
J. Parallel Distrib. Comput. 74 (2014) 2203–2214
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Performance metrics in a hybrid MPI–OpenMP based molecular
dynamics simulation with short-range interactions
Anirban Pal a, Abhishek Agarwala b, Soumyendu Raha c, Baidurya Bhattacharya d,∗

a Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
b Archayne Labs, Gurgaon, Haryana 122001, India
c Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India
d Department of Civil Engineering, Indian Institute of Technology Kharagpur, WB 721302, India

h i g h l i g h t s

• We discuss computational bottlenecks in MD and discuss challenges in parallelizing.
• We present a hybrid algorithm using MPI with OpenMP threads for parallelizing MD scheme.
• The algorithm is discussed using nano-indentation of Cr films with C indenters using the EAM and Morse potentials.
• We study performance of our algorithm for a range of MPI–thread combinations.
• Speed up achieved by our algorithm compares favorably with that by LAMMPS.

a r t i c l e i n f o

Article history:
Received 8 December 2012
Received in revised form
9 December 2013
Accepted 11 December 2013
Available online 23 December 2013

Keywords:
Hybrid programming
Molecular dynamics
Message passing
OpenMP threading
Parallel computing

a b s t r a c t

We discuss the computational bottlenecks in molecular dynamics (MD) and describe the challenges in
parallelizing the computation-intensive tasks.We present a hybrid algorithmusingMPI (Message Passing
Interface) with OpenMP threads for parallelizing a generalizedMD computation scheme for systemswith
short range interatomic interactions. The algorithm is discussed in the context of nano-indentation of
Chromium films with carbon indenters using the Embedded AtomMethod potential for Cr–Cr interaction
and the Morse potential for Cr–C interactions. We study the performance of our algorithm for a range of
MPI–thread combinations and find the performance to depend strongly on the computational task and
load sharing in the multi-core processor. The algorithm scaled poorly with MPI and our hybrid schemes
were observed to outperform the pure message passing scheme, despite utilizing the same number of
processors or cores in the cluster. Speed-up achieved by our algorithm compared favorably with that
achieved by standard MD packages.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Multi-core clusters (MCC) have been the standard for com-
puting applications for the last few decades [34,52]. The multi-
core processors can be full scale processors, general purpose (GP)
and ordinary graphics processing units (GPU) and other process-
ing elements. GPUs [32] often come as assistance to multi-core
full scale processors and in more recent times have appeared as
the main processing engines which the full scale processors have
supplemented with input/output and other functions. An MCC
incorporates a two-tier structure: processors across SMP (symmet-
ric multiprocessor) nodes communicate via an external intercon-
nect, and those within the same node are ideally located on the

∗ Corresponding author.
E-mail addresses: baidurya@civil.iitkgp.ernet.in,

baidurya.bhattacharya@jhu.edu (B. Bhattacharya).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.12.008
same motherboard and share various levels of cache and mem-
ory [52]. Parallel processing on an MCC incorporates a hybrid or
mixed-mode scheme [7,38]where processors across nodes commu-
nicate viaMPI, while processorswithin each node run threads [40],
which are essentially instruction sequences within the context of
processes. Alternative implementations use threads without MPI
on the entire cluster [26,55]; however this method is not too
widely used. Vis-à-vis hybrid schemes, pure MPI implementations
on MCCs have proved to be effective [34,48,20] as well as ineffec-
tive [47,51,28,37] and exhibit a cross-over phenomena with data
size [7]. Hence, in the present work we explore the hybrid scheme
of parallelization over an MCC platform.

There has been considerable work in parallelizing molecular
dynamics programs on shared memory space [54,3,10], as well as
distributedmemory architectures [46]. NAMD [43], GROMACS [25]
and LAMMPS [45] are among the popular molecular dynamics
packages which use message passing and threading techniques.

http://dx.doi.org/10.1016/j.jpdc.2013.12.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.12.008&domain=pdf
mailto:baidurya@civil.iitkgp.ernet.in
mailto:baidurya.bhattacharya@jhu.edu
http://dx.doi.org/10.1016/j.jpdc.2013.12.008


2204 A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214
Hu et al. [27] have proposed efficient MD–EAM algorithms for
multi-core platforms. Graphic processing units (GPUs) are being
increasingly used to performMD simulations of larger atomic sys-
tems involving millions of atoms and have been known to dras-
tically outperform pure CPU-based implementations [17,19,5,22].
They remain a major topic for research.

One way to establish the veracity of molecular simulations is
to reproduce well known micro and macroscopic phenomena. In
order to perform a simulation that can reflect or agree with such
phenomena, large regions (up to billions of atoms) may need to be
simulated over large time intervals [15]. This imposes a gigantic
computational burden. Molecular Dynamics (MD) simulations are
highly CPU-intensive and have typically very long running times,
which can run into days or weeks. In this context, any significant
improvement in the total computational time is desirable. Part of
this can be brought about by improving the serial algorithm. For
example, the incorporation of ‘‘Neighbor Lists’’ brings down the
serial running time from O(N2) to O(N) for simulations involving
only short range interactions [61], (n being the total number
of atoms in the system); however such standard techniques
are insufficient in bringing down the computation time beyond
O(N logN) when long range (e.g., Coulombic) interactions cannot
be ignored and cannot be approximated by short range models
(e.g., through Ewald correction). Under such circumstances, where
computational efficiency is the topmost priority, large linear gains
in computational time can be achieved through parallelization of
the existing optimized serial algorithm [4].

The MD algorithm essentially comprises a set of steps that are
determined by the integration scheme used to solve the equations
of motion of the atoms. If the Verlet integration scheme is used,
the entire task can be divided into 3 basic Verlet steps, each
step involving the updating of all atomic positions and their
derivatives with each time-step [21]. The parallelization of such
an algorithm in a scheme involving both threads and MPI is non-
trivial owing to the dissimilar natures of the shared-memory
(threads) and distributedmemory (MPI) platforms. Threads utilize
a common memory space and hence concurrent write operations
by parallel threads must be avoided. MPI processes on the other
hand have their own private memory locations to write to but
must communicate with each other at regular intervals. Unlike
processes, threads do not have to communicate with each other.
The MD computational task must be first divided among various
processes (MPI), and each MPI process then spawns threads to get
its assigned work executed in a parallel fashion.

In this paper, we describe an MPI/OpenMP based parallel
algorithm in detail forMD of systemswith short range interactions
and discuss its various implementation and speedup issues; the
numerical aspects are demonstrated through a simulation of nano-
indentation of a chromium film by a spherical carbon indenter.
Chromium and its compounds are used as protective films owing
to its corrosion resistance [35] and the dimensions of such films
can reach the order of nanometers [58]. The embedded atom
method [11] is used to model the interactions among chromium
atoms; the interactions between the indenter and the film are
modeled by a carbon–chromium Morse-potential [60]. The MD
algorithm uses a two-tier Verlet neighbor list [1] to speed up the
simulation. The parallelization scheme is implemented on a shared
address space computer architecture using multiple threads. Since
our usage of threads is limited to within one SMP node only, MPI is
used to perform the simulation on a cluster of several SMP nodes
in a parallel manner. Thus, MPI is used to communicate between
the nodes and threads are used within each node to perform
the computation. The speed-up and communication overhead
obtained by varying the number of SMP nodes and threads used
in each system are studied. Speed-up achieved by our algorithm is
also compared with that by LAMMPS.
2. Background

2.1. The basic tasks in MD

Any Molecular Dynamics (MD) simulation [21] involves (1) a
force computation step based on a relevant potential model, and
(2) step(s) where the particle positions and, if necessary, velocities
are obtained for the succeeding time-step(s). In this way the
atomic system evolves in its phase space from a given set of initial
coordinates over a certain period of time, interacting with one
or more heat reservoirs if relevant, either toward equilibrium, or
away from it if subjected to some external protocol.

We outline the main tasks performed in every time step of
the numerical integration scheme in the following, with reference
to the nano-indentation process that will form the numerical
example later in the paper:
Task 1-Update of neighbor lists: Based on the assumption that inter-
atomic forces (for ground state atoms) in solids become negligible
at long ranges [44], atoms are considered to be affected only by its
neighboring atoms. In other words, atoms that are far away from
each other have a numerically insignificant effect on each other.
Thus, when computing the forces on each atom, the effect of far off
atoms are ignored and only the neighbors are considered. A set of
two lists, an outer dynamic neighbor list [1] and an inner list, which
is updated by traversing through the outer list, is used to determine
the neighborhood of each atom.
Task 2-Implementation of external protocol: The hemispherical in-
denter is moved into the film at a constant velocity, in the form of
a displacement boundary condition updated at every time step.
Task 3-Update of atomic positions and velocities: In this task,
the velocity and position of each atom is updated according to
the Velocity-Verlet integration scheme [56]. This step uses the
position, velocity, and acceleration of each Cr atom at time t to
compute its position at time (t+∆t) and the first corrected velocity
at time (t + 0.5∆t).
Task 4-Force & energy computation: The Cr–Cr interaction is
modeled using the Embedded Atom Method [29] where the
electron density (due to all other neighboring atoms, mentioned
in the inner list) at every atomic site is computed first. Then, this
electron density is used to compute the force on the corresponding
embedded atom. The force between the Cr atom and the indenter
atoms is also computed from a C–Cr Morse potential. The total
force on (and hence the acceleration of) each Cr atom is thus
determined. Phase space functions such as kinetic and potential
energies, stresses etc. can also be determined as part of this task.
Task 5-Update of atomic velocities: The fifth task of the iteration
involves using the updated acceleration of each Cr atom at time
(t + ∆t) evaluated in Task 4 and the velocity at time (t + 0.5∆t)
evaluated in Task 3 to execute the final step of the Velocity-Verlet
integration and compute the final velocity of the Cr atom at time
(t + ∆t).

All the above tasks must be computed serially one after the
other, as is evident by the task dependency graph in the next
section. Therefore, there is no scope of parallelization among the
various tasks. However, the computations within the various tasks
can be parallelized.

2.2. The parallel computing paradigm & the computer system

The simulation algorithm incorporates data-parallelism but not
process-parallelism as the data produced by one process is con-
sumed by other processes in the succeeding time-steps [4]. This
necessitates the sharing of system data among all processes. With
data sharing, the problems involved in passing the required data



A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214 2205
Fig. 1. (Left) Isometric and (right) top views of the indentation setup.
to one process and receiving it from another process are cir-
cumvented. These considerations, along with software portabil-
ity, latency hiding, scheduling, load balancing, and programming
ease [18], favor the use of threads over message passingmodels on
the same machine (however, this does not imply that the use of a
hybrid scheme which maximizes the usage of threads on the same
SMP node will be the best scheme, as is discussed later). Owing to
their ease andwidespread use, OpenMP threadswere selected over
other threadparadigms [18]. However, since our usage of threads is
limited to individual SMP nodes, MPI must still be used to commu-
nicate between the processes running on the different SMP nodes.

The simulations were carried out on a cluster of six Tyrone
blade servers, each equipped with two Intel Xeon quad-core
processors (thereby 8 cores per blade) with 32KB L1 cache per
core, 6MB L2 cache per chip, each chip containing two processors.
Communication between the blade servers (SMP nodes) was
performed with a 20 Gbps (gigabit per second) ‘Infiniband’ switch.
This enabled the usage of MPI processes among the SMP nodes
or blades and threads among the cores within each blade. The
operating system for the cluster was CentOS release 5.2. The code
was written in C and was compiled using ICC 11.0 from the
Intel OpenMPI 1.6.5 suite with default optimizations (−O2) which
provide a good level of optimization, speed and safety.

2.3. Numerics

In a distributed memory architecture where MPI is used, nu-
merical accuracy and stability are pressing issues [23]. Owing
to finite precision in computer arithmetic, different ordering of
computations will lead to slightly different results, the so-called
rounding errors. In large scale simulations involving billions of
arithmetic operations, numerical consistency is paramount to
achieving acceptable results. In an MD simulation incorporating
message passing techniques, information such as atomic forces,
electron densities, etc. from all theMPI processes need to be added
up and communicated back to all the processes. When such sum-
mands vary considerably in magnitude (forces at short ranges and
short range equivalent of interactions at long ranges), the sum
will depend on the order in which the various summands are
added [23]. Here we use a self-compensated summation method
(SCS) [18] in order to minimize round-off errors and achieve con-
sistency and accuracy.

2.4. The interatomic potentials

The single most essential feature which determines the quality
of the simulation is the model used to describe the interatomic
forces. The atomistic simulation of the indentation process
requires suitable potentials to model the chromium atoms (film)
and carbon atoms (indenter). The metallic bonding in Chromium
requires the use of the Embedded-Atom-Method (EAM) which
incorporates an approximation to the many-atom interactions
neglected by pair-potentialmodels [41]. Thismethod developed by
Daw and Baskes [11] has been improved and modified by Yifang
et al. [62], to fit the negative Cauchy pressure of Chromium and
has been adopted here. The indenter is hemispherical in shape
and is composed of fixed carbon atoms in order to simulate the
hardness of diamond. The carbon–chromium (C–Cr) interactions
have been modeled with Morse pair potential taken from [60].
Details of the potentials have been given in the Appendix. For
the sake of portability and transparency but at a cost of increased
computational time, we have not tabulated the interatomic
potentials and forces, but have used the analytical forms unlike
commercial/ shareware MD packages.

2.5. System initialization and loading

We looked at various sizes of the BCC Chromium film: ranging
from 10 × 10 × 10 unit cells (2331 atoms) to 40 × 40 × 40 unit
cells (132 921 atoms). Fig. 1 shows a typical film: 19 unit cells
each in the x and y directions and 14 unit cells in the z direction,
i.e., 61 × 61 × 45 Å3 consisting of 11 054 atoms. The indenter is
a moving rigid hemispherical displacement boundary composed
of 394 C atoms. Free boundary conditions were applied to all the
vertical faces and the bottom-most layer of unit cells was kept
fixed. The initial temperature was 10 K and the velocities of each
atom were sampled randomly from the corresponding Gaussian
distribution. No thermostat was used and the indenter was kept
rigid to simulate the hardness of diamond. The time-step was
1 femto-second. After the system was initialized, the velocities
were corrected to make sure that the center of mass of the whole
system remained stationary.

It is important to note that setting boundary conditions is an
essential feature of MD simulations and the results obtained may
heavily depend on it. On a given surface, a set of traction-free
boundary conditions would imply the plane stress condition while
a set of fixed displacement boundary conditions would imply the
plane strain condition. If a dynamic process such as indentation
is being studied, boundary conditions such as ‘‘slab’’ periodic
boundary conditions or fixed boundary conditions would limit the
vibration modes (frequencies) attainable by the system [33] and
could compromise the integrity of the observed phenomena. In
such cases, one should ideally resort tomulti-scalemethods [36] in
order to apply suitable boundary conditions via continuummodels
such as finite elements.



2206 A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214
Fig. 2. Left: a flowchart depicting the various steps of the serial algorithm. Right: the two step neighbor list: when the central atommoves by a distance larger than the skin
distance, the outer list needs to be updated.
For performance studies and comparison with LAMMPS, the
simulation was run for 300 steps without any indenter motion. For
simulating the complete nano-indentation process, the Chromium
atoms were initially allowed to relax for 10,000 time steps,
following which the indenter wasmoved in with a speed of 0.0001
Å/fs (= 10 m/s) up to a depth of 3.08 Å and then withdrawn at the
same speed. The load on the indenter was measured by summing
up the forces on the indenter in the direction of indentation (z
direction), and the displacement of the lower-most atom of the
indenter from the initial free surface was taken as the depth of
indentation.

2.6. Two step neighbor lists

To reduce the computational time, a set of two neighbor lists
was used for every Chromium atom. In solids, the atoms vibrate
about their mean positions and hence the larger list (outer list)
needs to be updated only rarely compared to the smaller (inner)
list. The outer list for each atom stored a larger neighborhood
of atoms and was dynamically updated, i.e., the outer list was
updated whenever any atom got displaced by more than half the
skin thickness. The inner list stored all the neighboring atoms of
every atom and all force computations were done with respect to
this list. This inner list was updated using atoms from the outer
list (Fig. 2). Alternatively, one may use a cell-linked list or a Verlet
cell-linked list in which the whole domain is divided into cubical
cells,where the neighborhood of an atom is determinedby the cells
adjoining its host cell. The reader is referred to [57] for a discussion
on this topic.

The ‘‘outer list’’ was created for each atom corresponding
to a radial distance of 1.7r∗ where r∗

= 8.262 Å is the cut-off
distance taken to be thrice the equilibrium interatomic Cr–Cr
distance (2.754 Å [16]). The skin thickness governing the updating
frequency of the outer list was taken to be 0.7r∗. The inner
neighbor list was created for each atom from its outer list with
a distance of r∗. The forces/accelerations on all the atoms were
calculated considering the atoms only in the inner list. The inner
listwas updated every time-step. Since in anupdate operation each
atom in the list is visited exactly once during which the neighbor
list, a set of constant cardinality independent of the number of
atoms is traversed, the computational complexity of the procedure
is linear in time.

3. Parallelization

3.1. What to parallelize?

In any MD simulation, the force and energy computation steps
as well as the neighbor list creation steps are the most CPU-
intensive operations [24]. The embedded atom method poses
the additional task of computing the electron densities at all
atomic sites. The entire task of calculating the forces on all the
atoms is divided equally among all the processors, i.e. if the total
number of available processors is P and the number of atoms N ,
then each processor is assigned the task of computing on N/P
atoms. This accomplishes a linear reduction in the running time
of the algorithm, which is ideally proportional to the number of
processors used. However, the actual gain achieved is sub-linear,
due to overheads involved in the parallelization routine and the
non-parallelizable part of the algorithm.

The electron density ρt
i at each atomic site i is the sum of pair-

wise electron density functions f (r tij) of all its neighbors j. The force
on each atom F t

i is then a weighted sum of the function derivatives
(F ′) of these electron densities and the two-body forces V ′ [39],
where primes (′) denote differentiation, qti refers to the position
vector of atom i for time step t and r tij is the distance between atoms
i and j.

F t
i = −


j


F ′(ρt

i ) + F ′(ρt
j )


f ′(r tij) + V ′(r tij)

 qti − qtjr tij . (1)

The details of the potential are given in the Appendix.
The total computational time of the MD simulation is deter-

mined almost entirely by the iterative loop running thousands of
times that performs the neighbor list computation along with the
electrondensity and force computations. Two3×N arrays store the
velocities and accelerations of all the N atoms. A 5×N array stores
the positions as well as values of two electron density functional
derivatives required for force computations. Every atom of the film
is also associated with a data structure containing the two neigh-
bor lists (an outer list and an inner list). Such structuringmakes the
inter-process communication transparent and easy to implement
with the existing MPI collective-communication functions.

A relatively small amount of resources are spent on (i) the
initialization stage where the velocities and the positions of the
atoms of the system are initialized, (ii) computation of time
histories of derived quantities such as stresses and temperature
if necessary, and (iii) the final stage where some equilibrium
properties may be calculated. Hence, one needs to look at the task
dependencies among the various stages of computations taking
place inside the iterative loop in order to work out a successful
parallelization scheme.

The task dependency graph (Fig. 3) illustrates the interrelation-
ships between the five tasks (listed in Table 1) into which the iter-
ative loop has been divided. As evident, other than tasks 1 and 2,
no two tasks can be executed in parallel due to the nature of their
interdependencies. In other words, tasks 1 and 2 must be com-
pleted before initialization of task 3 with tasks 4 and 5 following
sequentially after task 3 is completed. However, each task can be



A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214 2207
Fig. 3. The task dependency graph of the various tasks of the algorithm.

Table 1
Task list during each MD iteration.

Task Description

Task 1 Update of neighbor lists
Task 2 Indenter motion
Task 3 Atomic positions and velocities updated
Task 4 Electron density, force and energy computation
Task 5 Atomic velocities updated

parallelized within itself: the computational load associated with
each task can be divided among the various processors by a suit-
able decomposition technique (Fig. 4). Although theuse of force de-
composition and spatial decomposition methods is prevalent [46],
we employ the atom decomposition technique for its simplicity.
The force decomposition method computes and divides a force-
matrix block-wise among the processors and offers better scaling
(O(N/

√
P)) over atom-decomposition (O(N)). Spatial decomposi-

tion offers even better scaling (O(N/P)) if the geometry can be
optimally divided into processors, but is much harder to imple-
ment [4]. However, we do not use force and spatial decomposition
because of the significant overhead incurred in the present appli-
cation to keep tab of atoms leaving and entering the domain due
to the flow like behavior of the material in the immediate neigh-
borhood of the indenter. Also, the algorithm incorporates ‘‘all to
all’’ communication and will not benefit significantly from a better
decomposition strategy.

3.2. Parallelization issues

Within each MPI process, parallelization is implemented using
threads on a ‘‘shared address space’’ platform consisting of eight
processors. The ‘‘shared-address-space’’ parallel platforms have a
common data space that is accessible to all the processors. This
enables simultaneous read operations to be carried out on such a
platform [18]. But concurrent write operations must be properly
scheduled by the programmer such that no two threads try towrite
to the same memory location. Critical sections can be used but
being highly expensive they are discouraged [50].

The tasks that require threading are the inner list update, the
electron-density computation, and the force computation. Each of
the above steps comprises an outer-loop which runs through all
the atoms, and an inner loop which runs through the appropriate
neighbors. Only the film–indenter force computation step involves
simultaneous write operations to both the inner loop and the
Fig. 4. Tasks 1, 3, 4 and 5 can be parallelized among themselves.

outer loop indices, and hence must be parallelized carefully. The
remaining steps involve write operations only to the outer loop
index and hence can be parallelized by distributing the outer loop
among various threads, as explained in Section 3.3.1.3.

The division of the computational load among various MPI
processes requires the appropriate inter-process communication
at necessary points in the program. In order to obtain maximum
efficiency, the communication must be minimized. This can be
achieved by efficient partitioning of the atomic system.

3.3. Programming technique

Computer hardware architecture has a crucial role to play in
the performance aspects of the parallelization scheme. The size
and manner in which caches are shared among cores [2,31], and
interconnect bandwidth [30,14] and latencies [2,8,9] determine
speed-up and scalability. However, these issues are beyond the
scope of this study.

A pseudo-code describing our algorithm is presented in Fig. 5.
All loops that step through individual atoms and are data parallel
(e.g. Verlet step 1) are encapsulated in an ‘‘openmp parallel for’’
statement to achieve thread level parallelization. The advantage of
using multiple threads on a single computer system (SMP node)
is well known and this has been coupled with the idea of using
several nodes in a parallel manner. The Message Passing Interface
(MPI) has been used in conjunction with OpenMP [10] to perform
the simulation. The implementation in this paper is fundamentally
similar to the ‘Hybrid masteronly’ model [20], which uses one MPI
process per node andOpenMPon the cores of thenode,withnoMPI
calls inside theOpenMPparallel regions. POSIX threads or pthreads
is a low-level API, and offers more flexibility but less workability
than OpenMP which is simple to implement. One would use
pthreads specifically in applications which require fine control
over thread management. However, since the current algorithm
was trivially parallelizable, the benefits of using OpenMP were
more pronounced.

Performance analysis tools such as EXPERT [59] and Vampir [6]
could be used tomonitorMPI aswell as OpenMPperformancemet-
rics, and subsequently optimize the application. The presence of
inactive threads and under-saturation of interconnect bandwidth
can reduce performance of hybrid schemes [48]. Additionally, the
level of threading support [20], i.e., single, funneled, serialized or
multiple can allow the programmer to experimentwith alternative
algorithms.

3.3.1. Implementation: threads
As stated previously, threads are used within each MPI process.

Data-parallelism is employed to divide the process task among



2208 A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214
Fig. 5. Pseudo-code describing the MPI/OpenMP parallelization of the MD simulation of nano-indentation.
the threads. The difference between partitioning among processes
and among threads is that each MPI process has a private memory
space whereas all threads of a particular process share the same
memory space. As a result, threads do not have to communicate
with each other as processes do. Since they share the memory
space, mutex locks need to be used to allow threads to write to
the samememory location. However, the usage of mutex locks has
been avoided by circumventing synchronous write operations on
the same memory location, as explained in Section 3.3.1.3.

3.3.1.1. Creating neighbor lists. The inner neighbor list computa-
tion (done every step) involves the use of a nested loop where the
outer loop runs over all the atoms with an inner loop running over
the indices of each atom’s outer list of neighbors. This procedure in-
volves writing of data corresponding to the atom having the outer
loop index and hence the outer loop can be parallelized. Since the
outer neighbor list is updated dynamically, it happens infrequently
and need not be parallelized.

Onemayuse a dynamic linked list (DLL) or a static array (SA) of a
suitably predefined size to store the outer and inner neighbor lists.
The functions associated with the creation of neighbor lists using
DLL involve memory allocation operations and hence cannot be
threaded with conventional memory allocation functions (calloc(),
malloc()) which are non-reentrant. Non-reentrant functions are
those functions which when called simultaneously from different
processes or threads will not return different values. In other
words, they cannot be called frommore than one thread at a time.
Threading can thus lead to memory management errors and/or
yield flawed results in this case. The absence of reliable thread-
safe memory allocators imposes restrictions on parallelizing this
step. This makes the parallelization of a DLL based implementation
difficult. An SA based implementation is thus preferred here owing
to its simplicity in spite of its largermemory costs. Two large arrays
of sizes defined by themaximumpossible number of neighbors are
initially created and are used to store the inner and outer neighbor
lists correspondingly.

3.3.1.2. Computing functional derivatives at atomic sites. As can
be seen from Eq. (1), net force depends on the density terms
only via their embedding function derivatives. Therefore, in the
nested loop, the net electron density at an atomic site is computed
by summing the pair-wise contributions from all its neighbors
and simultaneously the functional derivatives are calculated and
stored. Since the loop involves computations and write operations
for one particular ‘outer-loop’ atom, the outer loop can be
parallelized as there are no simultaneous write operations. The
only issue that needs to be considered while parallelizing using
OpenMP is the declaration of private variables.

3.3.1.3. Computing forces on each atom. This step involves the
calculation of the net force on each atom as per Eq. (1). Again,
only the atom corresponding to the outer-loop experiences write-
operations, even though read-operations are simultaneous. This is
also parallelized in a similar fashion as in computing functional
derivatives.

The forces between the film atoms and all the indenter atoms
must also be computed. However, each computation is associated
with write operations to both the outer loop (film atoms) and
inner loop (indenter atoms) indices. If the write operations are not
properly scheduled, race conditions will occur. To avoid that we
use a cyclic pairing scheme so that the inner loop can be threaded
without the need for locks as is explained in Fig. 6. Pairs are
considered between the outer ring ofN film atoms and iN indenter
atoms. First iN pairs are formed between the indenter atoms and
film atoms from 1 to iN . Next, another iN pairs are formedwith the
film atoms from 2 to (iN + 1). In this way, over all the selections,
all possible pairs are considered and in each selection, independent
pairs are selected. The pairs belonging to each selection can be
distributed among threads, thereby avoiding race conditions.

3.3.2. Implementation: MPI
The entire assembly of atoms is first partitioned and each

partition is assigned to a process as shown in Fig. 7. Thus, each
process ‘knows’ the atoms that it must work on. Once the positions
and its derivatives are initialized or read from a file in the root
process, they are broadcast (MPI_Bcast) to the various processes.

Next, each time step of the computation is associated with a set
of necessary inter-process communication directives:

Communication (MPI_Allgatherv) of the updated atomic po-
sitions from each process to all other processes after Task 3
(Fig. 8).
Communication (MPI_Allgatherv) of the functional derivatives
of the embedding function and modified terms associated with
each atomic site from each process to all other processes before
the force computation step in Task 4.



A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214 2209
Fig. 6. The cyclic pairing scheme employed to avoid race conditions.

Fig. 7. Partitioning scheme.

Reduction or sum (MPI_Allreduce) of energies (potential and
kinetic) computed by each process and the sum communicated
to all processes after Task 4.
Reduction (MPI_Reduce) of the forces on the indenter atoms
computed by all the processes after Task 4.

Since each process computes the total force (and the accelerations)
on the atoms under its purview, it does not need to gather
additional information on the forces on its atoms from the other
processes, as the other processes are concerned with an entirely
different set of atoms. Hence the communication of the forces on
each atom is replaced by the communication of the embedding
function derivatives at each atomic site.

4. Numerical results and observations

Our focus in this section is to study the performance of our
hybrid MPI/OpenMP parallelization scheme, rather than the actual
indentation process itself. An excellent review of simulation of
nano-indentation for the interested reader may be found in [53].
We looked at various sizes of the BCC Chromium film: ranging
from 10 × 10 × 10 unit cells (2321 atoms) to 40 × 40 × 40
unit cells (132 921 atoms). The indenter was a rigid hemispherical
displacement boundary of C atoms in each case. Figs. 9–13 depict
the performance of various parallelization schemes (including
LAMMPS) in which one or both of the following systems were
studied for 300 time steps without indenter motion: (i) The 11 k
system: a Cr film of 19 × 19 × 14 unit cells (11 054 Cr atoms
and 394 C atoms) and (ii) The 100 k system: a Cr film of 40 ×

40 × 30 unit cells (100 111 Cr atoms and 3173 C atoms). Fig. 14
describes the complete nano-indentation of the 19 × 19 × 14
unit cell system using our hybrid algorithm performed in 300 000
time steps. The performance metric of the various parallelization
schemes are discussed next.

4.1. Unthreaded MPI vs. hybrid MP/OpenMP schemes

The MPI process distribution among the 48 different cores in
the 6 SMP nodes in our computer cluster was done automatically
by the Message Passing Daemon (MPD), such that each node runs
a nearly equal number of processes. Fig. 9 depicts the speed-up
(defined as the ratio of time taken with 1 unthreaded process
to time taken with n unthreaded processes) obtained by using
an increasing number of MPI processes. For the 11 k system,
the speed-up flattens after only 18 processes have been put
to use: from this point on, adding more processes up to the
maximum of 48 in the cluster does not yield much greater speed-
up (poor scalability. [51]). None of these processes employed
any threads in their execution. Such a limit is reached owing to
the fact that the effectiveness of using more MPI processes is
eventually offset by the inter-process communication overheads.
For the larger system however, scaling is linear up to 24 MPI
processes and flattens beyond that. This can be explained by the
relative size of the communication overhead versus computational
task per processor. The communication load increases with
increasing number of processors, while the computational task
(per processor) decreases for the same system size. Hence, better
scaling is achieved if the computational task is a larger fraction of
the overall computational burden.

We now introduce threads in our computations. Although there
is no limit to how many threads a process can spawn, we looked
at up to 8 threads per MPI process as there were 8 cores per
SMP node. Fig. 10 shows the speed-up for various parallelization
schemes starting from the simplest serial execution (1MPI Process
× 1 thread/process) up to using the full capacity of the computing
cluster (6 MPI Processes × 8 threads/process) with each SMP node
running a maximum of 1 process, as determined by the MPD. For
the 11 k system, in the 6 × 8 scheme, the speed-up obtained
is 22.4, which is significantly larger than the speed-up of 12.7
obtained by using 48 unthreadedMPI processes (Fig. 9). For the 100
k system, the speed-up achieved is even higher: about 41 for the
6× 8 combination. In addition, the scaling for the 11 k systemwas
sub-linear beyond 4 threads; for the 100 k system linear scaling
up to 8 thread was observed, suggesting good scalability for the
algorithm. This achievement is an outcome of the shared memory
programming platform on which threads run, where inter-thread
communication is avoided. Hence the communication overheads



2210 A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214
Fig. 8. Gathering updated positions after Task 3.
Fig. 9. Speed-up obtained with increasing number of MPI processes (unthreaded). Left: 11 k system. Right: 100 k system.
are due to the 6 MPI processes, but the productivity is that of all
the 48 processors in the cluster.

Fig. 11 is an illustration of the time taken for inter-process
communication (IPC) in various process-thread configurations. The
IPC time was determined by the total time taken by the MPI
directives of Section 3.3.2 to execute. It can be seen that for
a fixed number of MPI processes, the overhead does not vary
significantly with the number of threads spawned by it and ideally
it should remain constant. The overhead however increases with
the number of MPI processes used, which also forms the central
reason for the speed-up limit as was observed in Fig. 9.

A comparison of various parallelization schemes would be
useful here. It was seen that the speed-up limit is not yet reached
with 12 unthreadedMPI processes (Fig. 9). Hence one could use 12
MPI processes and spawn 4 threads in each process to perform the
computation (in order to utilize all the processors in the cluster).
A comparison of such competing schemes is depicted in Fig. 12.
The 6 × 8 and the 12 × 4 schemes work comparatively well, with
a 6 × 8 scheme beating the 12 × 4 scheme by a small margin.
The slowdown in the 24 × 2 scheme is possibly correlated to the
fact that unthreaded MPI scalability gets saturated at 18 processes
(Fig. 9). The unthreaded 48 process scheme takes the longest time
owing to poor scalability as discussed earlier.

The scalability of the various competitive parallelization
schemes, i.e. 6 × 8, 12 × 4, and 24 × 2 with increasing system
size is described in Table 2. The system size corresponds to the film
size and the indenter interactions were disabled as they contribute
only a linear term (∼N) to the time taken. The 6 × 8 configura-
tion was fastest for small system sizes (small no. of atoms), but for
larger systems the 12 × 4 configuration gave a markedly superior



A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214 2211
Fig. 10. Speed-up using different numbers of threads (shades of gray) and different
number of processes (top) 11 k system (bottom) 100 k system.

Fig. 11. Inter-process communication overhead in various parallelization schemes
(11 k system).

Fig. 12. Time taken in various parallelization schemes (11 k system).

performance. This could be attributed to the memory architecture
(cache sharing) of the dual quad-core processor and the Intercon-
nect latencies. In our system, as mentioned earlier, the 2 cores in
each chip shared the same 6MB L2 cache. Thus, the performance of
Fig. 13. LAMMPS performance for 100 k system.

Fig. 14. Load–displacement curve for spherical indenter of the 11 k system with
speed of 0.0001 A/fs (10 m/s).

Table 2
Scalability for various parallelization schemes (average time/step in seconds).

MPI × thread System size≫ (number of unit cells in x, y, z directions)
10 × 10 × 10 20 × 20 × 20 40×40×40

6 × 8 0.0077 0.0575 0.4523
12 × 4 0.0094 0.0567 0.4110
24 × 2 0.0166 0.0749 0.4686

the Interconnect vis-à-vis intra-node communication could favor a
particular hybrid scheme for a particular computational load.

4.2. Comparison with LAMMPS

We now study the speed-up achieved by the general purpose
MD package LAMMPS. [45] when simulating the same system
under identical conditions. We adopt the 100 k system with no
thermostatting, time step of 1 fs, and study its evolution for 300
time steps as above. LAMMPS runs in a significantly shorter time
than our code because the interatomic forces are read and in-
terpolated from a table in LAMMPS whereas in our code, forces
are computed analytically in every time step as given in the
Appendix and thus take the largest share of time when execut-
ing our code. Nevertheless, as stated earlier, we chose analytical
computation of forces to ensure transparency and portability. Also,
the decomposition method used by LAMMPS (spatial decomposi-
tion) offers much better performance for large systems.

The speed-up achieved by LAMMPS when using up to 48 MPI
processes (i.e., using full resources of the cluster) is between 8 and
12 and is rather noisy. In comparison, our best speed-up for the
100 k system is about 41 which is larger than that from LAMMPS.



2212 A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214
4.3. Simulation of complete nano-indentation

Finally, we look at the load–displacement curve from the nano-
indentation simulation of the chromium film (Fig. 14). The film
was initially allowed to relax for 10,000 time-steps and then the
indenter was moved 0.0001 angstroms into the film with every
time-step (equivalent speed of 10−4 Å/fs = 10 m/s). The entire
simulation was run for 300,000 steps during which the indenter
was moved in by 3.08 Å and then taken out of the film at the same
speed. The optimal 6×8 process–thread schemewas used and the
entire simulation took 19,600CPU seconds (real-time) to complete.

Although we are using an atomistic approach, we adopt
Hertzian contact mechanics to compute elastic properties of the
Chromium film. We take the input parameters for the calcula-
tions as follows: indenter radius R = 9.78 Å, depth of indentation
d = 3.08 Å, maximum load P = 27.4 eV/Å, initial slope of unload-
ing curve (Fig. 14) dP/dh = 23.12 eV/Å2. Using the Oliver & Pharr
method described in [13], we get the composite modulus of the
film–indenter system (E*) as 265.7 GPa. Themodulus of chromium
then comes out to be 321 GPa which is close to that of sputtered
chromium films (285 GPa [49]). The contact radius is computed to
be 7.1 Å, which gives the hardness as 27.5 GPawhich is comparable
to 21.61 GPa [12] observed for 400 nm thick chromium coatings.

5. Conclusions

We have developed a computational scheme for MD simula-
tions that exploits thread-parallelism as well as message passing
techniques and implemented it on a cluster of 6 dual-quad-core
blade servers (SMP nodes), connected using Infiniband. The chal-
lenges and issues of such schemes were discussed in detail. We
have shown that such a coupled scheme can work nearly twice as
fast as a pure message-passing based implementation for certain
system sizes, owing to the additional overheads in the latter being
circumvented by the former scheme. For larger systems, however,
with increasingwork loadper SMPnode, the performancedifferen-
tial may become negligible.When using unthreadedMPI processes
with this algorithm, the speed-up obtained saturated quickly on
the cluster, well before the total number of available cores were
utilized.

A set of hybrid schemes were compared and were found to
be competitive. On larger clusters, there might be several such
schemes and their performancewill depend heavily on the proces-
sor (core) architecture. Certain code-optimizations and computa-
tional loads may favor one particular scheme over the other and
hence it is unwise to treat a particular scheme as the best pro-
cessor–thread configuration. However, using unthreadedMPI pro-
cesses is likely to be inefficient as compared to threaded processes.
LAMMPS, which does not spawn threads for parallelization, was
found to achieve a speed-up that was significantly inferior to that
obtained by our hybrid algorithm.

The nano-indentation of a chromium film was performed in
such a computational scheme and the results were found to
be within expectations. However, the algorithm used for the
parallelization is not optimal, and its performance can be enhanced
further. There is room for further improvements in the serial
algorithm as well.

Appendix

From the embedded atom method, the total energy of an
assembly of atoms is [11]

Et =


i

Fi(ρi) +
1
2


i,j
i≠j

Φ(rij) +


i

M(Pi) (A.1)

ρi =


j(≠i)

f (rij) Pi =


j(≠i)

f 2(rij) f (r) = fe
 re
r

β

(A.2)
where Et is the total energy, ρ is the electron density at atom idue
to all other atoms, f (rij) is the electron density distribution function
of an atom, rij is the separation distance between atom i and atom j
and re is the equilibrium interatomic distance, F(ρi) is the embed-
ding energy required to embed atom i in an electron density ρi, and
Φ(rij) is the two-body potential energy between atom i and atom
j. The analytical termM(Pi) has been introduced to fit the negative
Cauchy pressure of Chromium. The functions F(ρ) and M(P) are

F(ρ) = −Fo


1 − ln


ρ

ρe

n 
ρ

ρe

n

M(P) = α


P
Pe

− 1
2


exp


−


P
Pe

− 1
2


.

(A.3)

The pair-potential Φ(r) proposed by Pasianot [42] has the follow-
ing form
Φ(x) = (x − d)2(a3x3 + a2x2 + a1x + a0), x = (r/re) x ≤ d

= 0, x > d = 1.65. (A.4)
The above model has been applied to the indented film (Cr atoms).
The indenter is tetrahedral in shape is composed of fixed carbon
atoms in order to simulate the hardness of diamond. The car-
bon–chromium (C–Cr) interactions, i.e. force on the indenter, have
been modeled using a Morse pair potential, where y is the inter-
atomic C–Cr distance.

ϕ(y) = Do


exp


−αx


y
yeq

− 1


− 2 exp

−

αx

2


y
yeq

− 1


. (A.5)

TheMorse potential parameterswere acquired by the lattice inver-
sion method [60]. Incorporating the above equations, we get the
following forces:

T1ij = −
n2Foβfe

rρi

 re
r

β


ρi

ρei

n

ln


ρi

ρei


; r = rij (A.6)

T2ij = −
4αβf 2e Pi

P2
eir

 re
r

2β

2 −

Pi
Pei

 
Pi
Pei

− 1


× exp


−


Pi
Pei

− 1
2


(A.7)

T3ij = −


x − d
re


(5a3x3 + (4a2 − 3a3d)x2

+ (3a1 − 2a2d)x + (2a0 − a1d)) x = (r/re) ≤ d (A.8)

T4ij =
Doαx

yeq


exp


−αx


y
yeq

− 1


− exp

−

αx

2


y
yeq

− 1


(A.9)

Ti =


j≠i,(i,j∈Cr)

(T1ij + T2ij + T3ij) +


j≠i,(i∈Cr,j∈C)

T4ij. (A.10)

Ti is the total force on Cr atom(i) by all other chromium atoms.
Dividing this by themass gives the acceleration of atom(i). The var-
ious steps of the velocity-Verlet algorithm are shown below.

r(t + ∆t) = r(t) + v(t) · ∆t +
1
2
a(t) · ∆t2 (A.11)

v


t +

1
2
∆t


= v(t) +

1
2
a(t) · ∆t (A.12)

a(t + ∆t) = T/m (A.13)

v (t + ∆t) = v


t +

1
2
∆t


+

1
2
a(t + ∆t) · ∆t. (A.14)



A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214 2213
References

[1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University
Press, 1989.

[2] A. Asaduzzaman, F.N. Sibai, M. Rani, Impact of level-2 cache sharing on the
performance and power requirements of homogeneous multicore embedded
systems, Microprocess. Microsyst. 33 (5–6) (2009) 388–397.

[3] S. Bai, L. Ran, K. Lu, Parallelization and performance tuning of molecular
dynamics codewith OpenMP, J. Cent. South Univ. Tech. 13 (3) (2006) 260–264.

[4] K.J. Bowers, et al. Scalable algorithms for molecular dynamics simulations on
commodity clusters, in: SC 2006, Proceedings.

[5] W.M. Brown, P. Wang, S.J. Plimpton, A.N. Tharrington, Implementing
molecular dynamics on hybrid high performance computers — short range
forces, Comput. Phys. Comm. 182 (2011) 898–911.

[6] H. Brunst, B. Mohr, Performance analysis of large-scale OpenMP and hybrid
MPI/OpenMP applications with VampirNG, in: First International Workshop
on OpenMP, Proceedings.

[7] J.M. Bull, J.P. Enright, N. Ameer, A Microbenchmark suite for mixed-mode
OpenMP/MPI, in: Evolving OpenMP in an Age of Extreme Parallelism, 5th
International Workshop on OpenMP, IWOMP 2009, Dresden, Proceedings,
pp. 118-131.

[8] M.J. Chorley, D.W. Walker, M.F. Guest, Hybrid message-passing and shared-
memory programming in a molecular dynamics application on multicore
clusters, Int. J. High Perform. Comput. Appl. 23 (3) (2009) 196–211.

[9] M.J. Chorley, D.W. Walker, Performance analysis of a hybrid MPI/OpenMP
application on multi-core clusters, J. Comp. Sc. 1 (3) (2010) 168–174.

[10] R. Couturier, C. Chipot, Parallel molecular dynamics using OpenMP on a shared
memory machine, Comput. Phys. Comm. 124 (1) (2000) 49–59.

[11] M.S. Daw, S.M. Foiles, M.I. Baskes, The embedded-atom method: a review of
theory and applications, Mater. Sci. Rep. 9 (7–8) (1993) 251–310.

[12] S.A. Firstov, T.G. Rogul, S.N. Dub, Grain boundary engineering of nanostruc-
tured Chromium films, in: J. Lee, N. Novikov, V. Turkevich (Eds.), Innovative
Superhard Materials and Sustainable Coatings for Advanced Manufacturing,
2005, pp. 225–232.

[13] A.C. Fischer-Cripps, A review of analysis methods for sub-micron indentation
testing, Vacuum 58 (4) (2000) 569–585.

[14] C. Franck, E. Daniel, MPI versus MPI+OpenMP on IBM SP for the NAS
benchmarks, in: SC 2000, Proceedings.

[15] T.C. Germann, K. Kadau, P.S. Lomdahl, 25 Tflop/s multibillion-atom molecular
dynamics simulations and visualization/analysis on BlueGene/L. in: ACM/IEEE
Conference on Supercomputing, 2005.

[16] L.A. Girifalco, V.G.Weizer, Application of theMorse potential function to cubic
metals, Phys. Rev. 114 (3) (1959) 687–690.

[17] A.W. Götz, M.J. Williamson, D. Xu, D. Poole, S.L. Grand, R.C. Walker, Routine
microsecond molecular dynamics simulations with AMBER on GPUs. 1.
generalized born, J. Chem. Theory Comput. 8 (5) (2012) 1542–1555.

[18] A. Grama, Introduction to Parallel Computing, second ed., Pearson Education,
2003.

[19] S.L. Grand, A.W. Götz, R.C. Walker, SPFP: speed without compromise-a
mixed precision model for GPU accelerated molecular dynamics simulations,
Comput. Phys. Comm. 184 (2013) 374–380.

[20] G. Hager, G. Jost, R. Rabenseifner, Communication characteristics and hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP Nodes, in:
Cray User Group 2009, Proceedings.

[21] J.M Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley
Professional, 1997.

[22] M.J. Harvey, G. Giupponi, G.D. Fabritiis, ACEMD: accelerating biomolecular
dynamics in the microsecond time scale, J. Chem. Theor. Comput. 5 (2009)
1632–1639.

[23] Y. He, C.H.Q. Ding, Using accurate arithmetics to improve numerical
reproducibility and stability in parallel applications, J. Supercomput. 18 (3)
(2001) 259–277.

[24] D.W. Heermann, A.N. Burkitt, Parallel Algorithms in Computational Science,
Springer-Verlag, 1991.

[25] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for
highly efficient, load-balanced and scalable molecular simulation, J. Chem.
Theor. Comput. 4 (2008) 435–447.

[26] J.P. Hoeflinger, Extending OpenMP* to clusters, Intel White Paper, 2006.
[27] C. Hu, Y. Liu, J. Li, Efficient parallel implementation ofmolecular dynamicswith

embedded atom method on multi-core platforms, in: IEEE 2009 International
Conference on Parallel Processing Workshops.

[28] J. Hutter, A. Curioni, Dual-level parallelism for ab initio molecular dynamics:
reaching teraflop performancewith the CPMD code, J. Par. Comp. 31 (1) (2005)
1–17.

[29] R.A. Johnson, D.J. Oh, Analytic embedded atom method model for bcc metals,
J. Mater. Res. 4 (5) (1989) 1195–1201.

[30] G. Jost, H. Jin, D.A. Mey, F.F. Hatay, Comparing the OpenMP, MPI, and Hybrid
Programming Paradigm on an SMP Cluster, in: 5th European Workshop on
OpenMP 2003, Proceedings.

[31] V. Kazempour, A. Fedorova, P. Alagheband, Performance implications of cache
affinity onmulticore processors, in: 14th international Euro-Par conference on
Parallel Processing, Proceedings, 2008.
[32] V.V. Kindratenko, J.J. Enos, G. Shi, M.T. Showerman, G.W. Arnold, J.E. Stone,
J.C. Phillips, W. Hwu, GPU clusters for high performance computing, in: IEEE
Int. Conf. on Cluster Computing and Workshops, CLUSTER ’09, 2009, pp 1–8.

[33] C. Kittel, Introduction to Solid State Physics, seventh ed., Wiley, 2004.
[34] P. Lanucara, S. Rovida, Conjugate-gradients algorithms: an MPI–OpenMP

implementation on distributed shared memory systems, in: First European
Workshop on OpenMP, 1999.

[35] J. Lee, J. Duh, Nanomechanical properties evaluation of chromium nitride
films by nanoindentation and nanowear techniques, in: 31st International
Conference on Metallurgical Coatings and Thin Films, Proceedings, 188–189,
pp. 655–661.

[36] W.K. Liu, E.G. Karpov, H.S. Park, Nano Mechanics and Materials: Theory,
Multiscale Methods and Applications, John Wiley & Sons, 2006.

[37] R.D. Loft, S.J. Thomas, J.M. Dennis, Terascale spectral element dynamical core
for atmospheric general circulation models, in: SC 2001, Proceedings.

[38] E. Lusk, A. Chan, Early experiments with the OpenMP/MPI hybrid program-
mingmodel, in: IWOMP ’08, 4th international conference on OpenMP in a new
era of parallelism 2008, Proceedings, pp. 36–47.

[39] R.A. McCoy, Y. Deng, Parallel embedded-atom method simulations with
delayed electron density approximations, Comput. Phys. Comm. 100 (1–2)
(1997) 41–46.

[40] I.M.B. Nielsen, C.L. Janssen, Multi-threading: a new dimension to massively
parallel scientific computation, Comput. Phys. Comm. 128 (1–2) (2000)
238–244.

[41] K. Ohno, K. Esfarjani, Y. Kawazoe, Computational Materials Science: From ab
Initio to Monte Carlo Methods, Springer, 1999.

[42] R. Pasianot, D. Farkas, E.J. Savino, Empirical many-body interatomic potential
for bcc transition metals, Phys. Rev. B 43 (9) (1991) 6952–6961.

[43] J.C. Phillips, et al., Scalable molecular dynamics with NAMD, J. Comput. Chem.
26 (2005) 1781–1802.

[44] S.O. Pillai, Solid State Physics, New Age International, 2005.
[45] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics,

J. Comput. Phys. 117 (1995) 1–19.
[46] S.J. Plimpton, B.A. Hendrickson, Parallel molecular dynamics with the

embedded atom method, in: J. Broughton, P. Bristowe, J. Newsam (Eds.),
Materials Theory and Modelling, 1993, p. 37.

[47] R. Rabenseifner, Hybrid parallel programming: performance problems and
chances, in: 45th Cray User Group Conference 2003, Proceedings.

[48] R. Rabenseifner, G. Wellein, Communication and optimization aspects of
parallel programming models on hybrid architectures, Int. J. High Perf. Comp.
Apps. 17 (1) (2003) 49–62.

[49] G.P. Rehder, M.N. Carreño, Piezoelectric stimulation of microcantilever beams
for Young’s modulus determination of Amorphous Hydrogenated Silicon
Carbide, in: J. Swart, et al. (Eds.), 23rd Symposium on Microelectronics
Technology and Devices — SBMicro 2008, pp. 63–71.

[50] M. Resch, B. Sander, I. Loebich, A comparison of OpenMP and MPI for the
parallel CFD test case. in: First European Workshop on OpenMP, Proceedings,
1999.

[51] L. Smith, M. Bull, Development of mixed mode MPI/OpenMP applications,
J. Sci. Prog. 9 (2,3) (2001) 83–98.

[52] M. Stürmer, G.Wellein, G. Hager, H. Köstler, U. Rüde, Challenges and potentials
of emerging multicore architectures, in: High Performance Computing in
Science and Engineering, Garching/Munich 2007, 2009, pp. 551–566.

[53] I. Szlufarska, Atomistic simulations of nano-indentation, Materials Today 9 (5)
(2006) 42–50.

[54] K.B. Tarmyshov, F. Müller-Plathe, Parallelizing a molecular dynamics algo-
rithm on a multiprocessor workstation using OpenMP, J. Chem. Inf. Model. 45
(6) (2005) 1943–1952.

[55] C. Terboven, D. an Mey, D. Schmidl, M. Wagner, First experiences with intel
cluster OpenMP, in: R. Eigenmann, B.R. de Supinski (Eds.), OpenMP in a New
Era of Parallelism, in: Lecture Notes in Computer Science, vol. 5004, 2008,
pp. 48–59.

[56] L. Verlet, Computer ‘‘experiments’’ on classical fluids. i. thermodynamical
properties of Lennard-Jones molecules, Phys. Rev. 159 (1) (1967) 98–103.

[57] D. Wang, F. Hsiao, C. Chuang, Y. Lee, Algorithm optimization in molecular
dynamics simulation, Comput. Phys. Comm. 177 (7) (2007) 551–559.

[58] G. Wei, T.W. Scharf, J.N. Zhou, F. Huang, M.L. Weaver, J.A. Barnard,
Nanotribology studies of Cr, Cr2N and CrN thin films using constant and
ramped load nanoscratch techniques, 146–147, 2001, pp. 357–362.

[59] F. Wolf, B. Mohr, Automatic performance analysis of hybrid MPI/OpenMP
applications, J. Sys. Archit. 49 (10–11) (2003) 421–439. Special issue
‘Evolutions in parallel distributed and network-based processing’.

[60] J. Xie, Atomistic simulations and experimental studies of transition metal
systems involving Carbon and Nitrogen (Dissertation), KTH (Royal Institute of
Technology), pp. 1–6.

[61] Z. Yao, J.Wang, G. Liu,M. Cheng, Improvedneighbor list algorithm inmolecular
simulations using cell decomposition and data sorting method, Comput. Phys.
Comm. 161 (1–2) (2004) 27–35.

[62] O. Yifang, Z. Bangwei, L. Shuzhi, J. Zhanpeng, A simple analytical EAM model
for bcc metals including Cr and its application, Z. Phys. B 101 (1996) 161–168.

http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref1
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref2
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref3
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref5
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref8
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref9
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref10
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref11
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref12
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref13
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref16
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref17
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref18
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref19
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref21
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref22
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref23
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref24
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref25
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref28
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref29
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref33
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref36
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref39
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref40
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref41
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref42
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref43
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref44
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref45
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref46
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref48
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref51
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref53
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref54
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref55
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref56
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref57
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref59
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref61
http://refhub.elsevier.com/S0743-7315(13)00250-5/sbref62


2214 A. Pal et al. / J. Parallel Distrib. Comput. 74 (2014) 2203–2214
Anirban Pal graduated with honors from Indian Institute
of Technology Kharagpur in 2010 is currently pursuing his
doctoral studies in Mechanical Engineering at Rensselaer
Polytechnic Institute. During his time at the Atomistic
and Multi-scale Simulation Laboratory at IIT Kharagpur,
Anirban developed parallel computing codes for atomistic
simulations on a 48 core cluster. He also conducted
density functional calculations on carbon nanotubes in
epoxy matrices. His work reflects his range of expertise
in atomistic modeling, parallel computing and density
functional theory. For his Ph.D. thesis, Anirban is working

on defects and dislocation modeling in energetic materials. He is a member of the
American Physical Society and the Materials Research Society.

Abhishek Agarwala is a graduate from the Department
of Civil Engineering at the Indian Institute of Technology
Kharagpur. He worked at Bharti Realty for a year before
founding his own startup company, Archayne Labs, which
is aimed at providing online educational tools. Abhishek
has worked on a variety of activities during his academic
pursuits at IIT Kharagpur, which included developing par-
allel programs for atomisticmodeling on amulti-core clus-
ter. He also has practical experience on coupled atomistic
and finite element modeling techniques.
Soumyendu Raha has been part of the faculty of the
Supercomputer Education and Research Centre, Indian
Institute of Science, Bangalore since 2003. His research in-
terests are in numerical algorithms for dynamical systems
and in implementing numerical algorithms on emerging
scientific computing platforms. In particular, modification
of existing numerical algorithms for computing platforms
with reconfigurability and heterogeneity is being investi-
gated. Soumyendu obtained his Ph.D. from the University
of Minnesota and has workedwith IBM prior to joining his
present position.

Baidurya Bhattacharya obtained his B.Tech in Civil Engi-
neering from the Indian Institute of Technology Kharagpur
in 1991 and his M.S. (1994) and Ph.D. (1997) degrees in
Civil Engineering from the Johns Hopkins University, Bal-
timore. He was an Assistant Professor at the University
of Delaware (2001–2006) and a visiting faculty at Stan-
ford University (2005) before joining the Indian Institute
of Technology Kharagpur in 2006 where he became a Pro-
fessor in 2011. He remains an adjunct facultywith the Uni-
versity of Delaware, and is currently on sabbatical leave at
the Johns Hopkins University.


	Performance metrics in a hybrid MPI--OpenMP based molecular dynamics simulation with short-range interactions
	Introduction
	Background
	The basic tasks in MD
	The parallel computing paradigm & the computer system
	Numerics
	The interatomic potentials
	System initialization and loading
	Two step neighbor lists

	Parallelization
	What to parallelize?
	Parallelization issues
	Programming technique
	Implementation: threads
	Implementation: MPI


	Numerical results and observations
	Unthreaded MPI vs. hybrid MP/OpenMP schemes
	Comparison with LAMMPS
	Simulation of complete nano-indentation

	Conclusions
	Appendix
	References


