccidental load effects were modeled as Poisson Processes. The
ncertainty associated with the resistance of containment shells
rises out of uncertainties in the strengths of concrete and steel,
n long-term prestress losses and in other aging effects, as well
s in the shell geometry. Uncertainty in the long term behavior of
hese structures is highly variable owing to material changes (for
xample, prestress loss in tendons and creep in concrete) and the
ccurrence of accidental events (Hwang et al., 1985; Pandey, 1997).
hile concrete strength has been found to be better controlled

n the nuclear power plant industry than in the ordinary building
ndustry, steel strength variability does not display a noticeable
eduction. Variability in sectional dimensions is comparatively
uite low and has negligible impact on the overall uncertainty

n structural resistance (Hwang et al., 1985). Different loads have
ifferent degrees of randomness and may  entail appropriate adjust-
ents in the probabilistic framework, for example, the variability

f dead load being substantially lower than that of an accidental
ressurization load, the former can be treated as a determinis-
ic quantity for simplification of analysis (Hwang et al., 1985) or
eglected altogether if dead load magnitudes are insignificant com-
ared to pressure loads (Hwang et al., 1985).

It is most rational to treat uncertainties associated with param-
ters governing the design and construction of a structure in

 probabilistic format, specifically, to model the time-invariant
uantities as random variables and the time-dependent ones as
tochastic processes. Recognizing the existence of these uncertain-
ies is an admission of the fact that the structure may  not always
atisfy its performance and safety objectives during its intended
esign life. The logical extension of this admission is to ensure that
he likelihood of unsatisfactory performance be kept acceptably
ow during the life of the structure.

The subject of structural reliability provides the tools and
ethodologies to explicitly determine the probability of such

ailures (“failure” here in the sense of non-compliance or non-
erformance) by taking into account all relevant uncertainties.
hese techniques can be used to design new structures with spec-
fied (i.e., target) reliabilities, and to maintain existing structures
t or above specified reliabilities. Formulation of the reliability
roblem and target reliabilities is discussed in the next section.
ven though such computed probabilities of failure (reliability
eing 1 minus failure probability) may  not have a frequentist or
ctuarial basis, structural reliability provides a neutral and non-
enominational basis to compare different (and often disparate)
esigns and maintenance strategies on a common basis.

Structural reliability methods are also important in establishing

uccessful performance of NPP structural components or systems
uring rare events for several reasons. The mechanical and electri-
al components of NPP’s are easily and frequently tested in-service
nlike structural components. Additionally, they are often identical
g and Design 256 (2013) 188– 201 189

for most NPP’s in contrast to structural components that are usu-
ally unique and plant-specific. Structural systems also stay passive
under most conditions, are often inaccessible to inspection and it
may  be impossible to replace them economically (Panel, 1997).

This paper describes the methodology in detail for developing
reliability-based partial safety factors (PSFs) for the design of pre-
stressed concrete inner containment shells in Indian NPPs under
MSLB/LOCA conditions both in strength (i.e., collapse) and service-
ability (i.e., cracking) limit states. These PSFs are “optimized” so as
to be applicable for a range of structural components (differentiated
by importance, location, load magnitudes, geometries, etc.) while
ensuring the required target reliability for the given limit state.
Basics of structural reliability formulation and mechanics of pre-
stressed sections are described next. Numerical examples involving
a typical 220 MWe  Indian PHWR are provided.

2. Background

2.1. Formulation of structural reliability problems

A limit state function (or performance function), g(X), for a struc-
tural component is defined in terms of the basic variables, X, such
that:

g(X- ) < 0 denotes failure

g(X- ) > 0 denotes satisfactory performance
(1)

and the surface given by

g(X- ) = 0 (2)

is called the limit state equation or limit state surface. The perfor-
mance function g is typically obtained from the mechanics of the
problem at hand. For multiple failure modes or if there are multi-
ple critical sections, Eq. (2) is generalized to an appropriate union
of failure events.

The basic variable generally comprise of quantities like material
properties, loads or load-effects, environmental parameters, geo-
metric quantities, modeling uncertainties, etc. mentioned above.
Those basic variables with negligible uncertainties may be treated
as deterministic. The general expression of failure probability is

Pf = 1 − Rel = P (g(X- ) < 0) =
∫

g(x-)<0

fX-
(x-)dx- (3)

where fX- (x-) is the joint probability density function for X and Rel is
the reliability of the component.

Like any other design approach, reliability based design is an
iterative process: the design is adjusted until adequate safety is
achieved and cost and functional requirements are met. The final
step of meeting the target reliability can either be direct where the
computed structural reliability has to exactly satisfy the target reli-
ability for each relevant limit state or it can be indirect as in partial
safety factors (PSF) based design where the structure implicitly sat-
isfies the target reliability within a certain tolerance (Bhattacharya
et al., 2001). The term load and resistance factor design (LRFD)
refers to the approach followed in the United States where the nom-
inal resistance in the design equation is multiplied by an explicit
“resistance factor” but the nominal material properties that go into
determining the resistance are not factored. The term PSF based
design implies the approach taken in Europe where there is no
explicit resistance factor in design, but each material property gen-
erally has its own partial safety factor. The latter approach is taken
in this work.
Closed-form solutions to Eq. (3) are generally unavailable. Two
different approaches are widely in use: (i) analytical methods
based on constrained optimization and normal probability approx-
imations and (ii) simulation based algorithms with or without
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ariation reduction techniques. Both can provide accurate and
fficient solutions to the structural reliability problem. The first
ind, grouped under First Order Reliability Methods (or FORM),
olds an advantage over the simulation based methods in that
he design point(s) and the sensitivity of each basic variable can
e explicitly determined. However, FORM can prove to be costly
r even infeasible if the size of the reliability problem goes up
in terms of basic variables and/or number of limit states) or if
he limit state is not analytic in the basic variables, and FORM
as not found suitable for this work. Monte Carlo simulations
ith Importance Sampling have been used here to compute failure
robabilities.

.2. Target reliability

It has become increasingly common to express safety require-
ents, as well as some functionality requirements, in reliability

ased formats. A reliability based approach to design, by accounting
or randomness in the different design variables and uncertain-
ies in the mathematical models, provides tools for ensuring that
he performance requirements are violated as rarely as considered
cceptable.

The cause, reference period, and consequences of violation of
ifferent performance requirements may  vary, and if a reliabil-

ty approach is taken, the target reliability in each performance
equirement must take such difference into account (ISO, 1998;
hattacharya et al., 2001; JCSS, 2001a,b; Wen, 2001). For example,

f the structure gives appropriate warning before collapse, the fail-
re consequences reduce and that in turn can reduce the target
eliability for that mode (DNV, 1992; JCSS, 2001a,b). Functionality
arget reliabilities may  be developed exclusively from economic
onsiderations. The safety target reliability levels required of a
tructure, on the other hand, cannot be left solely to the discretion
f the owner, or be derived solely from a minimum total expected
ost consideration, since structural collapse causing a large loss of
uman life and/or property, even if an “optimal” solution in some
ense, may  not be acceptable either to the society or the regulators.
esign codes, therefore often place a lower limit on the reliabil-

ty of safety related limit states (Galambos, 1992; Bhattacharya
t al., 2001). For optimizing a structure with multiple perfor-
ance requirements, Wen  et al. (1996) suggested minimizing the
eighted sum of the squared difference of the target and actual

eliabilities.
ISO 2394 (1998),  and later JCSS (2001a,b),  proposed three levels

f requirements with appropriate degrees of reliability: (i) ser-
iceability (adequate performance under all expected actions), (ii)
ltimate (ability to withstand extreme and/or frequently repeated
ctions during construction and anticipated use), (iii) structural
ntegrity (i.e., progressive collapse in ISO 2394 and robustness in
CSS). Target reliability values were suggested based on the con-
equences of failure for ultimate limit states and relative cost of
afety measure for serviceability limit states. The Canadian Stan-
ards Association (CSA, 1992) defines two safety classes and one
erviceability class (and corresponding annual target reliabilities)
or the verification of the safety of offshore structures (i) Safety class

 – great risk to life or high potential for environmental pollution
r damage, (2) Safety class 2 – small risk to life or low potential for
nvironmental pollution or damage, and (3) Serviceability Impaired
unction and none of the other two safety classes being violated.
et Norske Veritas (DNV, 1992) specifies three types of structural

ailures for offshore structures and target reliabilities for each cor-
esponding to the seriousness of the consequences of failure. The

merican Bureau of Shipping (ABS, 1999) identified four levels of

ailure consequences for various combinations of limit states and
omponent class for the concept Mobile Offshore Base and assigned
arget reliabilities for each. Ghosn & Moses (1998) suggest three
g and Design 256 (2013) 188– 201

levels of performance to ensure adequate redundancy of bridge
structures corresponding to functionality, ultimate and damaged
condition limit states, while Nowak et al. (1997) recommend two
different reliability levels for bridge structures corresponding to
ultimate and serviceability limit states. Nuclear power plant con-
tainment structures are designed for earthquakes at two  different
levels of intensity and correspondingly to two  different criteria for
failure (USNRC, 1973; E.D.F., 1988; AERB, 2007). Damage, if any,
caused by the Operating Basis Earthquake (OBE) must not lead to
loss of functionality of the nuclear power plant, whereas the Safe
Shutdown Earthquake (SSE) that has a higher intensity and longer
recurrence interval than OBE, is allowed to cause the power plant
to shutdown but must not cause any radioactive leakage to the
environment or loss of structural integrity.

Given the inability to predict the occurrence or magnitude of
earthquakes, the uncertainties involved from source to site, and
the potential for massive damage, it is not surprising that perfor-
mance based design (PBD) has been most enthusiastically espoused
in the seismic engineering community, as evident in SEAOC (1995),
ATC-40 (ATC, 1996) and FEMA 273 and 350 (FEMA, 1997, 2000).
Perhaps the earliest work in which uncertainty estimates were
used for both ground motion parameters and structural response
for nuclear power plants was published in 1980 (Kennedy et al.,
1980). Typical PBD procedures for seismic risk analysis of NPP’s use
response/ground based fragility curves for demand estimation, and
time history analyses for capacity estimation, as demonstrated in
Huang et al. (2011).  Performance levels for seismic design are com-
monly defined in terms of increasing severities, e.g., (i) Immediate
Occupancy (IO), the state of damage at which the building is safe to
occupy without any significant repairs, (ii) Structural Damage (SD),
an intermediate level of damage in which significant structural and
non-structural damage has occurred without loss of global stability,
and (iii) Collapse Prevention (CP), representing extensive struc-
tural damage that causes global instability (FEMA, 1997; Kinali and
Ellingwood, 2007). A comparison of the performance of structures
designed to one ultimate design earthquake vs. those designed to
dual level performance levels indicated that the latter produces
relatively stronger structures (Wen  et al., 1996). A similar finding
was echoed by Ghobarah (2001) who  opined that the reason for
the revision of the then design standards to more reliable perfor-
mance based methods was that after severe earthquakes (such as
Northridge and Kobe), while structures designed to the existing
codes performed well with respect to safety, the extent of damage
and the economic costs were unexpectedly high.

The fact that the consequences of a severe core damage accident
are potentially catastrophic led to the concept of “inherently safe
reactors” in the 1980s (Cave and Kastenberg, 1991). The maximum
acceptable failure probability of such events is governed in part by
the need to preserve public confidence in nuclear energy. Cave and
Kastenberg (1991) suggested a maximum acceptable probability of
the order of 10−8 per reactor year for large release of radioactive
materials to the atmosphere (whereas the then USNRC limit was
10−6 per reactor year), with the limit for structural failure leading
to such events being 1 × 10−6 per reactor year. In light of new types
of emerging hazards such as terrorist attacks, Kostadinov (2011)
has concluded that the severity of consequences of certain very
low probability hazards for nuclear power plants has historically
been underestimated. Taking into consideration these and other
recommendations, we use target reliability levels of 3.5 for collapse
and 2.5 for serviceability limit states in this work.

The capacity-demand model used in this work can in princi-
ple be expanded to include reliability assessment of nuclear power

plants under seismic loads (akin to Cornell et al., 2002). In the con-
text of the present work, it is assumed that failure sequences and
acceptable failure probabilities are either known or can be evalu-
ated separately. Uncertainties involved with hazard and fragility,
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he quantification of which is crucial for inclusion of seismic loads
n the present framework, arise from the soil and seismic character-
stics of the region, the properties of the structure and its behavior
nder seismic loads, and the mathematical models used to repre-
ent hazard and fragility (Kennedy and Ravindra, 1984; Ravindra,
990; Baker and Cornell, 2008; Jalayer et al., 2010).

.3. Reliability of prestressed concrete sections

The tensile strength of concrete is negligible compared to
ts compressive strength. In ordinary reinforced concrete, the
einforcing steel is used to carry the tensile stresses, and the con-
rete near the tensile face may  crack. Prestressing is intended to
rtificially induce compressive stresses in the concrete to coun-
eract the tensile stresses caused by external loads, such that the
oaded section remains mostly if not entirely in compression (Raju,
007).

Prestressed concrete (for shells, slabs, girders, etc.) is often
dopted when in addition to satisfying strength requirements,
he member is also required to be slender (e.g., from aesthetic
r weight considerations) and/or to limit cracking (e.g., to satisfy
eak-tightness). Prestressed concrete sections may  fail in several
ossible ways (such as a combination of flexure, shear and torsion,
ursting of end blocks, bearing, anchorage or connection failures,
xcessive deflections, etc.). Prestressed concrete members are rela-
ively lightweight as they are built from high strength steel and high
trength concrete, more resistant to shear, and can recover from
ffects of overloading. However, prestressed concrete structures
re more expensive, have a smaller margin for error, and the design
rocess of prestressed members is more complicated. Although the

oss of prestress with time is built into the design, unintended loss
f prestress arising from corrosion of the tendons, slippage, etc. can
ave catastrophic consequences.

Several reliability based studies on partially prestressed con-
rete sections have been conducted over the years. Al-Harthy and
rangopol (1994) studied prestressed beams designed to the 1989
CI 318 standard considering 3 different limit states (ultimate flex-
re, cracking in flexure and permissible stresses) under random
ead and live loads, material and geometric properties, prestress-

ng forces and modeling uncertainty. Their studies concluded that
he reliability indices implied by the 1989 ACI 318 standard are
on-uniform over various ranges of loads, span lengths and limit
tates. Hamann and Bulleit (1987) examined the reliability of under
einforced high-strength concrete prestressed beams designed in
ccordance with the 1983 ACI-318 standard, considering only the
ltimate flexural limit state of beams subjected to dead and snow

oads. While Al-Harthy and Frangopol (1994) included all the mate-
ial and geometric random variables in a FORM analysis, Hamann
nd Bulleit (1987) first estimated the moment capacity through
onte Carlo simulations, fitted the data to standard distributions,

nd then performed a first order second moment reliability analysis
n the linear limit state.

Reliability for Class-1 structures, particularly concrete contain-
ent structures for nuclear power plants, is a much researched

ubject primarily due to the potentially dire failure consequences
f the containment structure in terms of environmental impact,
adiation effect on human health and other economic costs. Hwang
t al. (1985) described an LRFD approach to determine the critical
oad combinations for design of concrete containment structures.
he limit state, corresponding to ultimate strength of concrete, was
efined in the 2-D space of membrane stress and bending moment

n the shell, leading to an octagonal limit state surface. Han et al.

1991), Varpasuo (1996),  Pandey (1997) and Han and Ang (1998)
lso worked on the reliability of concrete containments, their limit
tates forming sides of the octagonal limit state considered by
wang et al. (1985).
g and Design 256 (2013) 188– 201 191

3.  Reliability analysis and calibration of PSFs

3.1. Mechanics of pre-stressed concrete sections

As stated above, we look at two  different limit states in this
work: (1) collapse limit state defined as crushing of concrete in
compression (reinforcements may  yield), (2) cracking limit state
defined by cracking of concrete up to a specified depth from the
tensile face, e.g., the depth of cover. Bidirectional flexure on shell
elements corresponding to nuclear power plant inner containment
structures with voids has been considered. The material properties
of concrete and steel and the mechanistic formulation of both the
limit states are discussed next.

In Indian Standards such as IS 456 (BIS, 2000) the compressive
stress-strain relationship for concrete is taken to be parabolic up
to a strain of 0.002, and horizontal from that point on. The failure
strain of concrete in bending compression is 0.0035. The nomi-
nal compressive strength of concrete is taken to be fcn = fck/1.5 in
collapse and fcn = fck/1.25 in serviceability where fck is the 28-day
characteristic cube compressive strength. The design compressive
strength of concrete is fcd = fcn/�c, where �c is the material safety
factor on concrete strength. The value of �c is usually taken to be 1.5
in strength limit state and 2.0 in serviceability limit state for both
normal and abnormal design conditions (Roy and Verma, 2004). IS
1343(BIS, 2000) specifies the minimum grade of concrete as M30
for post-tensioning and M40  for pre-tensioning.

The stress–strain behavior of concrete in tension is linear (BIS,
2003) and the tensile strength is taken to be fct = 0.7

√
fck and the

modulus of elasticity of concrete in tension is assumed to be
same as the secant modulus of concrete in compression which
is Ec = 5000

√
fck. The maximum tensile strain in concrete is then

εt = fct/Ec = 0.00012.
The design yield stress for reinforcing steel is fyn/�s where fyn is

the nominal yield strength and �s is the material safety factor on
yield strength of steel and is taken to be 1.15 in strength limit state
and 1.8 in serviceability limit state for both normal and abnormal
design conditions. The nominal modulus of elasticity of steel, En, is
200,000 N/mm2 and is not factored.

The moment capacity of a partially prestressed concrete sec-
tion, given the amount of prestressing force and the geometric and
material properties can be obtained in the form of an interaction
diagram using strain compatibility equations and force balance.
Interaction diagrams are plots of normalized compressive force,
P ← P/(fckbD)  and normalized moment capacity, M ← M/(fckbD2)
where b and D are the width and the depth of the section,
respectively.

Fig. 1 shows the strain and stress diagrams for an example
section similar to the ones used in this work – with one set of pre-
stressing tendons and two layers of ordinary reinforcement. In the
figure, C is compressive force in concrete, fs1 is force in top rein-
forcement, fs2 is force in bottom reinforcement and P is prestressing
force.

For given amount of prestress the position of the neutral axis
is determined iteratively by balancing the tensile and compressive
forces on the section. The moment capacity can then be found by
taking the moment of the forces about any convenient point. In
determining the collapse moment capacity, two cases are possible
(Fig. 2): the neutral axis (NA) outside and the neutral axis inside
the section. In the former, the entire section is in compression and
in the latter, concrete has cracked and is assumed not to carry any
load in the tensile zone.

The cracking limit state is reached when the tensile strain in

concrete at depth equal to the cover exceeds εt, while the maxi-
mum  compressive strain εc on the opposite edge can lie anywhere
between 0 and 0.0035 (Fig. 3), which is determined iteratively, from
which the cracking moment capacity is determined.
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Fig. 1. Force balance and moment computations for partially prestressed section.
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Fig. 2. Strain and stress distributions on section for neutral axis

Fig. 4 shows an example of the so-called “P–M interaction
iagram” – the normalized moment capacity as function of the
ormalized net inplane compressive force, both for collapse (in
ed) and cracking (in black) for p = 0.2%, e/D = 0, c/D = d/D = 0.05,
yn = 415 MPa  and fck = 45 MPa. The material safety factors are as
escribed above. No voids due to prestressing cables have been
onsidered. As can be expected, the cracking capacity curve is fully
ontained within the collapse capacity curve. It passes through the
rigin indicating that in the absence of any compressive force, the
ection cannot resist any bending moment without cracking. With
ncreasing compressive force the section’s cracking moment capac-
ty increases up to a limit, starts decreasing, and then quickly drops
o zero. The limiting point marked er = 0.002 on it corresponds to

he situation where the compressive strain on the right face reaches
.002 (i.e., the stress on the right face reaches its maximum value
nd that in the right reinforcement comes close to its maximum).
hus the “desirable” range in the cracking P–M curve is clearly well

Fig. 3. Strain and stress distributions on section for εc < 0.00
de (left) and inside (right) the section for limit state of collapse.

below yield. The collapse moment capacity on the other hand starts
with a non-zero value in the absence of any compressive force; the
knee of the curve is the balance point where the entire section is
used efficiently, the point marked k = 1 indicates the instant the
neutral axis goes out of the section. Clearly, the “desirable” range in
the collapse P–M curve involves substantial cracking of the section.

Fig. 5 shows an example prestressed concrete element cor-
responding to the shell structure of nuclear power plant inner
containment structures. Two layers of ordinary reinforcement top
and bottom can be seen and JI and JO correspond to prestressing
cables in the North–South and East–West directions, respectively.
In the co-ordinate system adopted, these two are considered as the
x and y directions.
When calculating the flexural strength of an element such as
this, the space taken by the prestressing cable JI has to be consid-
ered as a void in concrete, i.e., while calculating the contribution of
concrete to the strength the area considered is the total area minus

2 (left) and εc > 0.002 (right) for limit state of cracking.
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Fig. 4. P–M interaction diagram between inplane compressive force and moment
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apacity – black (inner) = cracking, red (outer) = collapse. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web  version of
he article.)

he area of the void. For the typical prestressed containment shell,
he void depth is approximately 0.15 times the total depth of the
lement.

The forces and moments acting on the section have two nor-
al/inplane components (xx and yy)  and one shearing/torsional

xy) component. Additionally, areas occupied by pre stressing
ables are considered as voids in concrete. The section is thus under
i-directional flexural loading.

The load effects in terms of stress resultants for the membrane
ction (Nxx and Nyy) are generally obtained along element local
oordinates. The moment capacity of the reinforced concrete sec-
ion depends on this membrane action (in-plane) through P–M
nteraction. At the same time, the applied moments (Mxx and Myy)
n the section occur due to the same set of loads. Thus both the
apacity of the system and the loading on the system are affected
y a common source and therefore the applied moment and the
oment capacity will show some degree of correlation.
The moment-based design check is carried out in the principal

irections 1 and 2 (principal with respect to the in-plane forces).
pplied moments are converted to these two directions accord-

ng to the basic rules of tensorial transformation. The moment
apacities of the section in each of the two principal directions are
omputed from interaction relations described above. The applied
oments in directions 1 and 2 are obtained using Wood (1968)

riteria which enhances the induced moments (Mxx and Myy) with
quivalent components of the torsional moment component Mxy.

Since the structural analysis used to compute stress resultants
s completely linear in nature, the different load-effect compo-
ents (Nxx, Nyy, Nxy, Mxx, Mxy, Mxy) in a given load case (e.g., in
ead/live/pre-stress, etc. load case) are statistically fully dependent

n one another. Additionally, stress resultants due to different load
ases are completely independent. The correlation matrix that is
eveloped for analysis is based on these two assumptions.

Fig. 5. Prestressed concrete shell.
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3.2. Limit states and basic variables

From this point forward, unless otherwise mentioned, all
moments are normalized by fckbD2 and all forces by fckbD.  Since
this work concerns the reliability of prestressed concrete shells in
biaxial flexure, the limit states in principal directions 1 and 2 can
be written respectively as

g1 = Mcap,1 − Mapp,1 = 0 (4)

g2 = Mcap,2 − Mapp,2 = 0 (5)

so that failure of the section is given by

{Failure} = {g1 < 0} ∪ {g2 < 0} (6)

and the failure probability can be written as

Pf =
∫

x-∈ {Failure}
fX- (x-) dx- =

∫
all x̄

I
[{

Failure
}]

fX- (x-) dx- (7)

The indicator function, I, evaluates the expression within brac-
kets so that:

II [•] =
{

1, if [•] is true

0, if [•] is false
(8)

and is a convenient way to convert the domain of integration from
the failure region to the entire range of x which is useful in simula-
tion based estimates as described subsequently.

Mcap,1 and Mcap,2 are the moment capacities in x and y directions,
respectively. Likewise, Mapp,1 and Mapp,2 are the applied moments.
Depending on the limit state in question, the moment capacity cor-
responds to either cracking or collapse of the section. Although in
general the applied moments too can have different specifications
at two different performance levels (e.g., the earthquake load in
cracking limit state may  correspond to an operating basis while
that in collapse limit state may  correspond to the safe shut down
level), we  have taken the same definition for the applied moment
(and hence the same statistics and same nominal value) in either
limit state for each load case (e.g., dead, live, etc.).

Before going into the details of the individual terms above,
it is important to recall that the moment capacities and applied
moments are mutually statistically dependent since the capacities
are functions of the axial loads which in turn are linearly related to
the applied moments in each load case. In addition, the capacities
in directions 1 and 2 are strongly correlated as they are functions
of the same material properties and some of the same axial loads.

The applied moments in the two principal directions, Mapp,1
and Mapp,2, are functions of the applied moments Mxx, Myy and
Mxy caused by all load cases in the load combination at hand. For
example, if we  have the load combination Dead (D) + Prestressing
(Ps) + Ordinary Live (Lo) + Temperature (T) + Accidental Pressure
(Pa), the total moments are:

Mxx = MD
xx + MPs

xx + MLo
xx + MT

xx + MPa
xx

Myy = MD
yy + MPs

yy + MLo
yy + MT

yy + MPa
yy

Mxy = MD
xy + MPs

xy + MLo
xy + MT

xy + MPa
xy

⎫⎪⎬
⎪⎭ (9)

Likewise, the total forces for the same load combination are

Nxx = ND
xx + NPs

xx + NLo
xx + NT

xx + NPa
xx

Nyy = ND
yy + NPs

yy + NLo
yy + NT

yy + NPa
yy

Nxy = ND
xy + NPs

xy + NLo
xy + NT

xy + NPa
xy

⎫⎪⎬
⎪⎭ (10)
It may  be noted that the moments and forces in Eqs. (9) and
(10) are random variables and partial safety factors are not used
for random load combinations. PSFs are multiplied with the cor-
responding nominal moments to obtain the combined nominal
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pplied moments; however, PSFs are not used with the nominal
orces to obtain the nominal moment capacities.

The normalized moment capacity, Mcap,j, whether in cracking or
ollapse, in given direction j (j = 1, 2), is a function of the principal
alues (N1, N2) of the applied in-plane compression arising from
he components of Eq. (10), material properties (fc, fy, E, εc, εt) and
eometric quantities (p/fck, d/D, e/D, tvoid/D):

cap,j = Mcap

(
Nj, fc, fy, E, εc, εt,

pj

fck
,

d

D
,

ej

D
,

tvoid,j

D

)
, j = 1, 2

(11)

Of these, the random terms are: the applied in-plane compres-
ive forces, N1 and N2, the compressive strength of concrete, fc, the
ield strength, fy, and the Young’s modulus, E, of the reinforcing
teel. The compressive forces are obtained from a combination of
ll load cases as explained in the previous section. The nominal or
esign values of the moment capacities, to be used in design equa-
ions discussed below, can be obtained by substituting the random
uantities in Eq. (12) by their design values:

n
cap,j = Mcap

(
Nj,

fcn

�c
,

fyn

�s
, En, εc, εt,

pj

fck
,

d

D
,

ej

D
,

tvoid,j

D

)
,

j = 1, 2 (12)

.3. Monte Carlo simulations and importance sampling

Except in very special situations, closed form solution to the
tructural reliability problem (Eq. (7))  does not exist and numerical
pproximations are needed. The true probability of failure, Pf,

f =
∫

all x-

I
[{

Failure
}]

fX- (x-) dx- =
∫

all ū

I
[{

Failure
}]

fU- (u-) du- (13)

an be estimated using basic (or “brute-force” or “crude”) Monte
arlo simulations (MCS) in practice as

ˆf =
1
N

N∑
i=1

I [g1 (T (Ui)) < 0 ∪ g2 (T (Ui)) < 0] (14)

here a zero-mean normal vector U with the same correlation
atrix � as the basic variables is generated first and then trans-

ormed element by element according to the full distribution
ransformation:

(u-) = x- ⇒ FXi
(xi) = ˚(ui) (15)

The use of the same � for U as for X results in error, but the error is
enerally small (der Kiureghian and Liu, 1986). N is the total number
f times the random vector U is generated, and Ui is the ith real-
zation of the vector. It is well known that the basic Monte-Carlo
imulation-based estimate of Pf has a relatively slow and ineffi-
ient rate of convergence. The coefficient of variation (COV) of the
stimate is

.o.v.(P̂f) =
√

(1 − Pf)
(NPf)

≈
√

1
(NPf)

(16)

hich is proportional to 1/
√

N and points to an inefficient relation
etween sample size and accuracy (and stability) of the estimate.

Such limitations of the basic Monte Carlo simulation (MCS) tech-
ique have led to several “variance reducing” refinements. Notable

mong them are Latin hypercube sampling (LHS), importance
ampling (IS)) along with its variants (e.g., Melchers, 1989; Ayyub
nd McCuen, 1995; Melchers, 1990), subset simulations (Au and
eck, 2001), which, if performed carefully, can significantly reduce
g and Design 256 (2013) 188– 201

the required sampling size. Olsson et al. (2003) have suggested
that importance sampling performed with LHS can potentially be
more efficient than IS involving basic Monte Carlo trials. Neverthe-
less, importance sampling and other variance reducing techniques
should be performed with care, as their results may be quite sen-
sitive to the type and the point of maximum likelihood of the
sampling distribution, and an improper choice can produce erro-
neous results. In this work, we  have adopted importance sampling
to estimate the failure probability in Eq. (13).

The mathematical formulation of importance sampling is simply
obtained by modifying the basic expression of failure probability
(Eq. (7)) as

Pf =
∫

x∈ {Failure}
fX (x) dx =

∫
x∈ {Failure}

fX (x)
fH (x)

fH (x) dx (17)

where fH is any PDF not equal to zero in the region of interest.
A judicious choice of fH can ensure low variance of the estimated
failure probability. By a simple change of the variable of integra-
tion, the failure probability estimate is as before the computation
of the expectation of the indicator function but now modified with
a correction factor (fU-

/fH-
):

P̂f =
1
N

N∑
i=1

I [g1 (T (hi)) < 0 ∪ g2 (T (hi)) < 0]
fU (hi)
fH (hi)

(18)

It is important to note that this expectation as computed with
respect to the sampling density fH-

and the estimate of failure prob-
ability is obtained by simulating vectors of H. The choice of fH-

is
extremely important, and depending on the limit state function, an
improper choice may  lead to errors in the estimate of Pf.

In this work, H has been taken as a jointly Normal random vector
with the same correlation matrix � as U, but with a mean vector that
is closer to the failure region. This mean vector is chosen carefully
by comparing the IS results with basic MCS  results for the range of
problems encountered. The variance of the estimate in Eq. (18) is

var(P̂f) = 1
N2

∑
var

(
Ii

fU-
(h- i)

fH-
(h- i)

)
(19)

which can be estimated during the sampling as

Ŝ2(P̂f) =
∑

I
2
f/f 2

H

N3
− 1

N2

(∑
IfU/fH
N

)2

(20)

giving the coefficient of variation (COV) of the failure probability
estimated through importance sampling as

V̂(P̂f) = Ŝ(P̂f)

P̂f

(21)

One of our stopping criteria for the Importance Sampling sim-
ulation in this work involves an upper limit on the COV of the
estimated failure probability.

3.4. Partial safety factors and their optimization

Reliability based partial safety factor (PSF) design is intended to
ensure a nearly uniform level of reliability across a given category
of structural components for a given class of limit state under a
particular load combination (Ellingwood, 2000). We  approach the
topic of optimizing PSFs by noting that any arbitrary point, xa, on
the limit state surface, by definition, satisfies
g(x-
a) = 0 (22)

We can, for example, choose each member of xa to correspond to
a particular quantile of the respective element of the random vector
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, such that Eq. (22) defines a functional relation among these quan-
iles. By choosing different values for xa, we can effectively “move”
he joint density function of X with respect to the limit state sur-
ace. Clearly, this relative “movement” of the limit state surface in
he basic variable space will affect the limit state probability. In
ther words, by specifying a functional relation among quantiles
or some other statistics) of the basic variables X we  can affect the
eliability of the structure.

Extending this idea, a “design point” xd on the limit state sur-
ace can be carefully chosen so that it “locates” the limit state in
he space of basic variables such that a desired target reliability is
nsured for the design. The ensuing design equation:

(x-
d) = 0 (23)

s essentially a relationship among the parameters of the basic vari-
bles and gives a minimum requirement type of tool in the hand
f the design engineer to ensure target reliability for the design in
n indirect manner. Since nominal or characteristic values of basic
ariables are typically used in design, Eq. (23) may  be rewritten as(

xn
1

�1
, ...,

xn
k

�k
, �k+1xn

k+1, ..., �mxn
m

)
≥ 0 (24)

here the superscript n indicates the nominal value of the variable.
e have partitioned the vector of basic variables into k resistance

ype and m–k action type quantities. The partial safety factors, � i,
re typically greater than one: for resistance type variables they
ivide the nominal values while for action type variables they mul-
iply the nominal values to obtain the design point:

resistance PSFs : �i =
xn

i

xd
i

, i = 1, ..., k

action PSFs : �i =
xd

i

xn
i

, i = k + 1, ..., m

(25)

If the design equation (23) can be separated into a strength
erm and a combination of load-effect terms, the following safety
hecking scheme may  be adopted for design:

n

(
Sn

i

�s
i

, i = 1, ..., k

)
≥ l

(
m−k∑
i=1

�q
i

Q n
i

)
(26)

here Rn is the nominal resistance and a function of factored
trength parameters, l is load-effect function, Sn

i
is nominal value of

th strength/material parameter, �s
i

is ith strength/material factor,
n
i

is the nominal value of the ith load and �q
i

is ith load factor. Note
hat there is no separate resistance factor multiplying the nominal
esistance (as in LRFD) since material partial safety factors have
lready been incorporated in computing the strength.

The nominal values generally are fixed by professional practice
nd thus are inflexible. Some of the m partial safety factors (often
hose associated with material properties) can also be fixed in
dvance. The remaining PSFs can be chosen by the code developer
o as to locate the design point, and hence locate the limit state
s alluded to above, and hence achieve a desired reliability for the
tructure. Such an exercise for finding these remaining PSFs can be
onveniently performed if, after the strength and load effect terms
re separated as above, the limit state equation can be normalized

y the design equation (for each principal direction j):

Mcap,j

Mn
cap,j

− Mapp,j

Mn
app,j

= 0, j = 1, 2 (27)
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The reliability problem now becomes

Find �s
1, ..., �s

k
, �q

1 , ..., �q
m−k

such that

P

⎡
⎣⋂

j=1,2

Mcap,j

Mn
cap,j

(�s
1, ..., �s

k
)
− Mapp,j

Mn
app,j

(�q
1 , ..., �q

m-k
)
≤ 0

⎤
⎦ = ˚(−ˇT )

(28)

where ˇT is the target reliability index. Of course, this is an under-
defined problem and even though some of the PSFs may  be fixed
in advance as stated above, it has an infinite number of solutions.
Additional considerations are needed to improve the problem def-
inition. Such considerations naturally arise when PSFs are needed
to be “optimized” for a class of structures and are discussed next.

It is common to expect that the design equation be valid for
r representative structural components (or groups). Let wi be the
weight (i.e., relative importance or relative frequency) assigned to
the ith such component (or group). These r representative compo-
nents may  differ from each other on account of different locations,
geometric dimensions, nominal loads, material grades etc. For a
given set of PSFs, let the reliability of the ith group be ˇi. Choos-
ing a new set of PSFs gives us a new design, a new design point,
and consequently, a different reliability index. If there has to be
one design equation, i.e., one set of PSFs, for all the r represen-
tative components, the deviations of all ˇi’s from ˇT must in some
sense be minimized. The design equation (Eq. (24) or Eq. (26)), when
using the optimal PSFs obtained this way, can ensure a nearly uni-
form reliability for the range of components. Several constraints
may  be introduced to the optimization problem to satisfy engi-
neering and policy considerations (as summarized in Agrawal and
Bhattacharya, 2010). Moreover, some partial safety factors, such
as those on material strengths, may  be fixed in advance as stated
above. The PSF optimization exercise adopted in this paper has the
following form:

min

[
r∑

i=1

wi

(
ˇi

(
�q

1 , ..., �q
m−k

)
− ˇT

)2

]
where

r∑
i=1

wi = 1

subject to : min(ˇi) > ˇT − �ˇ,  i = 1, ..., r

�min
i
≤ �q

i
≤ �max

i
, i = 1, ..., m − k

�s
i
= mi, i = 1, ..., k

(29)

The weighted squared error from the target reliability index over
all groups is minimized while ensuring that the lowest reliability
among all the groups does not drop by more than �ˇ  below the
target. The material PSFs are fixed while the load PSFs have upper
and lower limits.

4. Numerical example

We  now describe a detailed example of a generic prestressed
IC shell found in recently built 220 MWe  Indian PHWRs in order to
demonstrate the methodology developed in this paper. We  empha-
size that this numerical example is for demonstrative purposes only
and does not represent the design of any current or future Indian
nuclear power plant. The shell comprises of a cylindrical wall of
height 44.1 m,  a ring beam of height 4.3 m and a spherical dome
whose highest point is 9 m above the top of the ring beam. The
inner diameter of the cylindrical wall is 43 m while the radius of
curvature of the spherical dome is 33.5 m.

Two  different limit states corresponding to cracking of con-

crete up to the depth of cover and flexural collapse through
crushing of section are considered. The load combination involves
five load cases (LCs): Dead Load (D), Pre-Stressing Load (Ps),
Ordinary Live Load (Lo), Accidental Temperature Load (T) and
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ccidental Pressure Load (Pa). For each load case, sets of six load
ffects (NLC

xx , NLC
yy , NLC

xy , MLC
xx , MLC

yy , MLC
xy ) are obtained from linear elas-

ic finite element analyses. The FE model consists of about 2500
lements which represent one half of the symmetrical IC shell. Most
f the cylindrical wall and dome are modeled using shell elements
hile solid elements are used to model certain critical parts of the

tructure. Since the load factors derived in this example depend on
he overall load acting on the structure, their values are valid only
or the given load combination. Inclusion of the seismic load case,
r any other load case, gives rise to a new problem with a different
olution.

Four structural groups of the IC Shell have been selected for
nding optimal PSFs (Group 1: dome general area between two
G openings, Group 2: SG opening, Group 3: dome general area
etween SG opening and ring beam, Group 4: IC wall). The sec-
ion depths (D) are respectively 500, 1200, 500 and 610 mm.  For
ach finite element, the combined nominal forces (in the given load
ombination)

∑
LCNLC

xx ,
∑

LCNLC
yy ,
∑

LCNLC
xy are transformed into the

rincipal axes and nominal moment capacities in the two principal
irections are determined through the interaction diagrams. The
ominal moment demands

∑
LCMLC

xx ,
∑

LCMLC
yy ,
∑

LCMLC
xy are also

ransformed along the principal axes. For each structural group the
ritical element is identified as the one having the lowest nominal
apacity to nominal demand ratio for the given load combination.
able 1 lists the nominal load effects in all five load cases for the
ritical element in each structural group. Note that these forces and
oments are not normalized by fckbD2 and fckbD.  We  assume that

he critical element in each group is the same in both limit states
ince nominal loads acting on the elements are identical in both.
he objective of this section is to obtain cracking and collapse PSFs
or the five applied moments optimized so as to be applicable to
ll four structural groups. The optimality criteria are as in Eq. (29)
nd the numerical values are described subsequently. Fig. 6 sum-
arizes the algorithm for PSF optimization that has been described

n detail above.
The basic variables defining the reliability problem are as fol-
ows and their statistics and descriptions are provided in Table 2.
he distribution types and statistics (bias and COV) have been
ssumed based on available literature (Hwang et al., 1985; Hamann
nd Bulleit, 1987; Varpasuo, 1996; Al-Harthy and Frangopol, 1997;

able 1
ominal load effects for the critical element in each group.

Load case Load effects

Nxx (ton/m) Nyy (ton/m) Nxy (ton/m) 

Group 1
D  −9.61 −12.2 9.64 

Ps −444 −477 125 

Lo −0.961 −1.03 0.282 

T  3.12 2.75 1.34 

Pa 208 226 −70.9 

Group  2
D  −54.1 −15.4 2.80 

Ps −1020 −620 −56.3 

Lo −2.58 −0.615 0.318 

T  1.56 −0.128 −0.486 

Pa 580 150 −70.1 

Group  3
D  −26.5 2.12 6.12 

Ps −523 −243 24.2 

Lo −1.04 −0.324 0.0612 

T  −0.109 5.88 1.86 

Pa 246 62.3 −19.1 

Group  4
D  3.73 −41.0 0.224 

Ps −670 −532 −18.9 

Lo 0.255 −0.837 −0.00262 

T  7.88 0.0593 0.0148 

Pa 285 180 1.77 
g and Design 256 (2013) 188– 201

Pandey, 1997; Barakat et al., 2004; Agrawal and Bhattacharya,
2010). In the strength category, the random variables are con-
crete crushing strength, reinforcement yield strength and elastic
modulus. Properties of prestressing cables do not enter the prob-
lem explicitly, their combined effect shows up on the load side as
random prestressing loads (forces and moments). In the load cat-
egory there are five load cases (LC = D, Ps, Lo, T, Pa), each giving
rise to three applied moments and three applied forces, bringing
the total number of load random variables to 30. However, due
to the linear elastic assumption made about structural behavior
and due to their common origin in each load case, the six com-
ponents (NLC

xx , NLC
yy , NLC

xy , MLC
xx , MLC

yy , MLC
xy ) in a given load case (LC)

are mutually fully dependent in this formulation. Thus we  have
five independent load random variables (one per load case, for
example, NLC

xx , LC = D, Ps, Lo, T, Pa) and for each of them we have
five more (the remaining five out of a total of six components,
that is, NLC

yy , NLC
xy , MLC

xx , MLC
yy , MLC

xy ) which are linearly scaled. The two
moment capacities are assumed to follow the lognormal distribu-
tion; their bias and COVs have been obtained through Monte Carlo
simulations.

The deterministic parameters and various nominal values
adopted in the problem are listed in Table 3.

As mentioned earlier, the moment capacities of the prestressed
shell depend in part on the applied in-plane forces. These in-plane
forces, in turn, are functionally related to the applied moments
in each load case. The moment capacities and applied moments
therefore are statistically dependent and since the limit states are
formulated in terms of moments, this dependence must be taken
into account in reliability analyses and PSF computations. Table 4
shows the correlation coefficients among the basic variables for
the Group 1 critical element in cracking limit state (only the upper
triangle is shown due to symmetry). These values are typical of all
groups in either limit state and have been estimated by Monte Carlo
simulations. The moment capacities in x and y directions are almost
fully correlated. This results from the fact that both depend on the
same material properties of the section and the in-plane loads in the

two orthogonal directions are functionally fully dependent. Notice-
able also is the high positive correlation between moment capacity
and prestressing moment and the negative correlation between the
moment capacity and the accidental pressurization moment.

Mxx (ton-m/m) Myy (ton-m/m) Mxy (ton-m/m)

−0.214 −0.227 0.0391
1.53 1.90 −1.39
−0.0337 −0.0363 0.0103

3.38 3.42 −0.127
5.96 6.29 −1.30

−8.11 −1.31 2.74
35.5 −5.00 6.20

0.0120 0.0127 0.0693
11.7 2.78 −1.90
16.4 −3.10 −256

0.672 −0.124 −0.0442
18.5 8.95 −2.07
−0.0236 −0.0136 0

4.56 3.66 −0.0839
−0.147 1.98 0.585

−0.134 −0.623 −0.0118
1.17 −13.9 −0.189
−0.00452 −0.0228 0

5.01 5.61 −0.0106
2.91 12.3 −0.0857
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The PSF optimization problem (Eq. (29)) in the present context
as five decision variables: �

-
= (�D, �Ps , �Lo , �T , �Pa ). The optimiza-

ion problem is non-linear in nature: it has a non-linear objective
unction:

r∑ ( ( ) )2

 (�

-
) =

i=1

wi ˇi �
-
− ˇT (30)

ith non-linear constraints min(ˇi) > ˇT− �ˇ, i = 1, ..., r in addi-
ion to having upper and lower bounds on the decision variables.
SF optimization.

We  employ a Hessian based algorithm to find the optimal solu-
tion (Coleman and Li, 1996). Each ˇi(�-

) (reliability index for
the ith structural group) is a non-linear function of the decision
variables:

( [

ˇ(�

-
) = ˚ 1 − P

Mn
cap,1

−
Mn

app,1(�
-

)

≤ 0 ∪ Mcap,2

Mn
cap,2

− Mapp,2

Mn
app,2(�

-
)
≤ 0

])
(31)
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Table  2
Statistics of basic variables.

Random
variable

Description Statistical properties

MLC
xx

MLC
yy

MLC
xy

Applied moments are combined:
∑

LC
MLC

xx ,
∑

LC
MLC

yy and
∑

LC
MLC

xy are
transformed to principal planes, and then combined according to Wood’s
criteria to yield Mapp,1 and Mapp,2

LC Distribution COV Bias

D Normal 0.1 1.0
Ps Lognormal 0.15 1.2
Lo Lognormal 0.15 1.0
T  Gumbel 0.15 0.9
Pa Gumbel 0.15 0.8

NLC
xx

NLC
yy

NLC
xy

Applied forces
∑

LC
NLC

xx ,
∑

LC
NLC

yy and
∑

LC
NLC

xy are transformed to
principal planes to yield N1 and N2 that are then used to obtain capacities
Mcap,1 and Mcap,2 in the principal directions.

Distribution type, COV and Bias same as above in
respective load cases

Mcap,1 Moment capacity in directions 1 and 2. Moment capacity is function of∑
LC

NLC
xx ,
∑

LC
NLC

yy ,
∑

LC
NLC

xy (through interaction diagram), fc, fy and E.
First two moments obtained through Monte Carlo simulations. Nominal
value obtained by fixing each basic variable equal to its nominal value.
Distribution type assumed lognormal. Nominal values obtained from FEM
Analysis of IC.

Group Cracking limit state Collapse limit state

Bias COV Bias COV

1 1.99 0.144 1.94 0.160
2 1.80 0.110 1.72 0.133
3 1.58 0.111 1.47 0.138
4 1.67 0.131 1.67 0.135

Mcap,2 Group Cracking limit state Collapse limit state

Bias COV Bias COV

1 1.52 0.146 1.54 0.158
2 1.55 0.151 1.53 0.171
3 1.70 0.147 1.72 0.149
4 1.64 0.147 1.66 0.147

fc Compressive strength of concrete Normal, (max(fck + 0.825sc, fck + 4), sc)a

fy Yield strength of steel Lognormal (1.1133fyn, 0.09)
E  Young’s modulus Normal (1.001103En, 0.01)

a sc, standard deviation for characteristic strength (in MPa) of concrete as given in IS 1343(BIS, 2003).
Note:  All moments are normalized by fckbD2 and all forces are normalized by fckbD.
LC  = D, Ps, Lo, T or Pa.
Bias = mean/nominal.
COV = coefficient of variation = std. dev./mean.

Table 3
Deterministic parameters.

Parameter Description Value

p Percent ordinary reinforcement 0.2%
fck Characteristic 28 day cube compressive strength of concrete 45 MPa
εc Compressive strain of concrete at failure (crushing) 0.0035
εt Tensile strain of concrete at failure (cracking) 0.00012
fcn = fck/1.5 (collapse) = fck/1.25 (cracking) Nominal compressive strength of concrete 30 MPa  (collapse)/36 MPa  (cracking)
fcd = fcn/1.5 (collapse) = fcn/2.0 (cracking) Design compressive strength of concrete 20 MPa  (collapse)/18 MPa  (cracking)
fyn Nominal strength of reinforcing steel 415 MPa
fyd = fyn/1.15 (collapse) = fyn/1.80 (cracking) Design yield strength of reinforcing steel 361 MPa  (collapse)/231 MPa  (cracking)
En Nominal Young’s modulus of reinforcing steel 200 GPa
b Width of section 1000 mm
D  Depth of section 500, 1200, 500 and 610 mm,

respectively, for groups 1, 2, 3 and 4.
e/D  Eccentricity of prestressing force 0
d/D  Cover depth 0.05
Void  range Location of transverse prestressing cables manifesting as void 0.425D  to 0.575D

Table 4
Correlation matrix for group 1 in cracking limit state.

Dead Prestress Live Temperature Pressure Mcap,1 Mcap,2

Dead 1.00 0 0 0 0 0.02 0.02
Prestress 1.00 0 0 0 0.92 0.92
Live  1.00 0 0 0.01 0.01
Temperature 1.00  0 0.01 0.01
Pressure 1.00 −0.29 −0.29
Mcap,1 1.00 0.99
Mcap,2 1.00
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Table  5
Optimization parameters and results.

Parameter Cracking limit state Collapse limit state

Target reliability, ˇT 2.5 3.5
Tolerance on target reliability, �ˇ 1.0 1.0
Weights on Groups 1–4, wi 0.25, 0.25, 0.25, 0.25 0.25, 0.25, 0.25, 0.25
Material PSF on nominal concrete strength, �c 2.0 1.5
Material PSF on steel strength, �s 1.8 1.15
Lower  bounds on load PSFs 1.0, 0.6, 0.6, 0.6, 0.6 1.0, 1.0, 1.0, 1.0, 1.0
Upper  bounds on load PSFs 1.0, 1.4, 1.4, 1.4, 1.4 1.4, 1.4, 1.4, 1.4, 1.8
Grid  size for response surface fit, ��  0.05 0.05

a
fi
t
s
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p
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o
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o
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i
e
s
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p

Beta  values at optimum (Groups 1–4, respectively) 

Objective value at optimum (weighted squared deviation from ˇT) 

Optimal PSFs (D, Ps, Lo, T, Pa) 

nd as stated above, is estimated using importance sampling. Due to
nite size of the random sampling, the estimated ˇi(�-

), and hence
he gradients and Hessian of the objective function f (�

-
) suffer from

ampling related noise which comes in the way  of convergence of
he optimization algorithm. We  therefore fit a local linear response
urface to f around the given point �

-
on every call to evaluate the

bjective function and estimate the objective and its gradients from
he linear fit:

 (�
-

) = ˛0 +
5∑

i=1

˛i�i (32)

The parameters ˛i are estimated in each call to the objective
unction by obtaining values of f (through Eqs. (30) and (31)) at 25

oints in a rectangular grid �1± �� , �2± �� , ..., �5± ��  around
he given point �

-
. Table 5 lists the parameters used to define the

SF optimization problem for either limit state following which the
ptimal solutions are described. The target reliability index is 2.5 in
racking and 3.5 in collapse implying that the failure consequence
n collapse limit state is expected to be about 25 times larger than
n cracking if a constant risk criterion is maintained. The four struc-
ural groups described earlier have the same importance in the PSF
ptimization scheme which is why the weights have been assigned
qual values. The material PSFs have been fixed based on the cur-
ent professional practice for nuclear structures in India and are not
ubject to optimization. The dead load PSF has been fixed at 1.0 in
he cracking limit state to conform to existing practices.

At the optimal point, the objective value i.e., the weighted
quared deviation from the target reliability is 1.36 for the crack-
ng limit state, and 0.85 in collapse. Group 1 (dome general area
etween two SG openings) is the most demanding in both limit
tates, having the lowest reliability index among the four groups
1.46 and 2.60, respectively). The optimal values of the first four
artial safety factors are close to unity in both limit states – the
ifference is made by the accidental pressure PSF which is high at
.44 in collapse and benign at 0.71 in cracking.

The optimal point obtained depends on the value of �ˇ. A
hange in �ˇ  changes the constraint set. For instance, for the prob-
em described in Table 5 (cracking limit state), the average value of
he objective function over 10 runs for the PSF set – {1.0, 1.0, 1.1, 1.2,
.8} is 1.14 (more desirable than the optimal obtained). However,
his set of PSFs is unacceptable for a �ˇ  of 1.0 since they produce a

ean ˇ of 0.78 for group 4, which is 1.72 less than the target of 2.5.

onclusions

Partial safety factors (PSFs) used in reliability-based design are
ntended to account for uncertainties in load, material and math-

matical modeling while ensuring that the target reliability is
atisfied for the relevant class of structural components in the
iven load combination and limit state. This paper summarized
ast works on reliability of prestressed sections in general and
1.46, 1.68, 3.75, 3.62 2.6, 3.87, 4.66, 3.97
1.36 0.85
1.00, 1.06, 1.10, 1.16, 0.71 1.00, 1.02, 1.16, 1.19, 1.44

prestressed containments in particular, discussed target reliabil-
ities, Monte Carlo simulations, Importance Sampling and the
principle behind PSF-based design, and described the methodol-
ogy in detail for developing a set of optimal reliability-based PSFs
for the design of prestressed concrete inner containment shells in
Indian Nuclear Power Plants (NPPs) at collapse limit state under
MSLB/LOCA conditions.

Two  sets of optimal partial safety factors (one for cracking and
another for collapse limit state) corresponding to two  target reli-
abilities across 4 groups of structural elements in a typical IC Shell
of an Indian PHWR were obtained. Correlations between demand
and capacity terms owing to the structural mechanics underlying
the problem were taken into account. Analysis of the structural
behavior of prestressed concrete section was formulated using
recommendations provided in IS 1343 and SP 16. Monte Carlo sim-
ulations using (1) Importance Sampling and (2) a linear response
surface fit for variance reduction was  used to compute probabilities
of failure. The load PSFs obtained in this example problem for either
limit state were in agreement with design practices from around
the world, except that the temperature load factor typically have
lower values than those found here since thermal loads are catego-
rized as secondary loads caused by geometric constraints, so that
local yielding and micro-cracking eventually result in redistribu-
tion of forces.
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Appendix A. Appendix – List of symbols

Symbol Definition

εc Maximum compressive strain at most compressed edge of
section

εt Maximum allowable tensile strain in concrete
er Compressive strain at most compressed edge of section
fcd Design compressive strength of concrete
fck 28-Day characteristic cube compressive strength of

concrete
fcn Nominal compressive strength of concrete
fct Tensile strength of concrete

fyd Design yield strength of reinforcing steel
fyn Nominal yield strength of reinforcing steel
Ec Secant modulus of concrete in compression, assumed to be

same as modulus of elasticity of concrete in tension
�c Material safety factor on concrete strength
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En Modulus of elasticity of steel
�s Material safety factor on yield strength of steel
NLC

xx

NLC
yy

NLC
xy

Applied loads

MLC
xx

MLC
yy

MLC
xy

Applied moments

N1

N2
Combined applied loads in principal directions

Mapp,1

Mapp,2
Combined applied moments in principal directions

Mcap,1

Mcap,2
Moment capacities in principal directions

Mn
app,1

Mn
app,2

Nominal applied moments in principal directions

Mn
cap,1

Mn
cap,2

Nominal moment capacities in principal directions

FX CDF of random vector X
g(X- ) General limit state function in terms of basic variables X-
˚  Standard Normal CDF
fH- Importance sampling PDF
fU- PDF of transformed random vector U
fX PDF of basic random vector X
ˇi Reliability index obtained for the ith structural group
ˇt Target reliability index
�ˇ  Tolerance on target reliability
�
-

Vector of partial safety factors on applied loads
b  Width of section
c
d Depth of cover
D Depth of section
e Eccentricity of prestressing cables
tvoid Area of void due to prestressing cables
j  Index indicating one of two mutually orthogonal principal

directions with respect to applied loads
LC  Index denoting load case. Varies among D (Dead Load), Ps

(PreStressing Load), Lo (Ordinary Live Load), T
(Temperature Load) and Pa (Accidental Pressurization
Load)

N  Total number of simulations
p Percentage of total area of section occupied by reinforcing

steel
Pf Probability of failure
Qn Nominal load type variables
r  Total number of structural groups
Rn Nominal resistance type variables
Sn Nominal strength/material parameter
wi Weight given to the ith structural group during

optimization
��  Grid size for response surface fit
˛i Coefficients of the fitted response surface
�  Correlation matrix
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