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Failure behavior of Zn coated Fe is simulated through molecular dynamics (MD) and the energy absorbed
at the onset of failure along with the corresponding strain of the Zn lattice are computed for different lev-
els of applied shear rate, temperature and thickness. Data-driven models are constructed by feeding the
MD results to an evolutionary neural network. The outputs of these neural networks are utilized to carry
out a multi-objective optimization through genetic algorithms, where the best possible tradeoffs
between two conflicting requirements, minimum deformation and maximum energy absorption at the
onset of failure, are determined by constructing a Pareto frontier.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction tackle this problem, for which the objective functions were con-
Zinc forms a protective coating over steel. The technology of
hot-dip galvanizing offering such protections is quite ubiquitous
in the steel industries worldwide and adequately documented
[1–3]. Although the phase relationships in Fe–Zn system are well
known and the corresponding Phase diagram is readily available
[4], it is still not exactly clear from a mechanistic approach, how
far and how exactly such coatings would resist failure due to shear
forces, in the form of wear, abrasion, fretting, etc., that routinely act
on such coated structures. This study aims at bridging that gap by
looking at the shearing process at the atomic level through molec-
ular dynamics (MD) simulations. The idea is to design a coating
that would absorb a large amount of shearing energy while exhib-
iting a small amount of shear deformation. A genetic algorithms
[5–9] based bi-objective optimization strategy was utilized to
ll rights reserved.

orti).
structed through an evolutionary neural network [10–12].

2. Background

Simulating materials behavior through molecular dynamics has
emerged as a powerful research strategy and numerous interesting
applications have been reported in the recent past [13–15]. Several
crucial physical and mechanical properties, ranging from stability
to fracture toughness, could be arrived at for a wide range of mate-
rials using this approach, rendering it particularly attractive for
modeling complex materials systems. In addition, through an MD
simulation one can actually look into the temporal behavior of a
material deformation process, for which the present investigation
could be treated as a paradigm case, and that requires reliable pro-
cessing of a large amount of simulation data that are often of
highly non-linear nature. It is always cumbersome and sometimes
very difficult to process the temporal information from an MD sim-
ulation using an analytical model, and a data driven modeling ap-
proach makes perfect sense in such a scenario, for which the
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artificial neural networks (ANN) [16] are noted for their efficacy.
An evolutionary version of ANN proposed recently [10] has already
been applied successfully to a number of studies of materials inter-
est [10–12,17,18] and is also deemed appropriate in the present
context. Furthermore, the conflicting aspirations of the present
problem, mentioned briefly in the previous section, would lead to
a search for the best possible tradeoffs between each of them.
These problems are known as multi-objective optimization prob-
lems, which are now a days increasingly being solved using biolog-
ically inspired genetic algorithms (GA). The genetic algorithms, in
turn, are steadily gaining ground for the problems in the materials
domain, as evidenced by a number of review articles published in
recent times [5–9] and are selected in this work to carry out the
optimization task owing to their robust and flexible nature. In this
backdrop this study is constituted by the synergy among three
independent paradigms: MD, ANN and GA, an approach which so
far has not been tried out to any significant extent in the materials
discipline, despite its pertinence to the processes like hot-dip gal-
vanizing, or the systems like Fe–Zn that constitute the present
work. The nature of the optimization task and the details of the
adopted methodology are elaborated below.

2.1. The bi-objective optimization problem

Here the idea is to come up with a galvanized coat that would
withstand a high amount of shear while exhibiting as little defor-
mation as possible even at the onset of breaking. To achieve this,
we simultaneously optimized the following objectives obtained
through MD simulations:

� Maximize the energy absorbed till onset of failure, measured
with respect to the equilibrated state (E).

� Minimize the extent of shear strain at the onset of failure (e).

The solution strategy would require some further elaboration.

3. Methodology

The selection of appropriate inter atomic potentials are crucial
to an accurate modeling of atomistic systems. The Fe–Fe and Zn–
Zn potentials were taken from the literature [20], while the Fe–
Zn potential was developed in the course of this study using lim-
ited Density Functional Theory (DFT) calculations. All the three
potentials are presented below.

Zn–Zn interaction: in this study the Morse potential [20] was
used to model the pairwise interactions between the Zn atoms.
This is expressed as:

E ¼ D0 e�2aðr�r0Þ � 2e�aðr�r0Þ
� �

r < rc ð1Þ

where E is the interaction energy between the two atoms (eV), r de-
notes the distance between the two atoms (Å), r0 is the equilibrium
distance between the two atoms (Å), rC is the cutoff distance (4.5 Å),
Table 1
Parameters used for the Morse potential.

D0 (eV) a (Å�1) r0 (Å)

0.091552277 2.17861958 2.65552272

Table 2
The derived potential parameters for the Fe–Zn potential given in Eq. (3). In this paramet

A1 A2 k1

70.8407924 �22.374789 1.54122119
while a, and D0 are constants with respective dimensions of reci-
procal distance (Å�1) and energy (eV). The parameters used for this
potential are listed in Table 1.

Fe–Fe interaction: to model the interaction between the BCC iron
atoms the potential function of Embedded-Atom Method of Finnis
and Sinclair (EAM/FS) [19] has been used. The relevant potential is
expressed as:

Ei ¼ Fa

X
j – i

qabðrijÞ
 !

þ 1
2

X
j – i

/abðrijÞ
 !

ð2Þ

where Ei is the total energy of an atom i, (eV), F denotes the embed-
ding energy (eV), q is atomic electron density, / is the pair potential
interaction, while a, b indicate element types of atoms i and j.

This potential is built in the molecular dynamics software LAM-
MPS (Large Scale Atomic/Molecular Massively Parallel Simulator)
[21] used in this study where the various parameters for Fe–Fe
interaction are also provided.

Fe–Zn interaction: in the absence of a reliable potential that
could be incorporated in LAMMPS, a custom made potential was
constructed during this research following a strategy explained
elsewhere [22]. The pair potential energy function is given as:

UðrÞ ¼ A1

rk1

� �
e�a1r2 þ A2

rk2

� �
e�a2r2 ð3Þ

where UðrÞ is in eV, r is the distance between two atoms (Å). The
parameters for this potential are provided in Table 2 and have been
obtained by the following procedure: the total energy of FeZn dia-
tom has been calculated at various interatomic distances by DFT
[23] with B3LYP exchange–correlation functional [24–25] using
CEP-121G basis set [26]. After this procedure interaction energy of
the pair has been calculated from the relation EintðrÞ ¼
EFeZnðrÞ � EðFeÞ � EðZnÞ, which is equivalent to the pair potential en-
ergy, namely UðrÞ � EintðrÞ. Actually UðrÞ has been fitted to the data
generated by EintðrÞ by applying a non-linear least square fit meth-
od, then a single set of parameters, given in Table 2, has been
obtained.

Since this potential was found to be very weak compared to Fe–
Fe and Zn–Zn systems, we modified the parameters A1 and A2

slightly to increase the potential well depth. The adjusted parame-
ters are given in Table 3.

Once the potentials were implemented in the LAMMPS environ-
ment the system was made ready for the MD simulations. The de-
tails are as follows.

3.1. The molecular dynamics simulations

The idea behind the MD simulations was to generate the objec-
tive functions for the subsequent optimization study. To begin the
process an assembly of a few layers of Zn atoms placed above a
block of BCC iron was allowed to equilibrate first as an NVE ensem-
ble. A shear force was introduced to the equilibrated assembly by
setting the top Zn layer in motion with constant velocity while
er set energy is in eV and distance is in Å.

k2 a1 a2

4.84043227 0.60454249 0.0301663477

Table 3
The adjusted parameters for Fe–Zn potential.

A1 (adjusted) A2 (adjusted)

80.8407924 �25.3747893



Fig. 1. A typical displacement profile for the interfacial layer of Zn after the onset of
shear. Fig. 4. Schematics of shear strain calculation.

Table 4
Molecular dynamics parameters.

Parameter Range/description

Temperature 1–300 K
Lattice parameter of Fe (BCC) 2.860 Å
Lattice parameter of Zn (HCP) 2.621 Å
Atomic mass of Fe 55.845
Atomic mass of Zn 65.409
Boundary conditions Periodic in all directions
Fe box dimension (in Å) 44*24*15
Zn box dimension (in Å) 33*x*11 (x varies from 7.4 to 21.4)
Time step 0.001 pico seconds
Time steps for equilibration 5000
Ensemble for equilibration NVE
Ensemble for shear NVT
Velocity for the top Zn layer (m/s) 1–100
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holding the bottom Fe layers fixed. The shearing continued by
treating the system as an NPT ensemble and gradually propagated
from layer to layer. No periodic boundary condition was employed.
Initially the deformation of the Zn block was elastic in nature. As
shearing continued, the relative displacement of the interfacial
layer of Zn, just above iron reached the magnitude of the lattice
parameter of Fe, and the Zn block slipped to a new position. This
point may be taken as the onset of bond breaking and the point
of shear failure. Since LAMMPS provides RMS displacement (drms)
for any specified group of atoms, the point of shear failure may
be identified from the drms vs. time plot for the interfacial Zn layer.
A typical case is presented in Fig. 1. It should be noted at this point
that raw data obtained from the MD simulation is often found to be
noisy, rendering interpretation of the failure point rather ambigu-
ous. This information therefore is smoothed using a local linear
Fig. 2. The failure as a discrete event: the sharp peaks correspond to the points of
failure.

Fig. 3. Energy absorbed corresponding to Fig. 1.
least square regression routine (LOESS) available in the Curve Fit-
ting ToolboxTM of MATLABTM to come up with the plot shown in
Fig. 1. The initiation of failure was taken as the instance when
the displacement of the upper layer of atoms becomes equivalent
to the lattice parameter. In most cases, the slope of the displace-
ment plot sharply increases at the failure point, as shown in Fig. 2.

The energy of the system at that point provides the shear en-
ergy absorbed up to the point of failure, and gives the value of
the first objective function in this study. A typical time history of
total energy of system (ET) corresponding to Figs. 1 and 2 is shown
in Fig. 3 and as stated before, the energy needed for the failure ðEÞ
was taken as the difference between the energy at the failure point
and that at the end of initial equilibration (i.e., at the onset of the
shearing process).

If loading continues, failure occurs in discrete steps and the sec-
ond peak in this figure corresponds to the next event.

Our second objective, the shear strain at failure ðeÞ was com-
puted as the ratio of deformation over Zn layer thickness, as ex-
plained schematically in Fig. 4.

The various parameters used in the MD simulations are pro-
vided in Table 4.

A large number of observations are actually needed to capture
the extensive non-linearity in the objective functions. A total of
448 simulations were conducted during this study by changing
the three variables: temperature, layer thickness and shear rate
and the results were fed to an evolutionary neural net [10] and
were subsequently optimized through a Predator-prey genetic
algorithm [27], as detailed below.

3.2. Data capture through an evolutionary neural network

This approach differs significantly from the traditional neural
nets [16]. As used in our earlier work [10–12], the architecture of



Fig. 6. Training of the objective function for strain using a bi-objective evolutionary
neural network. The filled diamond denotes the network selected on the basis of
information criteria.

Table 5
Complexity analysis of the networks presented in Fig. 5. The selected network is
boldfaced.

Complexity K AIC AICc BIC

1 13 1157.238 1158.191 1164.582
2 15 1121.824 1123.087 1132.445
3 16 1112.92 1114.356 1125.282
4 18 1106.495 1108.309 1122.521
5 20 1090.759 1092.999 1110.674
6 22 1094.914 1097.627 1118.917
7 23 1071.895 1074.863 1098.012
8 25 1077.874 1081.388 1108.346
9 27 1074.53 1078.638 1109.517
10 29 1075.869 1080.623 1115.521
11 30 1072.318 1077.414 1114.354
12 31 1063.177 1068.627 1107.63
13 32 1062.396 1068.214 1109.299
15 36 1066.147 1073.567 1123.153
18 38 1077.628 1085.931 1139.856
19 40 1062.782 1072.022 1130.337
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the neural network remains flexible and the training of the net-
works is undertaken following the principles of multi-objective ge-
netic algorithms. To begin the process, one needs to initiate a
population of neural networks, with a variable number of weights
in their lower parts, which are subjected to some tailor-made
crossover and mutation operations [28] and a fixed upper part
where the training is done following linear least square algorithm
[29]. The idea is to come up with a tradeoff between two conflict-
ing requirements: a network with a maximum accuracy and min-
imum number of weights in its lower part. The choice in this case
need not be unique. Formulated this way, the neural network
training problem becomes a Pareto-optimal problem [30], where
instead of a unique network, a family of networks, known as the
Pareto-frontier, would represent the optimal solutions [30]. The
members of the Pareto-frontier will be non-dominating [30] to
each other and will not be dominated [30] by any other feasible
solutions, which implies that none of the feasible solutions would
offer any better compromise between the objectives than the Par-
eto-optimal solutions. Amongst themselves, any member of the
Pareto-frontier can not be strictly better than another, even in
terms of one objective, if it has to remain at least as good as the
other member in terms of the remaining objectives. The mathe-
matical formulation of Pareto-optimality is well known [30]. The
way it is presented here utilizes the notion of weak dominance,
which for a minimization problem is expressed as:

ðXl � XmÞ () ð8iÞðfil 6 fimÞ ^ ð9iÞðfil < fimÞ ð4Þ

Here the objective functions are denoted by the f terms, and the
vectors formed by the objectives comprise the X terms. If two solu-
tion vectors do not satisfy this relationship, they are considered
non-dominating to each other. A family of solutions whose individ-
ual members are non-dominating to each other and at the same
time not dominated by any other member in the feasible solution
space, is taken as the Pareto set, and the locus of these individuals
in the functional space constitutes the Pareto-frontier. Alternately
one can construct the Pareto-optimality using the concept of
strong dominance, requiring betterment or domination in terms
of every objective. The weak formulation is however commonly
used. More details are available elsewhere [30–31].

In the present case the Pareto-frontier for the training process
was computed using a multi-objective Predator-prey genetic algo-
rithm [10,27]. A similar algorithm was used later for optimizing
the energy and strain at the point of failure, and will be discussed
in due course. The trained neural nets are shown in Figs. 5 and 6.
Each point in the frontiers presented in those figures denotes a
neural net of distinct weights and architecture, providing the opti-
mum tradeoff between the training accuracy and network size.
Picking up one from the multiple options remains the job of the
decision maker. In this study, like our earlier work [32] a suitable
Fig. 5. Training of the objective function for energy using a bi-objective evolution-
ary neural network. The filled diamond denotes the network selected on the basis of
information criteria.
network was identified using the Akaike’s information criterion
(AIC), the corrected Akaike’s information criterion (AICc) and also
the Bayesian information criterion (BIC) [33–35]. The basic strategy
is outlined below.

3.3. The information criterion and the network of right complexity

A neural network could be both over and under parameterized,
leading to unreliable predictions in both the situations. In case of
noisy, non-linear data an over parameterized neural net would be-
gin to capture the system noise, which is undesirable, while an un-
Table 6
Complexity analysis of the networks presented in Fig. 6. The selected network is
boldfaced.

Complexity K AIC AICc BIC

1 13 �946.133 �945.18 �938.788
2 15 �973.106 �971.843 �962.486
3 17 �972.112 �970.493 �957.947
4 19 �975.941 �973.919 �957.996
5 21 �976.35 �973.879 �954.415
6 22 �986.464 �983.751 �962.461
7 24 �997.067 �993.833 �968.794
8 26 �995.702 �991.897 �962.992
9 26 �1017.98 �1014.18 �985.272
11 30 �1012.16 �1007.06 �970.124
12 31 �1015.23 �1009.78 �970.775
13 33 �1014.76 �1008.57 �965.38
14 35 �1014.98 �1007.98 �960.546



Fig. 7. Performance of the selected network for the energy data. The observation
numbers are shown along the abscissa following real time data.

Fig. 8. Performance of the selected network for the strain data. The observation
numbers are shown along the abscissa following real time data.
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der parameterized network might not suffer from this problem, but
would simply fail to capture its subtle nonlinearities. In this situa-
tion one can, in principle, be assisted by various information crite-
ria that would allow the user to seek out for a network of right
complexity. The three of them used in this study are expressed as:
Fig. 9. The stages of shear failure. (a) Initial system with Zn above Fe (b) equilibrated
generated using random seed values at the specified temperature. The simulation box s
AIC ¼ 2kþ n ln
RSS
n

� �
ð5Þ

BIC ¼ k ln kþ n ln
RSS
n

� �
ð6Þ

AICc ¼ AIC þ 2kðkþ 1Þ
n� k� 1

ð7Þ

where k is the number of parameters used in the network, taken as
the total number of connections in both upper and lower parts of it,
including the biases. n is the total number of observations and RSS is
the residual sum of squares for the model.

The BIC criterion penalizes k more strongly than AIC and as a
result, the AIC criterion often tends to produce a relatively
over-parameterized model. This apparent weakness is remedied
in AICc by introducing a correction term in the AIC value, as shown
in Eq. (7).

The information criteria of various networks along the Pareto-
frontiers of Figs. 5 and 6 are summarized in Tables 5 and 6. As done
on other occasions [10–12,17–18,32], here the complexity is ex-
pressed in terms of the number of connections in the lower part
of the network, excluding the biases. The evolutionary neural net-
work used in training [10] utilizes a fixed architecture in the upper
part of the network and therefore could be excluded in the com-
plexity assessment. A network of complexity 13 is adequate to rep-
resent the energy data, as suggested by all the three information
criteria. In case of strain, the required complexity turns out to be
eight. The chosen networks are specially marked in Figs. 5 and 6
and also in Tables 5 and 6. The performances of these two networks
are further elaborated in Figs. 7 and 8 against the actual data.

3.4. Bi-criteria optimization of energy and strain through a Predator-
prey genetic algorithm

Once the networks of right complexity were identified the next
task was to optimize the objectives computed through them. This
was done using a Predator-prey genetic algorithm [27], already
tried out for a wide variety of problems [10–12,17–18], and as
mentioned before, in this study, we have also used it for training
the networks. This algorithm emulates the hunting behavior of
system (c) continuation of shear process (d) after failure. The initial velocities are
ize (90*90*40 Å3) is comparatively bigger than the lattices size of Fe and Zn.



Table 7
Variable values along the Pareto frontier shown in Fig. 10.

Position in
Fig. 10

Velocity
(m/s)

Temperature
(K)

Layer
thickness (ÅA

0

)
Energy
(eV)

Strain

A 85.2532 210.4119 5.6505 3.5853 0.0926
112.7588 239.3733 9.5867 3.7669 0.1344
67.7604 210.6762 4.3073 4.3189 0.1629
106.3463 224.6426 9.8628 4.3459 0.194
112.7588 224.7521 11.2589 4.5604 0.2122
101.8124 243.7713 9.8793 5.5342 0.2134
100.6397 242.3506 9.8705 5.6877 0.2217
97.8143 247.3816 9.7075 6.1353 0.2359
103.2256 239.7327 11.2589 6.6306 0.2521
94.5417 241.3257 9.8628 6.7613 0.2677
111.8975 229.4969 14.0304 7.3383 0.2761
92.2102 247.4962 9.8628 7.4138 0.2877
92.6062 235.7761 10.4598 7.6074 0.3039
115.9127 221.291 17.3662 9.1844 0.3085
105.8956 251.9936 20.4571 11.3306 0.3149
96.0607 250.6466 15.1597 11.4208 0.3557

B 92.2102 255.7728 15.4982 12.2266 0.3814
86.9755 294.5305 12.4989 13.119 0.4319
72.8337 247.4962 14.9836 13.1779 0.5329
72.5794 247.4962 14.9836 13.1912 0.5352
68.1811 247.4962 14.9836 13.3906 0.5759
67.1459 253.2253 15.9554 13.5198 0.584
68.2145 267.3921 16.0829 14.3786 0.5871
65.107 261.6798 12.2165 14.4964 0.6294
64.3511 271.0959 15.0553 15.0409 0.6421
60.4723 271.77 12.3234 15.327 0.7061

C 60.4723 294.5305 12.4989 16.1931 0.7628
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the real-life predators and the natural responses of their prey, to
compute the Pareto-frontier between two conflicting objectives
which are E and e for the present problem. Both the predators
and the prey reside in a two dimensional computational grid de-
void of any physical meaning, where the prey denote the popula-
tion of some probable solutions, and the predators, being some
indestructible entities, are only out there to kill the weaker prey,
where the weakness gets determined by the objective function val-
ues. A Moore neighborhood [36] is constructed for both the spe-
cies, where they are allowed to move around following certain
rules and the hunting takes place complying with some definite
norms. The surviving prey population, after a round of killing, is al-
lowed to breed, a privilege that is denied to the predators. The tra-
ditional genetic algorithms operators like crossover and mutation
[5–9] are employed in the breeding stage and this cycle continues
till an invincible prey population emerges withstanding genera-
tions of predator attack. The population is then ranked following
any of the procedures described in the genetic algorithms litera-
ture [31] and the Pareto-frontier is formed by the best ranked
members of this surviving population. Further details are available
elsewhere [10].

4. Results and discussion

From the top of the equilibrated Zn layer where the shearing
force was initiated by setting it into motion, the deformation pro-
ceeded downward and the process could be clearly visualized, as
presented in Fig. 9 for a typical case. Although a number of binary
phases are known to form in the Fe–Zn system [4], they remained
rather inconsequential in the present simulations, since neither the
length, nor the time scales studied here were conducive for any
significant amount of diffusion to occur. The shearing effects how-
ever propagated from layer to layer, starting at the top and at the
onset of failure the last zinc layer is set to motion. The presence
of dislocations also has not been accounted for considering the
length and time scales adopted here. Nonetheless, the adopted
strategy is generic in nature and extendable to larger systems with
more number of design variables, if adequate computing resources
are available.

The computed Pareto-frontier between energy and strain are
presented in Fig. 10. Both parameters are computed at the onset
of failure, in a manner described in the previous section. The vari-
able values along the Pareto frontier are presented in Table 7.

Along the Pareto frontier, as evident both from Fig. 10 and Table
7, an increase in energy required to failure comes at the expense of
an increasing deformation. Point A which is near the origin of the
frontier fails at a low value of energy and the corresponding defor-
mation is also is also small. This however happens at a very small
value of the Zn layer thickness (5.6505 Å) with a relatively small
Fig. 10. The computed Pareto-frontier between energy and strain at the onset of
failure.
initial shear rate of 85.2532 m/s. With increasing thickness of the
Zn layer, as evident from the typical points like B and C in Table
7, both the energy required for failure and the corresponding strain
go up. The responses to these objective functions however are not
monotonic with respect to the layer thickness. In fact, both energy
and strain display a complicated interplay between all the three
system variables, velocity, layer thickness and temperature with
which the two objective functions, involving energy and strain,
are correlated in a highly non-linear fashion. The evolutionary neu-
ral network [10] that we have used here enabled us to capture this
implicit non-linearity more effectively than some of our recent
material design work [37–39] and the efficacy of genetic algo-
rithms as an optimizer, in such complex scenario is rather over-
whelming, which is well in accord with the experiences of
numerous researchers worldwide [5–9].

Various Fe–Zn phases occurring in the binary phase diagram [4]
are known to form in the galvanized sheets as well [40]. Although
those are not considered in this study for reasons explained before,
this analysis remains far from hypothetical. The g phase that is
known to form at the top layer in the galvanized sheets is virtually
pure Zn and the initiation of corrosion and the other environmen-
tal degradation processes [41] can locally bring it in contact with
an iron rich phase, for which the findings of the present study
would be quite relevant.

5. Concluding remarks

This study brings together two important soft computing para-
digms, genetic algorithms and neural nets in the domain of classi-
cal molecular dynamics. Important physical and mechanical
properties, ranging from stability to fracture toughness of complex
materials systems, are now investigated through molecular
dynamics for a wide range of materials [42,43]. The multi-objective
approach used here offers far more flexibility than the more com-
mon single objective approaches used in materials design. This is
increasingly being demonstrated by the materials researchers at
large [6,8,44,45] and strategies like evolutionary neural network
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as practiced here or response surface method adopted by the oth-
ers [45] can further augment its scope. Despite enormous practical
importance of the system studied here, the extent of relevant mod-
eling work done on it is rather limited till now and that justifies the
present attempt even from an industrial point of view. In the very
near future we plan to substantially augment the model presented
here by realistically bringing in the phase changes in the coated
layer along with diffusion, which by any means, remains quite a
complicated task.
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