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abstract
Partial safety factors (PSFs) used in reliability-based design are intended to account for 
uncertainties in load, material and mathematical modeling while ensuring that the target reliability 
is satisfied for the relevant class of structural components in the given load combination and limit 
state. This paper describes the methodology in detail for developing a set of optimal reliability-
based PSFs for the design of prestressed concrete inner containment shells in Indian NPPs at 
collapse limit state under MSLB/LOCA conditions. The mechanical formulation of the flexural 
limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and 
SP16. The applied biaxial moments are combined according to Wood’s criteria. The optimization 
of the PSFs is based on reliability indices obtained from importance sampling and a local linear 
response surface fit; Monte Carlo simulations are performed to determine the capacity statistics 
and dependence between capacity and applied loads. Numerical examples are provided.
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1. introduction

The design of containment shells for Indian 
Pressurized Heavy Water Reactors (PHWRs) has 
evolved over the years, originating from a steel 
cylindrical shell capped with a steel dome (CIRUS 
Reactor, Trombay), followed by the use of reinforced 
concrete walls and pre-stressed concrete dome 
(Rajasthan Atomic Power Station) to the use of Pre-
Stressed concrete for the entire shell (Madras Atomic 
Power Station) and pre-stressed concrete double 
containment shells (first employed in the Narora and 
Kakrapar Power Stations). The Kaiga and Rajasthan 
Atomic Power Plants marked a further improvement 
in the design philosophy with complete double 
containment shells having independent domes [1]. The 
inner containment shells used in recent PHWRs are 
cylindrical structures of 63 m height, with prestressed 
concrete spherical domes containing 4 large openings 
to facilitate the replacement of steam generators. [2]. 
Until recently, nuclear containment structures in India 
were designed using the French RCC-G code.  The 
raft of the PWHR at Tarapur was designed using the 
ASME code and checked against RCC-G [1].  There is 
yet no formal Indian design standard for containment 
structures. In 2007, the Atomic Energy Regulatory 

Board (AERB) of India released the CSE-3 codes [3] 
which is currently under review.

Significant uncertainties exist in the structural 
behavior of the IC Shells of PHWRs, arising out of 
the random nature of material, geometry, prestressing 
and loadings. As early as 1974, Shinozuka and 
Shao [4] conducted a probabilistic assessment of 
prestressed concrete pressure vessels using the first 
order second moment approximation. Uncertainties 
in loads and in the material and geometry of the 
vessels were considered while short term accidental 
load effects were modeled as Poisson Processes. 
The overall uncertainty in structural behavior of 
nuclear containment structures, as in any general 
structure, is caused by uncertainties in resistance 
and demand quantities. The uncertainty associated 
with the resistance of containment shells arises out of 
uncertainty in the strengths of concrete and steel as 
well as in shell geometry. While concrete strength has 
been found to be better controlled in the nuclear power 
plant industry than in the ordinary building industry, 
steel strength variability does not display a noticeable 
reduction. Variability in sectional dimensions is 
comparatively quite low and has negligible impact 
on the overall uncertainty in structural resistance [5]. 
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Loads acting on concrete containments intrinsically 
involve random uncertainties, and therefore need 
to be treated probabilistically. Different loads 
have different degrees of randomness and may 
entail appropriate adjustments in the probabilistic 
framework, for example, the variability of dead load 
being substantially lower than that of an accidental 
pressurization load, the former can be treated as a 
deterministic quantity for simplification of analysis 
[6]. Another significant source of uncertainty is the 
long term behavior of these structures  which is highly 
variable owing to material changes (for example, 
prestress loss in tendons and creep in concrete) and 
the occurrence of accidental events [7, 8].

It is most rational to treat uncertainties associated 
with parameters governing the design and construction 
of a structure in a probabilistic format, specifically, 
to model the time-invariant quantities as random 
variables and the time-dependent ones as stochastic 
processes. Recognizing the existence of these 
uncertainties is an admission of the fact that the 
structure may not always satisfy its performance and 
safety objectives during its intended design life.  The 
logical extension of this admission is to ensure that 
the likelihood of unsatisfactory performance be kept 
acceptably low during the life of the structure.

The subject of structural reliability provides the 
tools and methodologies to explicitly determine the 
probability of such failures (“failure” here in the sense 
of non-compliance or non-performance) by taking into 
account all relevant uncertainties.  These techniques 
can be used to design new structures with specified 
(i.e., target) reliabilities, and to maintain existing 
structures at or above specified reliabilities. Target 
reliabilities are discussed in the next subsection. 
Even though such computed probabilities of failure 
(reliability being 1 minus failure probability) may 
not have a frequentist or actuarial basis, structural 
reliability provides a neutral and non-denominational 
basis to compare different (and often disparate) 
designs and maintenance strategies on a common 
basis.   

A limit state function (or performance function), 
g(X), for a structural component is defined in terms 
of the basic variables, X, such that:

 ( )  0 denotes failure
( )  0 denotes satisfactory performance

g X
g X

<
>                (1)

and the surface given by:

 ( )  0g X =                                               (2)

is called the limit state equation or limit state 
surface. The performance function g is typically 
obtained from the mechanics of the problem at hand.   
For multiple failure modes or if there are multiple 
critical sections, Eq.  is generalized to an appropriate 
union of failure events. 

The basic variable generally comprise of quantities 
like material properties, loads or load-effects, 
environmental parameters, geometric quantities, 
modeling uncertainties, etc. They are usually modeled 
as random variables; however, those with negligible 
`uncertainties may be treated as deterministic. The 
general expression of failure probability is
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where fX(x) is the joint probability density function for X. The reliability of the structure would then be defined as 
Rel= 1 - Pf.  

Like any other design approach, reliability based design is an iterative process: the design is adjusted until 
adequate safety is achieved and cost and functional requirements are met. The final step of meeting the target 
reliability can either be direct where the computed structural reliability has to exactly satisfy the target reliability for 
each relevant limit state or it can be indirect as in partial safety factors (PSF) based design where the structure 
implicitly satisfies the target reliability within a certain tolerance [9]. The term load and resistance factor design 
(LRFD) implies the approach followed in the United States where the nominal resistance in the design equation is 
multiplied by an explicit “resistance factor” but the nominal material properties that go into determining the 
resistance are not factored. The term PSF based design implies the approach taken in Europe where there is no 
explicit resistance factor in design, but each material property generally has its own partial safety factor.  The latter 
approach is taken in this work. 

Closed-form solutions to Eq. (3) are generally unavailable. Two different approaches are widely in use: (i) 
analytic methods based on constrained optimization and normal probability approximations, and (ii) simulation 
based algorithms with or without variation reduction techniques and both can provide accurate and efficient 
solutions to the structural reliability problem. The first kind, grouped under First Order Reliability Methods (or 
FORM), holds an advantage over the simulation based methods in that the design point(s) and the sensitivity of each 
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the design point(s) and the sensitivity of each basic 
variable can be explicitly determined.  However, 
FORM can prove to be costly or even infeasible if the 
size of the reliability problem goes up (in terms of 
basic variables and/or number of limit states) or if the 
limit state is not analytic in the basic variables, and is 
not used in this work. Monte Carlo simulations with 
Importance Sampling have been used to compute 
failure probabilities.

2. target Reliability

It has become increasingly common to express 
safety requirements, as well as some functionality 
requirements, in reliability based formats. A 
reliability based approach to design, by accounting 
for randomness in the different design variables and 
uncertainties in the mathematical models, provides 
tools for ensuring that the performance requirements 
are violated as rarely as considered acceptable.   

The cause, reference period, and consequences of 
violation of different performance requirements may 
vary, and if a reliability approach is taken, the target 
reliability in each performance requirement must take 
such difference into account [9-12]. For  example,  If the 
structure gives appropriate warning before collapse, 
the failure consequences reduce and that in turn can 
reduce the target reliability for that mode [11, 13].  
Functionality target reliabilities may be developed 
exclusively from economic considerations.  The safety 
target reliability levels required of a structure, on the 
other hand,  cannot be left solely to the discretion of 
the owner, or be derived solely from a minimum total 
expected cost consideration, since structural collapse 
causing a large loss of human life and/or property may 
not be acceptable either to the society or the regulators. 
Design codes, therefore often place a lower limit on 
the reliability of safety related limit states [9, 14]. For 
optimizing a structure with multiple performance 
requirements, Wen [15] suggested minimizing the 
weighted sum of the squared difference of the target 
and actual reliabilities. 

ISO 2394 [10], and later JCSS [11], proposed three 
levels of requirements with appropriate degrees of 
reliability: (i) serviceability (adequate performance 
under all expected actions), (ii) ultimate (ability 
to withstand extreme and/or frequently repeated 
actions during construction and anticipated use), (iii) 
structural integrity (i.e., progressive collapse in ISO 
2394 and robustness in JCSS). Target reliability values 
were suggested based on the consequences of failure 
for ultimate limit states and relative cost of safety 

measure for serviceability limit states. The Canadian 
Standards Association [16]  defines two safety classes 
and one serviceability class (and corresponding annual 
target reliabilities) for the verification of the safety 
of offshore structures (i) Safety class 1- great risk to 
life or high potential for environmental pollution 
or damage, 2) Safety class 2-small risk to life or low 
potential for environmental pollution or damage, and 
3)  Serviceability Impaired function and none of the 
other two safety classes being violated. Det Norske 
Veritas [13] specifies three types of structural failures 
for offshore structures and target reliabilities for each 
corresponding to the seriousness of the consequences 
of failure. The American Bureau of Shipping [17] 
identified four levels of failure consequences for various 
combinations of limit states and component class for 
the concept Mobile Offshore Base and assigned target 
reliabilities for each. Ghosn & Moses [18] suggest three 
levels of performance to ensure adequate redundancy 
of bridge structures corresponding to functionality, 
ultimate and damaged condition limit states, while 
Nowak et al. [19] recommend two different reliability 
levels for bridge structures corresponding to ultimate 
and serviceability limit states. Nuclear power plant 
containment structures are designed for earthquakes 
at two different levels of intensity and correspondingly 
to two different criteria for failure [3, 20, 21]. Damage, 
if any, caused by the Operating Basis Earthquake 
(OBE) must not lead to loss of functionality of the 
nuclear power plant; whereas the Safe Shutdown 
Earthquake (SSE) that has a higher intensity and longer 
recurrence interval than OBE, is allowed to cause the 
power plant to shut down but must not cause any 
radioactive leakage to the environment or loss of 
structural integrity.

The fact that the consequences of failure of a 
critical component in a nuclear reactor are potentially 
catastrophic has driven the interest in building so 
called “inherently safe reactors” which are publicly 
perceived to have a zero probability of failure. 
The application of a probabilistic risk assessment 
framework to such structures then has the dual 
purpose of determining the probability of meeting the 
stipulated conditions under which “inherently safe” 
performance is guaranteed, and the probability of 
departure from acceptable performance under these 
conditions. Values of maximum acceptable probability 
levels set by regulatory authorities of different nations 
for accidents that cause severe damage to the reactor 
core have ranged from 1x10-6 per year to 1x10-4 per 
year [22].
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Given the inability to predict the occurrence or 
magnitude of earthquakes, the uncertainties involved 
from source to site, and the potential for massive 
damage, it is not surprising that performance based 
design has been most enthusiastically espoused in 
the seismic engineering community, as evident in  
SEAOC [23], ATC-40 [24] and FEMA 273/274 [25].  
Performance levels for seismic design are commonly 
defined in terms of increasing severities, e.g., (i) 
Immediate Occupancy (IO), the state of damage at 
which the building is safe to occupy without any 
significant repairs, (ii) Structural Damage (SD), an 
intermediate level of damage in which significant 
structural and non-structural damage has occurred 
without loss of global stability, and (iii) Collapse 
Prevention (CP), representing extensive structural 
damage that causes global instability [26].  A 
comparison of the performance of structures designed 
to one ultimate design earthquake vs. those designed 
to dual level performance levels indicated that the 
latter produces relatively stronger structures [15].  A 
similar finding was echoed by Ghobarah [27] who 
opined that the reason for the revision of the then 
design standards to more reliable performance based 
methods was that after severe earthquakes (such as 
Northridge and Kobe), while structures designed 
to the existing codes performed well with respect to 
safety, the extent of damage and the economic costs 
were unexpectedly high.  

3. Reliability of Prestressed Concrete Sections

The tensile strength of concrete is negligible 
compared to its compressive strength.  In ordinary 
reinforced concrete, the reinforcing steel is used to 
carry the tensile stresses, and the concrete near the 
tensile face may crack.  Prestressing is intended to 
artificially induce compressive stresses in the concrete 
to counteract the tensile stresses caused by external 
loads, such that the loaded section remains mostly if 
not entirely in compression [28].  

Prestressed concrete (for shells, slabs, girders etc.) 
is often adopted when in addition to satisfying strength 
requirements, the member is also required to be 
slender (e.g., from aesthetic or weight considerations)  
and/or to limit cracking (e.g., to satisfy leak-
tightness). Prestressed concrete members are relatively 
lightweight as they are built from high strength steel 
and high strength concrete, more resistant to shear, 
and can recover from effects of overloading.  However, 
prestressed concrete structures are more expensive, 

have a smaller margin for error, and the design 
process of prestressed members is more complicated.  
Although the loss of prestress with time is built into 
the design, unintended loss of prestress arising from 
corrosion of the tendons, slippage etc. can have 
catastrophic consequences. 

Prestressed concrete sections may fail in several 
possible ways (such as a combination of flexure, shear 
and torsion, bursting of end blocks, bearing, anchorage 
or connection failures, excessive deflections etc.). 
This work however, only looks at ultimate flexural 
limit state defined by collapse of concrete due to 
crushing.

Several reliability based studies on partially 
prestressed concrete sections have been conducted 
in the past. Al-Harthy and Frangopol [29] studied 
prestressed beams designed to the 1989 ACI 318, 
considering 3 different limit states (ultimate flexure, 
cracking in flexure and permissible stresses), random 
dead and live loads, material and geometric properties, 
prestressing forces and modeling uncertainty. Their 
studies concluded that the reliability indices implied 
by the 1989 ACI 318 design standard are non-uniform 
over various ranges of loads, span lengths and 
limit states. Hamann and Bulleit [30] examined the 
reliability of under reinforced high-strength concrete 
prestressed beams designed in accordance with the 
1983 ACI-318 standard, considering only the ultimate 
flexural limit state of beams subjected to dead and 
snow loads. While Al-Harthy and Frangopol included 
all the material and geometric random variables in a 
FORM analysis, Hamann and Bulleit first estimated the 
moment capacity through Monte Carlo simulations, 
fitted the data to standard distributions, and then 
performed a first order second moment reliability 
analysis on the linear limit state.

Reliability for Class-1 structures, particularly 
concrete containment structures for nuclear power 
plants, is a much researched subject primarily due 
to the dire failure consequences of the containment 
structure in terms of environmental impact, radiation 
effect on human health and other economic costs. 
Hwang et al. [6] described a Load and Resistance 
Factor Design (LRFD)-based approach to determine 
the critical load combinations for design of concrete 
containment structures. The limit state, corresponding 
to ultimate strength of concrete, was defined in the 
2-D space of membrane stress and bending moment 
in the shell, leading to an octagonal limit state surface. 
Pandey [8] and Varpasuo [31] also worked on the 

Baidurya Bhattacharya  et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 1-14



5 © 2014 SRESA All rights reserved

on the reliability of concrete containments, their 
limit states forming sides of the octagonal limit state 
considered by Hwang et al [6].

4. Mechanics of Pre-Stressed Concrete Sections

In this work, we look at collapse limit state 
of partially prestressed sections in flexure which 
corresponds to crushing of concrete in compression 
(reinforcements may yield). Bidirectional flexure on 
shell elements corresponding to nuclear power plant 
inner containment structures with voids have been 
modeled using Wood’s criteria [32] summarized in 
Appendix A. The material properties of concrete and 
steel and the mechanistic formulation of both the limit 
states are discussed next.

In Indian Standards such as IS 456 [33] the 
compressive stress-strain relationship for concrete 
is taken to be parabolic up to a strain of 0.002, and 
horizontal from that point on. The nominal compressive 
strength of concrete is taken to be fcn =fck /1.5 where  
fck is the characteristic compressive strength. The design 
compressive strength of concrete is fcn /γc, where γc is 
the material safety factor on concrete strength. The 
value of γc is usually taken to be 1.5 for normal design 
condition and as 1.15 for abnormal design condition. 
The failure strain of concrete in bending compression 
is 0.0035. IS 1343[34] specifies the minimum grade 
of concrete as M30 for post-tensioning and M40 for 
pre-tensioning. 

The stress-strain behavior of concrete in tension 
is linear [35] and the tensile strength is taken to 
be fcγ = 0.7√fck and the modulus of elasticity of 
concrete in tension is assumed to be same as the 
secant modulus of concrete in compression which is  
Ec= 5000√fck The maximum tensile strain in concrete 
is then,

 
max 0.00012cr

t
c

f
E

ε = =
                         

 (4)

The design yield stress for reinforcing steel is  
fyn/γs where fyn is the nominal yield strength and γs is 
the material safety factor on yield strength of steel and 
is taken to be 1.15 for normal design conditions and 
1.0 for abnormal conditions. The nominal modulus of 
elasticity of steel, En, is 200000 N/mm2.

The moment capacity of a partially prestressed 
concrete section, given the amount of prestressing 
force and the geometric and material properties 
can be obtained in the form of an interaction 
diagram using strain compatibility equations and 

Fig.1: Force balance and moment computations  
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Figure 1 shows the strain and stress diagrams for an example section similar to the ones used in this work - 
with one set of prestressing tendons and two layers of ordinary reinforcement. In the figure, C= compressive force in 
concrete, fs1 = force in top reinforcement, fs2 = force in bottom reinforcement and P = prestressing force.  

For given amount of prestress the position of the neutral axis is determined iteratively by balancing the 
tensile and compressive forces on the section.  The moment capacity can then be found by taking the moment of the 
forces about any convenient point.  In determining the collapse moment capacity, two cases are possible (Figure 2): 
the neutral axis (NA) outside and the neutral axis inside the section. In the former, the entire section is in 
compression and in the latter, concrete has cracked and is assumed not to carry any load in the tensile zone.
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Figure 3 shows an example prestressed concrete element corresponding to the shell structure of nuclear 

power plant inner containment structures. Two layers of ordinary reinforcement top and bottom can be seen and JI 
and JO correspond to prestressing cables in the North-South and East-West directions respectively. In the co-
ordinate system adopted, these two are considered as the x and y directions. 
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JI has to be considered as a void in concrete, i.e. while calculating the contribution of concrete to the strength the 
area considered is the total area minus the area of the void. For the typical prestressed containment shell, the void 
depth is approximately 0.15 times the total depth of the element. 

The forces and moments acting on the section (for example Dead Load, Ordinary Live Load, Construction 
Live Load, Pre Stressing Load and Accidental Pressure Load) have two normal components (xx and yy) and one 
shearing (xy) component. Additionally, areas occupied by pre stressing cables are considered as voids in concrete. 
The section is thus under bi-directional flexural loading.  

The components of the externally applied loads (Nxx and Nyy) on the section act in the same direction as the 
pre-stressing cables. As a result, the external forces cause the section to be in compression, thus acting like a 
external pre stressing forces. These forces therefore affect the moment capacity of the section. On the other end, 
applied moments on the section are caused due to the same set of forces. Thus both the capacity of the system and 
the loading on the system are affected by a common source and therefore it is possible that the applied moment and 
the moment capacity will show some degree of correlation. 
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Figure 3 shows an example prestressed concrete 
element corresponding to the shell structure of nuclear 
power plant inner containment structures. Two layers 
of ordinary reinforcement top and bottom can be seen 
and JI and JO correspond to prestressing cables in the 
North-South and East-West directions respectively. 
In the co-ordinate system adopted, these two are 
considered as the x and y directions.

When calculating the flexural strength of an element 
such as this, the space taken by the prestressing cable 
JI has to be considered as a void in concrete, i.e. while 
calculating the contribution of concrete to the strength 
the area considered is the total area minus the area of 
the void. For the typical prestressed containment shell, 
the void depth is approximately 0.15 times the total 
depth of the element.

The forces and moments acting on the section (for 
example Dead Load, Ordinary Live Load, Construction 
Live Load, Pre Stressing Load and Accidental Pressure 
Load) have two normal components (xx and yy) and 
one shearing (xy) component. Additionally, areas 
occupied by pre stressing cables are considered 
as voids in concrete. The section is thus under  
bi-directional flexural loading. 

The components of the externally applied loads 
(Nxx and Nyy) on the section act in the same direction as 
the pre-stressing cables. As a result, the external forces 
cause the section to be in compression, thus acting like 
a external pre stressing forces. These forces therefore 
affect the moment capacity of the section. On the other 
end, applied moments on the section are caused due 
to the same set of forces. Thus both the capacity of the 
system and the loading on the system are affected by 
a common source and therefore it is possible that the 
applied moment and the moment capacity will show 
some degree of correlation.

The design check is carried out in the principal 
plane with respect to stresses. Applied moments are 
converted to this plane according to the basic rules 
of tensorial transformation. The moment capacities 
of the section in each of the 2 principal directions are 
computed from interaction diagrams with transformed 
dimensions, reinforcement areas and voids. The 
applied moments in directions X and Y are obtained 
using Wood’s Criteria [32], summarized in Appendix 
A) which outlines a procedure to obtain applied 
moments in x and y direction at the bottom and the 
top of the section (M*

xtop, M*
xbottom, M*

ytop, M*
ybottom), 

eliminating the torsional moment component Mxy.

Since the structural analysis used to compute stress 
resultants is completely linear in nature, the different 
stress resultant components (Nxx, Nyy, Nxy, Mxx, Mxy,  
Mxy) in a given load case are statistically fully 
dependent on one another. Additionally, stress 
resultants due to different load cases are completely 
independent. The correlation matrix that is developed 
for analysis is based on these two assumptions.

5. Reliability analysis and Calibration of PSfs

5.1 limit States and Basic Variables

Since this work concerns the reliability of PC shells 
in biaxial flexure, the limit states in x and y directions 
can be written respectively as: 

cap, app, 0x x yg M M= − =                                               (5)

cap, app, 0y y yg M M= − =                                               (6)

so that failure of the section is given by:

{Failure}= 0 0x yg g< ∪ <                                               (7)

and the failure probability can be written as:
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{Failure} all 

Failuref X X
x x

P f x d x f x d x


      I  (8) 

The indicator function, I , on the right hand side of Eq. [4.4] evaluates the expression within brackets so 
that: 

 1, if [ ] is true
[ ]

0,  if [ ] is false


   
I  (9) 

and is a convenient way to convert the domain of integration from the failure region to the entire range of x which is 
useful in simulation based estimates as described subsequently. 

cap,xM  and cap,yM are the moment capacities in x and y directions respectively. Likewise, app,xM  and 

app,yM are the applied moments.  As stated above, the moment capacity corresponds to collapse of the section. From 

this point forward, unless otherwise mentioned, all moments in this work are normalized by 2
ckf bD  and all forces 

by ckf bD . 
Before going into the details of the individual terms above, it is important to recall that the moment 

capacities and applied moments are mutually statistically dependent since the capacities are functions of the axial 
loads which in turn are linearly related to the applied moments in each load case.  In addition, the capacities in the x 
and y directions are strongly correlated as they are functions of the same material properties and some of the same 
axial loads. 

As explained in Appendix-A, app,xM  and app,yM  are defined respectively as 
* *max(abs( ),abs( ))xtop xbottomM M and * *max(abs( ),abs( ))ytop ybottomM M  and are functions of the applied moments Mxx ,Myy
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and is a convenient way to convert the domain of 
integration from the failure region to the entire range 
of x which is useful in simulation based estimates as 
described subsequently.

cap,xM  and cap,yM  are the moment capacities in x and 
y directions respectively. Likewise, app,xM  and 

app,yM  are 
the applied moments. As stated above, the moment 
capacity corresponds to collapse of the section. From 
this point forward, unless otherwise mentioned, all 
moments in this work are normalized by 2

ckf bD  and 
all forces by ckf bD .

Before going into the details of the individual 
terms above, it is important to recall that the moment 
capacities and applied moments are mutually 
statistically dependent since the capacities are 
functions of the axial loads which in turn are linearly 
related to the applied moments in each load case.  
In addition, the capacities in the x and y directions 
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are strongly correlated as they are functions of the 
same material properties and some of the same axial 
loads.

As explained in Appendix-A, app,xM  and app,yM  are 
defined respectively as * *max(abs( ),abs( ))xtop xbottomM M
and * *max(abs( ),abs( ))ytop ybottomM M  and are functions 
of the applied moments Mxx ,Myy and Mxy caused by 
all load cases relevant to the load combination at 
hand. For example, we can have the load combination 
Dead (D) + Prestressing (Ps) + Ordinary Live (Lo) + 
Temperature (T)  + Accidental Pressure (Pa) giving 
us:

 
, , , , ,

, , , , ,

, , , , ,

xx xx D xx Ps xx Lo xx T xx Pa

yy yy D yy Ps yy Lo yy T yy Pa

xy xy D xy Ps xy Lo xy T xy Pa

M M M M M M

M M M M M M

M M M M M M

= + + +

= + + +

= + + +





+

+

+



  

                                                                                (10)

The normalized moment capacity, capM , is a 
function of the applied in-plane compression, material 
properties ( , , , ,c y c tf f E ε ε ) and geometric quantities  
( / , / , / , /ck voidp f d D e D t D ):

 
cap , , , , , , , , , void

cap c y c t
ck

tp d eM M P f f E
f D D D

ε ε
 

=  
          (11)

Of these, the random terms are: the applied 
in-plane compressive force, P , the compressive 
strength of concrete, cf , the yield strength, yf , and 
the Young’s modulus, E, of the reinforcing steel. The 
compressive force P in turn is the algebraic sum of 
forces from all load cases in the load combination 
considered. 

The nominal or design values of the moment 
capacities, to be used in design equations discussed 
below,  can be obtained by substituting the random 
quantities in Eq. [4.9] by their design values:

 
, cap , , , , , , , , ,yncd void

cap n n n c t
c s ck

ff tp d eM M P E
f D D D

ε ε
γ γ

 
==  

                                                                                 
(12)

As stated above, in accidental pressure load case, 
the material safety factor on concrete compressive 
strength, γc is commonly taken to be 1.15, while that 
on yield strength of reinforcing steel, γs is commonly 
1.0.  

The moment capacities ,cap xM and ,cap yM thus 
defined are implicit functions of four basic variables; 
their distributions and correlations with applied 
moments are obtained by numerical simulation, which 
in turn are used in the reliability analyses.

5.2 Monte Carlo Simulations and importance 
Sampling

Except in very special situations, closed form 
solution to the structural reliability problem (Eq.(8)) 
does not exist and numerical approximations are 
needed. The true probability of failure, fP , 
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all all 

Failure Failuref X U
x u

P f x d x f u du        I I  (13) 

can be estimated using basic (or “brute-force” or “crude”) Monte Carlo simulations (MCS) in practice as: 

      
1

1ˆ 0 0
N

f x i y i
i

P g T U g T U
N 

      I  (14) 

where a zero-mean normal vector U  with the same correlation matrix  as the basic variables is generated first and 

then transformed element by element according to the full distribution transformation: 
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then transformed element by element according to the full distribution transformation: 

 ( )  ( ) ( )
iX i iT u x F x u     (15) 

where a zero-mean normal vector U  with the 
same correlation matrix ρ as the basic variables 
is generated first and then transformed element 
by element according to the full distribution 
transformation:
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The use of the same for U as for X results in error, but the error is generally small [36].  N  is the total number of 
times the random vector U  is generated, and Ui  is the ith realization of the vector.  It is well-known that the basic 
Monte-Carlo simulation-based estimate of Pf has a relatively slow and inefficient rate of convergence. The 
coefficient of variation (COV) of the estimate is: 

 ˆc.o.v.( ) (1 ) ( ) 1 ( )f f f fP P NP NP    (16) 

which is proportional to 1 N and points to an inefficient relation between sample size and accuracy (and stability) 
of the estimate.   

Such limitations of the basic Monte Carlo simulation technique have led to several “variance reducing” 
refinements.  Notable among them is Latin hypercube sampling (e.g., [37]), importance sampling (e.g.[38]) along 
with its variants (e.g., [39], [40])  which, if performed carefully, can significantly reduce the required sampling size.  
Nevertheless, importance sampling and other variance reducing techniques should be performed with care, as their 
results may be quite sensitive to the type and the point of maximum likelihood of the sampling distribution, and an 
improper choice can produce erroneous results.. In this work, we have adopted Importance Sampling to estimate the 
failure probability in Eq. (13).  

The mathematical formulation of importance sampling is simply obtained by modifying the basic 
expression of failure probability (Eq. (8)) as: 

    
   

{Failure} {Failure}

X
f X H

Hx x

f x
P f x d x f x d x

f x 

    (17) 

where Hf  is any PDF not equal to zero in the region of interest.  A judicious choice of Hf  can ensure low variance 
of the estimated failure probability.  By a simple change of the variable of integration, the failure probability 
estimate is as before the computation of the expectation of the indicator function but now modified with a correction 
factor ( /U Hf f ): 
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It is important to note that this expectation as computed with respect to the sampling density Hf  and the estimate of 
failure probability is obtained by simulating vectors of H. The choice of Hf  is extremely important, and depending 
on the limit state function, an improper choice may lead to errors in the estimate of Pf.   
In this work, H has been taken as a jointly Normal random vector with the same correlation matrix  as U, but with a 
mean vector that is closer to the failure region. This mean vector is chosen carefully by comparing the IS results 
with basic MCS results for the range of problems encountered.  The variance of the estimate in Eq. (18) is: 

 2

( )1ˆvar ( ) var
( )

U i
f i

H i

f h
P

f hN
 

   
 

 I  (19) 

which can be estimated during the sampling as: 
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giving the coefficient of variation (COV) of the failure probability estimated through importance sampling as: 

 for U  as for X results in 
error, but the error is generally small [36].  N  is the total 
number of times the random vector U   is generated, 
and Ui  is the ith realization of the vector.  It is well-
known that the basic Monte-Carlo simulation-based 
estimate of Pf has a relatively slow and inefficient rate 
of convergence. The coefficient of variation (COV) of 
the estimate is:

ˆc.o.v.( ) (1 ) ( ) 1 ( )f f f fP P NP NP= − ≈                (16)

which is proportional to 1 N and points to an 
inefficient relation between sample size and accuracy 
(and stability) of the estimate.  

Such limitations of the basic Monte Carlo 
simulation technique have led to several “variance 
reducing” refinements.  Notable among them is Latin 
hypercube sampling (e.g., [37]), importance sampling 
(e.g.[38]) along with its variants (e.g., [39], [40])  which, 
if performed carefully, can significantly reduce the 
required sampling size.  Nevertheless, importance 
sampling and other variance reducing techniques 
should be performed with care, as their results may be 
quite sensitive to the type and the point of maximum 
likelihood of the sampling distribution, and an 
improper choice can produce erroneous results.. In 
this work, we have adopted Importance Sampling to 
estimate the failure probability in Eq. 
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The mathematical formulation of importance 
sampling is simply obtained by modifying the basic 
expression of failure probability (Eq. ) as:

( ) ( )
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where Hf  is any PDF not equal to zero in the 
region of interest.  A judicious choice of Hf  can ensure 
low variance of the estimated failure probability.  By a 
simple change of the variable of integration, the failure 
probability estimate is as before the computation of the 
expectation of the indicator function but now modified 
with a correction factor ( /U Hf f ):
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It is important to note that this expectation as 
computed with respect to the sampling density Hf  
and the estimate of failure probability is obtained by 
simulating vectors of  H. The choice of Hf  is extremely 
important, and depending on the limit state function, 
an improper choice may lead to errors in the estimate 
of Pf .  

In this work, H has been taken as a jointly Normal 
random vector with the same correlation matrix ρ as 
U, but with a mean vector that is closer to the failure 
region. This mean vector is chosen carefully by 
comparing the IS results with basic MCS results for 
the range of problems encountered. The variance of 
the estimate in Eq. (18)  is:
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giving the coefficient of variation (COV) of the failure 
probability estimated through importance sampling 
as:
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f

f
f
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One of our stopping criteria for the Importance 
Sampling simulation in this work involves an 
upper limit on the COV of the estimated failure 
probability. 

5.3 Partial Safety factors and their optimization

Reliability based partial safety factor (PSF) design is 
intended to ensure a nearly uniform level of reliability 
across a given category of structural components for 
a given class of limit state under a particular load 
combination [41]. We approach the topic of optimizing 
PSFs by noting that any arbitrary point, Xa, on the limit 
state surface by definition satisfies:

( ) 0ag X =                                                           (22)

Conversely, a “design point” Xd on the limit state 
surface can be carefully chosen so that it “locates” the 
limit state in the space of basic variables such that a 
pre-defined target reliability is ensured for the design.  
The ensuing design equation:

( ) 0dg X =                                                            (23)

is essentially a relationship among the parameters of 
the basic variables and gives a minimum requirement 
type of tool in the hand of the design engineer to 
ensure target reliability for the design in an indirect 
manner. Since nominal or characteristic values of 
basic variables are typically used in design, Eq.  may 
be rewritten as:
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where the superscript n indicates the nominal value 
of the variable. We have partitioned the vector of 
basic variables into k resistance type and m – k action 
type quantities.  The partial safety factors, iγ , are 
typically greater than one: for resistance type variables 
they divide the nominal values while for action type 
variables they multiply the nominal values to obtain 
the design point: 
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If the design equation (23)  can be separated into a 
strength term and a combination of load-effect terms, 
the following safety checking scheme may be adopted 
for design:
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, 1,...,
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ii

S
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∑                                (26)

where Rn = the nominal resistance and a function of 
factored strength parameters, l = load-effect function, 
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table 1: Statistics of Basic Variables

Random 
Variable Description Statistics Distribution(mean, CoV) Source

M’LC, xx

M’LC, xy

M’LC, yy

normalized applied 
moments

for each load case (LC) in given load 
combination, combined according to 

Wood’s criteria

FEM Analysis of IC Shell 
Model

P’LC,xx

P’LC,xy

P’LC,yy

normalized force for each load case (LC) in given load 
combination

FEM Analysis of IC Shell 
Model

M’cap,xx

M’cap,yy

normalized moment 
capacity

obtained through Interaction diagram 
(fn of P’LC,xx , P’LC,xy  and P’LC,yy)

Structural Analysis of 
Prestressed concrete 

section

fc

compressive strength of 
concrete Normal, (max(fck+0.825sc, fck+4), sc)* [33]

fy Yield strength of steel Lognormal(1.1133fyn,0.09) [43], [30]
E Young’s modulus Normal(1.001103En,0.01) [43]

* sc=standard deviation for characteristic strength (in MPa) of concrete as given in IS 1343[34]

table 3: Distribution types of loads

load type Distribution type C.o.V Bias
Dead Normal 0.1 1.0
Pre-Stress Lognormal 0.15 1.2
Live (Ordinary) Lognormal 0.15 1.0
Temperature Gumbel 0.15 0.9
Accidental 
Pressure

Gumbel 0.15 0.8

table 2: Deterministic Parameters

Parameter Description Values taken
p Percent reinforcement 0.2%  

fck

Characteristic 
compressive strength 

of concrete
45 MPa

fcn = fck/1.5 Nominal compressive 
strength of concrete 30 MPa

fyn

Nominal yield strength 
of reinforcing steel 415 MPa

En

Nominal Young’s 
modulus of reinforcing 

steel
200 GPa

e/D Eccentricity of 
prestressing force 0

d/D cover depth 0.05

void range no concrete due to PS 
cables 0.5D to 0.6 D

n
iS =nominal value of ith strength/material parameter,
s
iγ  = ith strength/material factor, n

iQ = the nominal 
value of the ith load and q

iγ  = ith load factor. Note 
that there is no separate resistance factor multiplying 
the nominal resistance (as in LRFD) since material 
partial safety factors have already been incorporated 
in computing the strength.  

The nominal values generally are fixed by 
professional practice and thus are inflexible. Some of 
the m partial safety factors (often those associated with 
material properties) can also be fixed in advance. The 
remaining PSFs can be chosen by the code developer 
so as to locate the design point, and hence locate the 
limit state as alluded to above, and hence achieve a 
desired reliability for the structure.  Such an exercise 
can be conveniently performed if the strength and 
load effect terms can be separated as above in which 
case the limit state equation can be normalized by the 
design equation:

cap app

cap app

0n n

M M
M M

− =                                                            (27)

The reliability problem now becomes:
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table 4: nominal load effects for the critical element in each group

load case  load effect
 nxx (ton/m) nyy(ton/m) nxy (ton/m) Mxx (ton-m/m) Myy (ton-m/m) Mxy (ton-m/m)

Group 1
D -9.61E+00 -1.22E+01 9.64E+00 -2.14E-01 -2.27E-01 3.91E-02
Ps -4.44E+02 -4.77E+02 1.25E+02 1.53E+00 1.90E+00 -1.39E+00
Lo -9.61E-01 -1.03E+00 2.82E-01 -3.37E-02 -3.63E-02 1.03E-02
T 3.12E+00 2.75E+00 1.34E+00 3.38E+00 3.42E+00 -1.27E-01
Pa 2.08E+02 2.26E+02 -7.09E+01 5.96E+00 6.29E+00 -1.30E+00
 Group 2
D -5.41E+01 -1.54E+01 2.80E+00 -8.11E+00 -1.31E+00 2.74E+00
Ps -1.02E+03 -6.20E+02 -5.63E+01 3.55E+01 -5.00E+00 6.20E+00
Lo -2.58E+00 -6.15E-01 3.18E-01 1.20E-02 1.27E-02 6.93E-02
T 1.56E+00 -1.28E-01 -4.86E-01 1.17E+01 2.78E+00 -1.90E+00
Pa 5.80E+02 1.50E+02 -7.01E+01 1.64E+01 -3.10E+00 -2.56E+01
 Group 3
D -2.65E+01 2.12E+00 6.12E+00 6.72E-01 -1.24E-01 -4.42E-02
Ps -5.23E+02 -2.43E+02 2.42E+01 1.85E+01 8.95E+00 -2.07E+00
Lo -1.04E+00 -3.24E-01 6.12E-02 -2.36E-02 -1.36E-02 -4.47E-04
T -1.09E-01 5.88E+00 1.86E+00 4.56E+00 3.66E+00 -8.39E-02
Pa 2.46E+02 6.23E+01 -1.91E+01 -1.47E-01 1.98E+00 5.85E-01
 Group 4
D 3.73E+00 -4.10E+01 2.24E-01 -1.34E-01 -6.23E-01 -1.18E-02
Ps -6.70E+02 -5.32E+02 -1.89E+01 1.17E+00 -1.39E+01 -1.89E-01
Lo 2.55E-01 -8.37E-01 -2.62E-03 -4.52E-03 -2.28E-02 -4.45E-06
T 7.88E+00 5.93E-02 1.48E-02 5.01E+00 5.61E+00 -1.06E-02
Pa 2.85E+02 1.80E+02 1.77E+00 2.91E+00 1.23E+01 -8.57E-02

table 5: typical correlation matrix (group 1)

Dead Prestress live temperature Pressure Mcapxx Mcapyy

Dead 1.0000 -0.0028 0.0005 0.0054 -0.0006 0.099 0.0117
Prestress -0.0028 1.0000 -0.0028 -0.0093 0.0029 0.9156 0.9072

live 0.0005 -0.0028 1.0000 0.0049 -0.0053 0.0036 0.0023
temperature 0.0054 -0.0093 0.0049 1.0000 0.0060 -0.0176 -0.0156

Pressure -0.0006 0.0029 -0.0053 0.0060 1.0000 -0.2935 -0.2972
Mcapxx 0.0099 0.9156 0.0036 -0.0176 -0.2935 1.0000 0.9956

Mcapyy 0.0117 0.9072 0.0023 -0.0156 -0.2972 0.9956 1.0000

table 6: Bias and CoVs of moment capacities

Group Mcapxx Mcapyy

Bias CoV Bias CoV
1 1.82 0.159 1.41 0.157
2 1.65 0.133 1.42 0.171
3 1.40 0.137 1.59 0.149
4 1.58 0.133 1.54 0.145

Baidurya Bhattacharya  et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 1-14



11 © 2014 SRESA All rights reserved

table 7: optimization parameters

Parameter Value
Target reliability, βT 3.5 
Tolerance on target reliability, 
∆β

1.0

Weights on four Groups, wi 0.25, 0.25, 0.25, 0.25
Material PSF on concrete 
strength, γc

1.3

Material PSF on steel 
strength,γs

1.0

Lower bounds on load PSFs 1.0, 1.0, 1.0, 1.0, 1.3
Upper bounds on load PSFs 1.2, 1.2, 1.3, 1.4, 1.8

table 8: optimal results

Parameter optimal values
Beta values at optimum 
(Groups 1 – 4 respectively)

2.41, 3.88, 4.51, 4.25

Objective value 
(weighted squared error)

0.82

Optimal PSFs  
(D, Ps, Lo, T, Pa)

1.19, 1.09, 1.24, 1.35, 1.51

where Tβ is the target reliability index. Of 
course, this is an under-defined problem and even 
though some of the PSFs may be fixed in advance as 
stated above, it has an infinite number of solutions.  
Additional considerations are needed to improve the 
problem definition. Such considerations naturally 
arise when PSFs are needed to be “optimized” for a 
class of structures and are discussed next. 

It is common to expect that the design equation 
be valid for r representative structural components 
(or groups), and let wi be the weight (i.e., relative 
importance or relative frequency) assigned to the  
ith such component  (or group). These r representative 
components may differ from each other on account of 
different locations, geometric dimensions, nominal 
loads, material grades etc. For a given set of PSFs, 
let the reliability of the ith group be βi. Choosing a 
new set of PSFs gives us a new design, a new design 
point, and consequently, a different reliability index.  
If there has to be one design equation, i.e., one set 
of PSFs, for all the r representative components, the 
deviations of all βi’s from Tβ must in some sense be 
minimized.  The design equation (Eq.(24) or Eq. (26)), 
when using the optimal PSFs obtained this way, can 
ensure a nearly uniform reliability for the range of 
components. Several constraints may be introduced 
to the optimization problem to satisfy engineering 

and policy considerations (as summarized in [42]).  
Moreover, some partial safety factors, such as those on 
material strengths, may be fixed in advance as stated 
above.  The PSF optimization exercise adopted in this 
paper has the following form:
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6. numerical Example 

An example problem based on the prestressed IC 
shells of typical 220 MWe Indian PHWRs has been set 
up to demonstrate the methodology developed in this 
paper. A combination involving 5 load cases namely 
Dead Load (D), Pre-Stressing Load (Ps), Ordinary 
Live Load (L0), Accidental Temperature Load (T) and 
Accidental Pressure Load (Pa) has been considered. For 
each load case sets of six stress resultants (Nxx, Nyy, Nxy, 
Mxx, Myy, Mxy) have been obtained from linear elastic 
finite element analyses. The FE model consisted of 
about 2500 elements.  

Four structural groups of the IC Shell have been 
selected for finding optimal PSFs (Group 1: dome 
general area between two SG openings, Group 2: SG 
opening, Group 3: dome general area between SG 
opening and ring beam, Group 4: IC wall).  The section 
depths (D) are respectively 500, 1200, 500 and 610 mm. 
For each group the critical element has been identified 
as the one having the lowest capacity demand ratio 
– by considering all nominal stress resultants for the 
given load combination.  The objective of the example 
is to obtain a set of partial safety factors for the 5 
applied loads that satisfy a set of optimality criteria.  

The statistical parameters and nominal values 
used in the problem are listed in Tables 1 – 4. The 
computed correlation coefficients for Group 1 obtained 
between the moment capacities and applied moments 
are listed in Table 5. Noticeable here is the high 
positive correlation between moment capacity and 
prestressing force and the high negative correlation 
between the moment capacity and the accidental 
pressurization force. The moment capacities in x and 
y directions are almost fully mutually dependent. 
These are consistent with our intuitive expectations 
from the mechanics of the problem.  The bias and COV 
of the moment capacities obtained for each group are 
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provided in Table 6.  The optimization parameters 
(cf. Eq. ) are listed in Table 7.  While estimating the 
objective function in Eq. , a linear response was fitted 
around the given decision variable vector in order 
to smooth the sampling related fluctuations in the 
estimated reliability indices.  Table 8 lists the optimal 
results for this example problem. 

7. Conclusions

A set of optimal partial safety factors (for collapse 
limit state) ensuring a nearly uniform level of reliability 
across 4 groups of structural elements in a typical IC 
Shell of an Indian NPP have been obtained. The 
complete methodology for the same was developed 
from first principles. Correlations between demand 
and capacity terms owing to the structural mechanics 
underlying the problem were taken into account and 
the methodology developed accordingly. Analysis of 
the structural behavior of prestressed concrete section 
was formulated using recommendations provided 
in IS 1343 and SP 16. Monte Carlo simulations using 
(1) Importance Sampling and (2) a linear response 
surface fit for variance reduction was used to 
compute probabilities of failure. The load factors 
obtained in this example problem are in agreement 
with design practices from around the world, except 
the temperature load factor is typically lower than 
found here since thermal loads are categorized as 
secondary loads caused by geometric constraints and 
local yielding and micro-cracking ultimately result in 
redistribution of forces. 
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The design check is carried out in the principal 
plane with respect to stresses, which is inclined at an 
angle θ given by:

 2
tan 2 xx

x y

N
N N

θ =
−

  

On this plane shearing stresses are absent and the 
perpendicular (principal) stresses are given by:

 2 2
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2 2
x y x y

xy

N N N N
N N

+ −
= + +  

 2 2
2 ( )

2 2
x y x y

xy

N N N N
N N

+ −
= − +  

The applied moments are converted to this 
plane according to standard tensor transformation 
procedures that lead to the following expressions:
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The moment capacity in direction1 and 2 (or X 
and Y) are then computed from interaction diagrams 
with transformed dimensions, reinforcement areas 
and voids. The applied moments in directions X and 
Y are obtained using Wood’s Criteria. This outlines 
a procedure to obtain applied moments in X and Y 
direction at the bottom and the top of the section 
according to the following procedure:

Bottom Reinforcement

The bottom reinforcement can be calculated for 
following set of moments in x- and y- directions

 *
x XX XYM M M= +   

appendix a: Wood’s Criteria for Moment Combination

 

*
y YY XYM M M= +

 

If both *
xM  & *

yM  calculated as per the above 
equation are found to be negative, then both are 
assigned a zero value and not utilized for design.  If 

*
xM  is negative, then
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* *and 0XY
y YY x
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MM M M
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If  *
yM  is negative, then
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Top Reinforcement

The top reinforcement can be calculated for 
following set of moments in x- and y- directions

 *
x XX XYM M M= −  

 *
y YY XYM M M= −  

If both *
xM  & *

yM  calculated as per the above 
equation are found to be negative, then both are 
assigned a zero value and not utilized for design.  If 

*
xM  is negative, then
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XX

MM M M
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= − =  

If  *
yM  is negative, then
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The limit state in x direction (i.e, principal plane 
1) and y directions are respectively:

* *
_ max(abs( ),abs( ))cap x xtop xbottomM M M−       

* *
_ max(abs( ),abs( ))cap y ytop ybottomM M M−    
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