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Reliability-based structural design is necessary if uncertainties exist in loads, material and geometric properties and/or
mathematical models. The partial safety factors (PSFs) used in reliability-based design, for a class of structural com-
ponents under a given load combination and failure criteria, should preferably be applicable for a wide range of
structural configurations and design options. This paper describes the methodology in detail for developing a set of
optimal reliability-based PSFs for given limit state, load combination and target reliability. The class of structural
components considered is rectangular partially prestressed concrete beams in ultimate flexure limit state subject to
dead and live loads. The mechanical formulation of the flexural limit state is based on the principle behind prestressed
concrete design recommended by IS 1343 and SP16. The first order reliability method (FORM) with Rackwitz-Fiessler
transformation and gradient projection algorithm are used in this work and the methods are described in detail. Nu-
merical examples involving flexural design of rectangular partially prestressed concrete beams are described. The
conservatism in the code specified nominal moment capacity is brought out. A detailed survey of the statistics of rela-
ted random variables is presented. The variation of the reliability index β as a function of the nominal load ratio, for
different values of live load factor, characteristic compressive strength of concrete, nominal prestressing force, percen-
tage reinforcement and eccentricity of the prestressing force, is determined. PSFs optimized for a range of load ratios
and nominal prestressing force corresponding to a set of target reliabilities are presented.

KEYWORDS: Structural reliability; prestressed beams; interaction diagram; load and resistance factor design; first order
reliability method; ultimate limit state.

Significant uncertainties may be associated with parameters
governing the design and construction of a structure-starting
with material properties to expected loads to construction
methods and models used for analysis. It is most rational to
treat such uncertainties in a probabilistic format, specifical-
ly, to model the time-invariant quantities as random variables
and the time-dependent ones as stochastic processes. Reco-
gnizing the existence of these uncertainties is an admission of
the fact that the structure may not always satisfy its perfor-
mance and safety objectives during its intended design life.
The logical extension of this admission is to ensure that the
likelihood of unsatisfactory performance be kept acceptably
low during the life of the structure.

The subject of structural reliability provides the tools and
methodologies to explicitly determine the probability of such
failures (“failure” here in the sense of non-compliance or
nonperformance) by taking into account all relevant uncer-
tainties. These techniques can be used to design new struc-
tures with specified (i.e., target) reliabilities, and to main-
tain existing structures at or above specified reliabilities.
Even though such computed probabilities of failure (reliabili-

ty being 1 minus failure probability) may not have a frequen-
tist or actuarial basis, structural reliability provides a neutral
and non-denominational basis to compare different (and of-
ten disparate) designs and maintenance strategies on a com-
mon basis.

Like any other design approach, reliability based design
is an iterative process: the design is adjusted until adequate
safety is achieved and cost and functional requirements are
met. The final step of meeting the target reliability can either
be direct where the computed structural reliability has to ex-
actly satisfy the target reliability for each relevant limit state
or it can be indirect as in partial safety factors (PSF) based
design where the structure implicitly satisfies the target relia-
bility within a certain tolerance1. The term load and resistan-
ce factor design (LRFD) implies the approach followed in
the United States where the nominal resistance in the design
equation is multiplied by an explicit “resistance factor”-but
the nominal material properties that go into determining the
resistance are not factored. The term PSF based design im-
plies the approach taken in Europe where there is no explicit
resistance factor in design, but each material property gene-
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rally has its own partial safety factor. The latter approach is
taken in this paper.

This paper determines a set of optimal partial safety fac-
tors (PSFs) for the design of partially prestressed concrete
rectangular beams in flexural limit state defined by collapse
of concrete due to crushing. The problem is formulated as
an element reliability problem (as opposed to a system re-
liability formulation) and concerns the reliability of the most
critical section of the beam in flexure. Various material and
geometric properties, expected loads etc. are modeled as ran-
dom variables; the load combination is limited to dead and
live loads. First order reliability method (FORM) with gra-
dient projection algorithm is the kernel of the optimization
algorithm; a range of target reliabilities in ultimate flexural
limit state has been adopted to develop the optimal PSFs cor-
responding to given frequencies of nominal live to dead load
ratios.

The paper begins with a short introduction to the prin-
ciple behind prestressing of concrete and modes of failure
of prestressed concrete beams. The mechanical approach re-
commended by IS-4562 to determine capacity of rectangular
concrete sections has been described in detail. It is followed
by a description of the first order reliability method along
with the algorithm for the gradient projection method. The
methodology for reliability based load and resistance factor
design is described; a brief history of reliability based design
and analysis of prestressed concrete beams is presented. Sta-
tistics of the basic variables used and the numerical results
are given at the end.

DESIGN OF PRESTRESSED BEAMS IN FLEXURE

The tensile strength of concrete is negligible compared to its
compressive strength. In ordinary reinforced concrete, the re-
inforcing steel is used to carry the tensile stresses, and the
concrete near the tensile face may crack. Prestressing is in-
tended to artificially induce compressive stresses in the con-
crete to counteract the tensile stresses caused by external
loads, such that the loaded section remains mostly if not en-
tirely in compression3.

Prestressed sections are therefore more efficiently utili-
zed compared to ordinary reinforced concrete sections. Prest-
ressed concrete members are relatively lightweight as they
are built from high strength steel and high strength concrete,
more resistant to shear, and can recover from effects of over-
loading. However, prestressed concrete structures are more
expensive, have a smaller margin for error, and the design
process of prestressed members is more complicated. Alt-
hough the loss of prestress with time is built into the design,
unintended loss of prestress arising from corrosion of the ten-
dons, slippage etc. can have catastrophic consequences.

Partially prestressed concrete sections are reinforced with
prestressed tendons as well as ordinary rebars and can sustain
tension under working loads. Partial prestressing occupies
the whole spectrum of reinforcement between ordinary rein-
forced and fully prestressed concrete, and thus constitutes the
general case whose two extreme boundaries are represented
by fully reinforced and fully prestressed concrete 4.

Prestressed concrete beams may fail in several possible
ways (such as a combination of flexure, shear and torsion,
bursting of end blocks, bearing, anchorage or connection fai-
lures, excessive deflections etc.). This paper however, only
looks at ultimate flexural limit state of rectangular beams de-
fined by collapse of concrete due to crushing.

Ultimate moment capacity of prestressed beams

In IS 4562 the compressive stress-strain relationship for con-
crete (Figure 1) is taken to be parabolic up to a strain of
0.002, and horizontal from that point on. The design com-
pressive strength of concrete is taken to be fckd = 0.446
fck = fck/2.25, where fck is the characteristic compressive
strength of concrete. In essence, 2.25 is the material partial
safety factor on concrete strength. The failure strain of con-
crete in compression is 0.0035. IS 13435 specifies minimum
grade of concrete as M30 for post-tensioning and M40 for
pre-tensioning.

Stress

Strain

fc

Parabolic curve

0.00350.002
Fig. 1 Stress-strain characteristics of concrete

The design yield stress for reinforcing steel is fyd =
0.87fyn = fyn/1.15 where fyn is the characteristic yield
strength, and 1.15 is the partial safety factor on steel strength.
The modulus of elasticity of steel, E, is 200000 N/mm2. For
mild steel, stress is linearly proportional to strain up to a
strain of 0.002 and constant thereafter.
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Fig. 2 (a) stress strain characteristic of mild steel (b) high strength steel

For cold-worked (high-strength) bars, the stress-strain re-
lationship is linear-elastic up to a stress of 0.8fy (Fig. 2), af-
ter which point inelastic strain starts to develop, as shown in
Fig. 2(b). Let s be the total strain in cold-worked steel. The
elastic limit for strain is taken to be spl = 0.8∗fyd

E . If the total
strain is less than spl, the stress is s∗E. If the total strain s is
greater than spl, the stress can be found by linear interpolati-
on as in Table 1(based on SP166) where sil = s − spl is the
inelastic strain.

TABLE 1

STRESS AS A FUNCTION OF INELASTIC STRAIN BEYOND
ELASTIC LIMIT IN COLD WORKED STEEL

Inelastic strain (sil) Stress in steel (fs)

0-0.0001 0.8fy + 0.05 fy
sil − 0

0.0001 − 0

0.0001-0.0003 0.8fy + 0.05 fy
sil − 0.0001

0.0003 − 0.001

0.0003-0.0007 0.9fy + 0.05 fy
sil − 0.0003

0.0007 − 0.0003

0.0007-0.001 0.95fy + 0.025 fy
sil − 0.0007

0.0001 − 0.0007

0.001-0.002 0.975fy + 0.025 fy
sil − 0.001

0.002 − 0.001
> 0.002 fy
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The parabolic stress block for concrete, and the design
procedure adopted in SP-16 are very similar to the rectan-
gular stress block and the design procedure in ACI 318 7.
Naaman4 undertook a comprehensive study on the behavi-
or of partially prestressed members up to the ultimate point
using the nonlinear stress-strain characteristics of steel and
concrete. An approximate nonlinear analysis which takes in-
to account the non-linear stress-strain characteristics of steel
but considers the ACI assumptions of the equivalent rectan-
gular stress block was also performed. The values of ultimate
moment capacity, curvature etc. obtained by the approxima-
te method and the design procedure suggested by ACI were
compared with those obtained by the author’s nonlinear ana-
lysis. It was found that the ultimate moment capacities obtai-
ned by ACI are within 7% and on the conservative side of his
results. Thus we can conclude that the ACI design procedure
and hence the procedure suggested in Indian Standards are
sufficiently accurate.

The ultimate moment capacity of a partially prestressed
concrete section as a function of prestressing force used in
the flexural collapse limit state later in this paper can be
obtained in the form of a so-called interaction diagram. In-
teraction diagrams are plots of normalized compressive for-
ce, P ′ = P

fckbD , and normalized ultimate moment capacity,

M ′ = M
fckbD2 of a reinforced concrete section, both of which

can be expressed as functions of the percentage of steel rein-
forcement (p) and the location of the neutral axis, k = xu

D .
The term xu is the distance of the neutral axis from the right
edge, and b and D are the width and the depth of the section,
respectively.

Two cases are possible (Fig. 3) the neutral axis (NA) out-
side and the neutral axis inside the section. In the former, the
entire section is in compression, the maximum strain in con-
crete (which occurs at the right edge) is between 0.002 and
0.0035, the reinforcements on the right have yielded while
those on the left have not. In the latter case, concrete has
cracked and thus does not carry any load in the tensile zone,
the strain in the most compressed edge of the section is fixed
at 0.0035, and the reinforcements on the right have yielded
while those on the left may have yielded depending on the
value of k.

0.0035 0.0035
0.002

4D/7 3D/7

Parabola
Parabola0.67fck

stress

(a) (b)

0.67fck

Xu

0.87fy

xu=kD
g

Fig. 3 (a) Strain distribution lines for neutral axis outside and (b) inside
the section

For purely axial compression (k = infinity), the strain is
assumed to be 0.002 uniformly across the section. As long as
the NA lies outside the section, the strain is assumed to be
constant at 0.002 at 3D/7 from the highly compressed edge
which acts as the fulcrum for the strain distribution line Fig.
3 (a).

Figure 3 (a) also shows the shape of the stress block for
concrete when the neutral axis lies outside the section. The
stress is uniform and equal to 0.446fck up to 3D/7 from the

highly compressed edge and is parabolic for the rest of the
section as the strain is less than 0.002.

The expression for g, the difference between the maxi-
mum and the minimum stresses in concrete is given as

g = fckd

(
4

7k − 3

)2

(1)

When the neutral axis lies outside the section (k > 1) the
normalized compressive force and moment capacity are:

P ′ =
P

fckbD
= 0.809

fckd

fck
C1 +

n∑
i =1

pi

100fck
(fsi − fci) (2)

M ′ =
M

fckbD2
= 0.809

fckd

fck
C1 (0.5 − C2) + P ′ e

D
+

n∑
i =1

pi

100fck
(fsi − fci)

(yi

D

)
(3)

where,C1= coefficient for the area of stress block given by:

C1 = 1 − 4
21

(
4

7k − 3

)2

(4)

C2D = distance of the centroid of the concrete stress
block measured from the highly compressed
edge

n = number of rows of steel reinforcement
pi = percentage steel reinforcement in the ith row
fsi = stress in the ith row of reinforcement,

compression being positive and tension being
fci = negative stress in concrete at the level of the ith

row of reinforcement
yi = distance of the ith row of reinforcement from

the centroid of the section, positive for the left
edge and negative for the right edge. eccentricity

e = of the prestressing force

When the neutral axis lies within the section (k < 1), the
normalized compressive force and moment capacity are:

P ′ =
P

fckbD
= 0.809

fckd

fck
k +

n∑
i = 1

Pi

100fck
(fsi − fci) (5)

M ′ =
M

fckbD2
= 0.809

fckd

fck
k (0.5 − 0.416k) + P ′ e

D

+
n∑

i =1

Pi

100fck
(fsi − fci)

(yi

D

)
(6)

The expression of the moment capacity given by SP-16
does not include the component P ′ e

D , the moment due to the
eccentricity of the prestressing force needs to be included to
consider the effect of prestressing on the moment capacity of
the section.

Example beam cross-section used in this paper

The rectangular beam section modeled in this paper is consi-
dered to have two rows of reinforcement each at a distance d ′
from the edge as in Figure 4 and each making up half of the
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reinforcement of the section such that p1 = p2 = p/2 where
p is the total percentage reinforcement and p1 and p2 are the
percentage of reinforcement for row 1 and row 2 respective-
ly. The figure below the cross-section of the beam shows the
force balance with C being the equivalent compressive for-
ce and T being the equivalent tensile force. To construct the
interaction diagram, fs1 and fs2, stresses in reinforcement
respectively for the right and left rows and fc1 and fc2, the
stresses in concrete need to be determined.

C

T

xu

D

b

d’

Fig. 4 Rectangular section used in the paper

When k > 1, the strains in the right and the left reinfor-
cements are, respectively:

s1 = 0.014

(
k − 1 + d′

D

(7k − 3)

)
(7)

s2 = 0.014

(
k − d′

D

(7k − 3)

)
(8)

The distances of the two rows of reinforcement from the
centroid are:

y1

D
= (0.5 + d′) (9)

y2

D
= (0.5 − d′) (10)

when k < 1, the corresponding values are:

s1 = 0.0035

(
1 − k + d′

D

k

)
(11)

s2 = 0.0035 (12)
y1

D
= (0.5 + d′) (13)

y2

D
= (0.5 − d′) (14)

Figure 5 shows a set of interaction diagrams generated by
this method for the following values: fck = 50 N/mm2,fyn =
415 N/mm2, p/fck = 0 to 0.5%, e = 0.15D, d = 0.05D.

P u
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Fig. 5 Interaction diagram

As mentioned above interaction diagrams have been used
as a tool to determine the ultimate moment capacity of a con-
crete section for a given prestressing force. Analytically, for
a given P , one would need to determine the position of the
neutral axis by iteration using Eq. (2) or (5) depending on the
position of the neutral axis, calculate the value of M , using
either Eq. (3) or (6) as appropriate. Notice that the graphs
drops to M = 0 around P ′ between 0.4 and 0.5 as the secti-
on’s compressive strength is exceeded at such high prestres-
sing forces.

Reliability based design

Reliability based design, while taking into account various
uncertainties associated with a structure, is much like other
design processes in revising the design until the demands ma-
de of the structure in terms of safety, cost and functions are
met. The indirect method of achieving the target reliability
such as partial safety factor design and load and resistance
factor design aim at a design which implicitly satisfies the
target reliability within a certain tolerance. The method used
in this paper to determine the reliability of a structural com-
ponent and the procedure of obtaining the optimal load and
resistance factors to be used in design is described below.

First Order Reliability Method

A limit state or performance function, g(X),for a structural
component is defined in terms of the basic variables, X , such
that g(X) < 0 denotes failure, g(X) > 0 denotes satisfacto-
ry performance, and the surface given by g(X) = 0 is called
the limit state equation or limit state surface. The performan-
ce function g is typically obtained from the mechanics of the
problem at hand.

The basic variables generally comprise of quantities like
material properties, loads or load-effects, environmental pa-
rameters, geometric quantities, modeling uncertainties, etc.
They are usually modeled as random variables; however, tho-
se with negligible uncertainties may be treated as determini-
stic. The general expression of failure probability is

Pf = P (g (x) < 0) =
∫

g(x)<0

fX(x)dx (15)

where fX(x) is the joint probability density function for
X . The reliability of the structure would then be defined as
Rel = 1 − Pf .
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Closed-form solutions to Eq. (15) are generally unavaila-
ble. Two different approaches are widely in use: (i) analytic
methods based on constrained optimization and normal pro-
bability approximations, and (ii) simulation based algorithms
with or without variation reduction techniques and both can
provide accurate and efficient solutions to the structural re-
liability problem. The first kind, grouped under First Order
Reliability Methods (or FORM), holds a distinct advantage
over the simulation based methods in that the design point(s)
and the sensitivity of each basic variable can be explicitly
determined.

FORM calculates the reliability of a system by mapping
the failure surface onto the standard normal space and then
by approximating it with a tangent hyperplane at the design
point (defined as the point on the limit state surface in the
standard normal space that is closest to the origin)8. Provided
the reliability problem is well-behaved and straightforward,
the solutions obtained by FORM are reasonably close to that
obtained by the relatively expensive simulation based solu-
tions. FORM has been used in this paper to determine the
reliability of the prestressed designs being considered.

The two important steps of FORM are described in detail
in the following.

1. Map the basic variables X on to the independent stan-
dard normal space Y and hence g(X) to g1(Y ). Se-
veral mappings are possible, such as (i) Hasofer-Lind 9

or second moment transformation which uses informa-
tion only on the first two moments of each X , (ii) Nataf
transformation10 which uses marginal distribution of each
X and the correlation matrix of the X vector, (iii) Ro-
senblatt transformation10 which uses nth order joint dis-
tribution information, a special case of which is the so-
called full distribution transformation valid when the X
are mutually independent. This paper uses the Rackwitz-
Fiessler11 transformation which converts each X point-
by-point into an equivalent normal U through a marginal
distribution and density equivalence, and then the vector
U into the independent standard normal vector Y through
a Nataf type transformation. At any candidate checking
point, x∗, the standard deviation and mean of the equiva-
lent intermediate normal, Ui, are:

σi
N =

φ
(
Φ−1 (Fi (x∗

i ))
)

fi (x∗
i )

μi
N = x∗

i − Φ−1 (Fi (x∗
i ))σi

N (16)

Fi and fi are the cumulative distribution function and the
probability density function of the original X i, respec-
tively. The intermediate U vector is generally dependent,
and is mapped onto the space of independent standard
normals, Y , through the following transformation:

y
−

= L−1 z− where zi =
ui − μi

N

σi
N

(17)

L is the lower triangular matrix obtained by Cholesky fac-
torization of the correlation matrix, R ′, of Z, which de-
viates from the correlation matrix R, of X , on account of
the nonlinear transformation between each X i and Zi, but
the deviation is slight and can be easily corrected12.

2. Locate on g1 the point y
−

* closest to the origin,

min F = y
−

T y
−

subject to G = g1

(
y
)

= 0 (18)

Let the solution to this optimization problem be y ∗ and let
β be the distance of this optimal point from the origin. This
minimum norm point y∗, is known as the checking or the de-
sign point. The limit state surface g1 can be approximated by
a tangent hyperplane at y∗, yielding the approximate proba-
bility of failure as

Pf = Φ (−β sgn [g1 (0)]) (19)

The signum function determines whether the origin is in
the safe domain or not. The drawback of FORM is that it pro-
vides the exact solution only if the original limit state is linear
and the basic variables are normally distributed. Otherwise,
the extent of error depends on the curvature of the limit state
and the method of mapping of X onto Y .

After performing a FORM analysis, the design point y ∗
can be transformed back into the basic variable space, yiel-
ding the “checking point”, x∗ which cannot be obtained from
simulation based solutions. It is implied that if the structural
element in question is designed using this combination x∗ ,
the reliability of the component would be β (within the ap-
proximations of FORM). This, in fact is the basis of partial
safety factor design, discussed subsequently.

The gradient projection method, originally developed by
Rosen13, is well-suited to tackle the constrained non-linear
optimization problem in Eq. (18) and has been adopted in
this paper. The essential steps of the gradient projection me-
thod as applied to FORM are described next13.

Gradient projection method

The gradient projection method is a modified version of the
steepest descent method for unconstrained optimization. To
solve the optimization problem(18), one can determine a di-
rection of search dk from the current point yk and then search
for a new point along that direction as

yk+1 = yk + αk dk (20)

The new point is the optimal point along dk, however it
may not be the optimal point of the entire feasible set. Hence,
at every new point this process is repeated until the point sa-
tisfies the optimality conditions. The process of searching for
the minimum point along a direction is called a line search.
Armijo’s rule has been used for the line search in this study
which states that the scalar step size αk is acceptable (neither
too large nor too small) if it satisfies the following conditions:

F (yk + αkdk) ≤ F (yk) + εαk∇F (yk) dk (21)
F (yk + ηαkdk) � F (yk) + εηαk∇F (yk) dk (22)

Values 0 < ε < 1 and η > 1, and ε = 0.2 and η = 2 are often
used.

The new direction of search dk is taken to be the projecti-
on of the negative gradient of the objective function onto the
tangent plane of the feasible set since each point must remain
in the feasible domain:

dk = −
[
I − ∇G (yk)T ∇G (yk)

|∇G (yk)|2
]

yk (23)

The entire algorithm is described in Fig. 6.
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Fig. 6 Gradient projection method

Reliability based load and resistance factor design

Reliability based load and resistance factors in a so-called le-
vel 1 safety checking design format are intended to ensure a
nearly uniform level of reliability across a given category of
structural components for a given class of limit state under a
particular load combination14. The design or checking point,
X∗, obtained from a FORM analysis, satisfies

g
(
X−

∗
)

= 0 (24)

Since nominal or characteristic values of basic variables,
instead of checking point values, are typically used in design,
Eq. (24) may be written as:

g

(
Xn

1

γ1
, ...,

Xn
k

γk
, γ

k+1 Xn
k+1, γ

k+2 Xn
k+2, · · · ,

γm Xn
m) ≥ 0 (25)

where the superscript n indicates the nominal value of the va-
riable. We have partitioned the vector of basic variables into
k resistance type and m − k action type quantities. The par-
tial safety factors, γi, are typically chosen to be greater than
unity, such that they divide the nominal resistance values and
multiply the nominal action values to yield the design values:

resistance type PSFs : γi =
Xn

i

X∗
i

i = 1, ..., k (26)

action type PSFs γi =
X∗

i

Xn
i

i = k + 1, ..., m (27)

If the checking point equation can be separated into a
strength term and a load-effect term due to simulataneous-
ly acting loads, the following safety checking scheme may

be adopted for design:

Rn

(
Xi

n

γi
, i = 1, ..., k

)
≥ l

(
m−k∑
i−1

γiQni

)
(28)

where Rn is the nominal resistance function of the member
being considered, and l is the load effect function, and Qni

represents the nominal value of the ith load. Note that there
is no separate resistance factor (φ) multiplying the nominal
resistance (as in LRFD) since material partial safety factors
have already been incorporated in computing the strength. As
stated above, the partial safety factors (PSFs) are optimized
in some sense to be valid for a class of structural components
in some given limit state and load combination.

Although the FORM approach gives a lucid explanation
of how and why of the load and resistance factors, their op-
timal values do not necessarily have to involve FORM ana-
lyses; simulation-based analyses are equally adequate. The
essential steps in developing optimal PSFs are described in
Fig. 7.
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Fig. 7 Determination of load and resistance factors

Of particular interest is the optimality criteria and cons-
traints in determining the PSFs (or LRFs in LRFD). Let there
be n representative structural components selected to deve-
lop the optimal factors, and let wi be the weight (or relative
importance, or relative frequency) assigned to the i th such
component. For a given set of PSFs, the reliability of the i th

component is βi. Let βT be the target reliability index (equi-
valent to a target reliability of Φ(βT )) for the components in
the given limit state.

The optimality criteria may be as simple as:

min βi (γk, k = 1, ..., m) ≥ βT (29)

which, however, would lead to mostly overdesigned com-
ponents. An alternative approach could be to minimize the
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sum of weighted squared deviations from the target:

min

[
n∑

i=1

Wi (βi (γk, k = 1, ..., m) − βT )2
]

where
n∑

i=1

Wi = 1 (30)

Hansen and Ditlevsen15 provide an alternative approach:

min
∑

i
[c (βi (γ, ϕ) − βT ) + exp (−c (βi (γ, ϕ)

−βT )) − 1] (31)

and recommended a value of c = 4.35 for good results.
NBS Spl. Pub. 57716 adopted the weighted squared diffe-

rence between the nominal resistance and required nominal
resistance for each component as the objective to be minimi-
zed. The former is the result of the design equation with trial
LRFs. The latter is the nominal resistance required to exactly
satisfy the target reliability for the given structure. Working
on reliability based design of nuclear power plant contain-
ments, Hwang et al.16 took the weighted squared deviation of
the log-failure probabilities as the objective. More than a de-
cade later, while calibrating the ultimate limit state design of
mooring lines, Horte el al.17 took sum of the squared devia-
tions of the failure probabilities from the target value as the
objective as it provided “a high penalty for under-designed
cases”.

In addition to the objective function, several constraints
may be introduced to satisfy engineering and policy conside-
rations, such as:

βT − min βi (γ, ϕ) ≤ Δmax

ϕi ≤ 1 for some or all i
γj ≥ 1 for some or all j (32)

etc.
where Δmax is the maximum permissible deviation below
the target.

RELIABILITY ANALYSIS OF PRESTRESSED BE-
AMS

Al-Harthy and Frangopol18 performed a comprehensive stu-
dy on 73 prestressed beams designed to the 1989 ACI 318
standard to find out their implied reliability levels. Three ty-
pes of limit states were considered: (i) ultimate strength in
flexure, (ii) cracking in flexure, and (iii) permissible stresses
at initial and final stages of prestressing (due to both loading
and prestressing). Only dead and live load effects were con-
sidered. The random variables included dead and live loads,
material properties (concrete tensile and compressive strengt-
hs, concrete density), geometric properties (area of prestress
strands, beam dimensions), initial, final and ultimate prest-
ressing forces. Modeling uncertainty in estimating the “be-
havior of prestressed concrete beams” was also incorpora-
ted as a random variable, but the authors have not elabora-
ted on the formulation. All random variables were taken to
be normally distributed except live load (taken to be Type
I maximum). The effect of correlation among some of the
random variables was also studied. The Rackwitz-Fiessler11

algorithm was used in the FORM analysis. The authors con-
cluded that the reliability indices implied by the 1989 ACI

318 design standard are non-uniform over various ranges of
loads, span lengths and limit states. The limit state of permis-
sible tension in the final stage was found to be critical in most
cases. They recommend the next logical step as the determi-
nation of target reliability and developing consistent load and
resistance factors for design.

Hamann and Bulleit19 took a slightly different approach
to examining the reliability of under-reinforced high-strength
concrete prestressed beams designed in accordance with the
1983 ACI-318 standard. They looked only at the ultima-
te flexural limit state of beams subjected to dead and snow
loads. Where Al-Harthy and Frangopol included all the ma-
terial and geometric random variables in the FORM analy-
sis, Hamann and Bulleit first estimated the moment capacity
through Monte Carlo simulations, fitted the data to standard
distributions, and then performed a first order second mo-
ment reliability analysis on the linear limit state. Mcap was
determined, as a function of the material and geometric pro-
perties, through an iterative non-linear analysis which inclu-
ded the shape of the stress-strain curves of concrete and steel
as given by Naaman4.

Reliability for Class-1 structures, particularly concrete
containment structures for nuclear power plants, is a much
researched subject primarily due to the dire failure conse-
quences of the containment structure in terms of environ-
mental impact, human casualties and other economic costs.
Hwang et al.16 described a Load and Resistance Factor De-
sign (LRFD)-based approach to determine the critical load
combinations for design of concrete containment structures.
The limit state, corresponding to ultimate strength of concre-
te, was defined in the 2-D space of membrane stress and ben-
ding moment in the shell, leading to an octagonal limit state
surface. Yielding of reinforcements was permitted. Working
also on the reliability of concrete containments, Pandey 20

on the other hand took the limit state as tensile cracking of
concrete to represent the failure mode of through-thickness
cracking. Based on a set of flexural, lift-off and destructi-
ve tests over time on 16 representative beams, he proposed
a more quantitative approach to update the probability dis-
tributions of the prestressing force and the number of degra-
ded tendons in the containments. Varpasuo21 focused on seis-
mic reliability of a VVER-1000 containment structure and
hence took cracking of concrete after yielding of reinforce-
ment as the limit state. Both Pandey’s and Varpasuo’s limit
states form sides of the octagonal limit state considered by
Hwang et al along with failure corresponding to simultaneous
yielding of reinforcement and cracking of concrete.

NUMERICAL RESULTS

Limit state and design equation

We consider only flexural limit state for the beam under dead
and live loads. Failure is defined as crushing of concrete whi-
le reinforcements are allowed to yield. The mechanics of this
failure criterion has been described in detail in Section 2. The
limit state equation is:

Mcap − (MDL + MLL) = 0 (33)

where Mcap = Moment capacity, MD = Moment due to dead
load, ML = Moment due to live load. The corresponding PSF
format is:

Mcap,n > γD MDn + γL MLn (34)
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where γD = dead load factor, γL = live load factor, Mcap,n

= nominal moment capacity, MDn = nominal dead load mo-
ment, MLn = nominal live load moment. Note that Mcap,n

already includes the effect of material parital safety factors on
concrete and steel strengths. The objective here is to obtain
optimized PSFs for a range of structural configurations and
design options corresponding to a target reliability, βT . As
we will see next, within the scope of the above limit state and
design equations, the structural configuration is completely
specified by the ratio of the two nominal loads, while the de-
sign options are specified by the choice of concrete strength,
steel yield strength, eccentricity of the prestressing force and
percentage of reinforcements.

As described before, the normalized moment capacity,

M ′
cap =

Mcap

fckbD2
= M ′

cap (P ′, fc, fy, E, p/fck, P ′
n, e) (35)

is a function of the prestressing force P ′, compressive
strength of concrete fc, yield strength of steel fy, Young’s
modulus of reinforcing steel E, eccentricity of the prestres-
sing force e and the normalized percentage reinforcement
p/fck for a given section. Likewise, the nominal moment ca-
pacity is:

M ′
cap,n

=
Mcap,n

fckbD2
= M ′

cap,n (P ′
n, fckd, fyd, En,

p/fck, e) (36)
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Fig. 8 Bias and c.o.v. of Mcap respectively as a function of Pn for three
values of fck (40, 50, 60 Mpa)

Since the moment capacity is an implicit function of
four basic variables, its normalized distribution is not readily
available, unlike the two normalized loads whose distribution
functions are well-documented. For each call to evaluate the
limit state, the random as well as the nominal moment capa-
cities are separately obtained from the interaction diagram.

Eq. (3) in conjunction with Eq. (3) or Eq. (6) with Eq. (5) de-
pending on the location of the NA are used to compute the,
nominal moment capacity. The same set of equations is used
to compute the random moment capacity with f ckd replaced
by fc and fyd replaced by fy . Note that the design material
properties fckd = fck/2.25 and fyd = fyn/1.15 already in-
clude the partial safety factors of 2.25 and 1.15 respectively
on the nominal values.

Figure 8 shows the variation of the bias (mean/nominal)
and c.o.v. (std. dev./mean) of the moment capacity as a func-
tion of nominal prestressing force for three different values
of characteristic strength of concrete. Other parameters are
fixed at e/D = 0.15, d′/D = 0.05, p = 0.2%.

Clearly, there is substantial conservatism in the code-
specified nominal strength-the bias can be as high as 1.4 de-
pending on the level of the prestressing force. Such high bias
is partly the result of the two factors of safety (each equal
to 1.5) employed successively on the characteristic strength
of concrete at the design stage (i.e., fckd = 0.446fck =
fck/1.5/1.5)-a practice whose rationality may be questio-
ned.

Optimized load and resistance factors

The limit state equation can be normalized with the design
equation:

gn =
Mcap

Mcap,n

−MD/MDn + (ML/MLn) (MLn/MDn)
γD + γL (MLn/MDn)

= 0 (37)

If the statistics of the three normalized random variables
above (capacity, dead load and live load) are known and the
choice of steel and concrete are given, the reliability index
for the above limit state equation would depend on the LRFs,
the nominal load ratios and the percentage reinforcement:

β = Φ−1 (gn > 0)
= β (γD, γL, MLn/MDn, p, P ′

n; fck, fyn, e) (38)

If there are nr different nominal load ratios
ri(MLn/MDn)i with weights wr

i, and np choices of no-
minal prestressing force Pnj , with weights wp

i , the optimal
LRFs are the solution of the following problem:

min

⎡
⎣ np∑

j = 1

nr∑
i =1

wr
i wp

j (β (γD, γL; γi, Pnj) − βT )2
⎤
⎦

where
nr∑
i=1

wi
r = 1,

np∑
j=1

wi
p = 1 (39)

subject to:

γD > 1
γL > 1

The distribution and statistics of the basic variables are li-
sted in Table 2. All basic variables are assumed to be mutual-
ly independent. These have been extracted from a larger set
collected from the available literature as described in the Ap-
pendix. The deterministic parameters and their values used
are listed in Table 3.
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TABLE 2

STATISTICS OF BASIC VARIABLES

Random Variable Description Statistics Distribution
(mean, c.o.v.)

P ′ normalized prestressing Lognormal
force (1.15Pn,10%)

fc compressive strength Normal(fck + 0.825sc, sc)∗
of concrete

fy Yield strength of Lognormal(1.1133 fyn,0.09)
steel

E Young’s modulus Normal(1.001103 En,0.01)
MD/MDn Normalized dead Normal(1,0.1)

load moment
ML/MLn Normalized live Type 1(0.9,0.3)

load moment
sc = standard deviation for characteristic strength of concrete as
given in IS 1343[5]

The weights for nominal live to nominal dead load mo-
ments (Table 4) have been taken from NBS SP57716. Strictly
speaking these weights are for reinforced concrete structures,
but are assumed to be applicable to prestressed beams. The
parameter Pn is taken to have 3 values, 0.15, 0.2 and 0.25
having a weight distribution o as shown in Table 5. Three
different values for the target reliability index have been ta-
ken: 3.0, 3.5 and 4.0.

TABLE 3

VALUES OF DETERMINISTIC PARAMETERS

Parameter Description Values taken
MLn/MDn Nominal live to nominal dead 0.25, 0.5,

load moment ratio 1.0, 1.5, 2
p Percent reinforcement 0.2%

fck Characteristic compressive 40, 50 and 60 MPa
strength of concrete

fyn Nominal yield strength of 415 MPa
reinforcing steel

En Nominal YoungŠs modulus of 200 GPa
reinforcing steel

P n = Pn/(fckbD) Normalized prestressing 0.15, 0.2 and 0.25
force

βT Target reliability index 3.0, 3.5, 4.0
e/D Eccentricity of prestressing 0.15

force

TABLE 4

RELATIVE WEIGHTS FOR NOMINAL LOAD RATIOS

MLn/MDn 0.25 0.5 1.0 1.5 2.0
weight 0.1 0.45 0.3 0.1 0.05

TABLE 5

RELATIVE WEIGHTS FOR NOMINAL PRESTRESSING FORCE

Pn 0.15 0.2 0.25
weight 0.3 0.4 0.3

We first look at the variation of the reliability index Eq.
(38) as a function of the nominal load ratios. Two of the pa-
rameters γD = 1.1 and fyn = 415MPa are kept fixed. The
other five, γL, p, fck, P

′
n and e/D are varied one at a time, as

shown in Figs. 9 to 13 respectively.
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Fig. 9 beta vs. Ln/Dn with varying γL and fixed p = 0.2%,
Pn = 0.2,eby D = 0.15 and fck = 50MPa
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As can be seen from the figures the reliability decreases
with increasing load ratio. Further, at any given load ratio, re-
liability increases as expected with increasing live load fac-
tor, or increasing nominal prestressing force, or increasing
concrete strength or increasing eccentricity. The effect of in-
creasing p, fck and e/D is almost insignificant leading us to
conclude that the contribution of concrete strength and non
prestressed steel reinforcement to flexural reliability is rela-
tively small.

Finally the optimized PSFs for various combinations of
βT and fck are shown in Table 6. Of course, desirable pro-
perties like low shrinkage, low creep characteristics and high
tensile strength may automatically lead to the choice of a hig-
her grade of concrete.

TABLE 6

OPTIMAL LOAD AND RESISTANCE FACTORS (γD , γL) FOR
DIFFERENT COMBINATIONS OF βT AND fck

Target reliability index, βT

3.0 3.5 4.0
Characteristic 40 MPa 1, 1.54 1, 1.87 1.12, 2

strength of 50 MPa 1, 1.55 1, 1.88 1.12, 2
concrete, fck 60 MPa 1, 1.56 1, 1.87 1.1, 2
Recommended LRFs for all 1, 1.55 1, 1.88 1.1, 2

concrete grade

CONCLUSIONS

This paper described the detailed reliability based methodo-
logy for developing an optimal set of partial safety factors.
The formulation centered on rectangular partially prestressed
beams in flexure subject to dead and live loads with failure
defined by crushing of concrete. The mechanistic formulati-
on was based on IS1343, IS456 and SP16. Work is in pro-
gress to include more load combinations, realistic load ratios
and their weights, loss of prestressing force and modeling un-
certainties, and to look at serviceability limit state of class I
prestressed structures.
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APPENDIX

AVAILABLE STATISTICS OF RELEVANT BASIC
VARIABLES FROM THE LITERATURE

Variable Distribution mean COV Context/Source
type relationship

fck normal 0.67f’cn 0.1-0.25 Prestressed
- 1.17f’cn concrete

beams(a)
normal 1.03f’cn 0.14 Nuclear

+ 5.2(MPa) containment
structure(b)

normal 1.02f’cn 0.14 Nuclear
+ 1219(ksi) containment

structure(c)
normal 46.3Mpa 0.106 Nuclear

containment
structure(d)

normal 0.895f’cn 0.15 Prestressed
conc. beams(e)

normal 0.675f’cn 0.15 Prestressed
+ 1100(psi) conc. beams(f)

Fy lognormal 71.0ksi 0.11 (b)
normal 530.5Mpa 0.036 (c)
normal 1.1133fyn 0.09 (e)

Fpu normal 1.0387fpun 0.0142 (a)
1820MN/m2 (c)

normal 1.0387fpun 0.0142 (e)
normal 281ksi 0.025 (f)

Aps normal 1.01176Apsn 0.0125 (a)
normal 0.1548sq.in 0.0125 (f)

Eps normal 1.011Epsn 0.01 (a)
normal 1.01103Epsn 0.01 (e)

H normal hn 0.04 (a)
normal hn 1/4hn (f)

B normal bn 0.045 (a)
normal bn+5/32 1/4(bn+5/32) (f)

Dead load(D) normal Dn 0.1 (a)
normal Dn 0.1 (e)
normal Dn 0.1 (f)

MD normal nominal 0.07 (d)
normal 1.05MDn 0.075 (g)(Prestressed

conc. girders)
density of normal dcn 0.1 (e)

concrete(dc) normal 150(lb/cu.ft) 0.1 (f)
Fpy normal 1.027fpyn 0.022 (a)

Live Load(L) type 1 0.894 0.25 (e)
type 1 0.894 0.25 (f)

α1 normal α1n 0.03 (e)
normal 0.945 0.03 (f)

α2 normal α2n 0.0043 (e)
normal 1.01 0.0043 (f)

(a)-Hamann&Bulleit19 (e)-Barakat et al23

(b)-Hwang et al22 (f)-Al-Harthy and Frangopol24

(c)-Varpasuo21 (g)Nowak25

(d)-Pandey20
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