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Designing Ionic Materials Through
Multiobjective Genetic Algorithms
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The present work deals with the design of ionic materials as an “inverse problem” where we determine suitable interionic distance to arrive
at the desired properties. Specifically, we design ionic materials with high fracture toughness, low density, and high thermodynamic stability.
Fracture toughness of the material is determined through molecular dynamics simulations, and the three conflicting objectives are optimized using
multiobjective Genetic Algorithms. Two typical lattice systems, namely, the NaCl (B1) structure and the CsCl (B2) structure, are studied. The
interionic potential is modeled by a combination of Born–Mayer and Coulomb potentials which represent the electron orbital repulsion and unlike
ion attraction, respectively. Attempt has been made to develop a general framework for the design of ionic materials by Genetic Algorithms.
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1. Introduction

The applications of ionic materials are of considerable
importance in numerous scientific and engineering appli-
cations. Design of ionic materials by interionic potential
has been done extensively [1, 2], while the potential use of
Genetic Algorithms in materials design is well illustrated
by recent work in this emerging area [3–7]. This study
also involves atomic simulation of crack extension [8]
and is a continuation of our previous work [9] which
deals with the design of simple cubic materials using
Lennard–Jones interatomic potentials and multiobjective
Genetic Algorithms [10]. In this study, by combining the
strength of Genetic Algorithms in solving problems with
conflicting objectives and the idea of ionic materials design
by interatomic potential, we tried to develop materials that
are high in fracture toughness, and at the same time light
and thermodynamically stable. Potentially, a material this
way could find extensive applications as electrode materials
which are subjected to cracking and subsequent stress
related failure.
The problem in the mathematical sense is an “inverse

problem,” where we would fix the required material
properties and look for a suitable lattice parameter catering
to it. The three conflicting objectives are optimized using
Nondominated Sorting Genetic Algorithm (NSGA II)—
a well-known multiobjective optimization algorithm [11].
The optimization problem and evolutionary technique are
elaborated in the following sections.

2. Optimization problem

For an ionic material, fractures toughness, lightness,
and energy are simultaneously optimized in this study.
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This leads to a Pareto problem with conflicting objectives
where the solution is not unique and represents the best
possible tradeoffs between the objectives [10]. The problem
is formulated as

1. Maximization of fracture toughness.
2. Maximization of volume (for a given mass). This is the

same as maximizing the lightness and minimizing the
density.

3. Minimization of energy of the system to make it
thermodynamically stable.

Two cubic crystal structures were selected here for the
ease of preliminary studies. Those are

i. NaCl – B1 lattice structure (Face Centered Cubic);
ii. CsCl – B2 lattice structure (Simple Cubic).

An elitist version of NSGA II was used with the
Simulated Binary Crossover (SBX) [11] fixing the
probability of crossover at 0.9. A real parameter mutation
was used where the mutation probability was kept as 0.5.
The population size was 500, and the computations were
carried out for 5,000 generations.

3. Fracture toughness through molecular

dynamics

The potential energy for ionic materials is modeled using
a combination of Born–Mayer and Coulomb potentials
[1, 12, 13]. The former represents the repulsive force due
to overlapping electron orbitals while the latter incorporates
the attraction between unlike ions. The total energy is
expressed as
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Table 1.—Constants in Eq. (1).

Value

Parameter Description NaCl (B1) CsCl (B2)

Z Number of nearest neighbors 12 6
� Repulsive energy parameter in eV 6�5535 ∗ 103 8�8504 ∗ 103
� Repulsive range parameter in Å 0.36 0.3032
� Madelung constant 1.747558 1.76267
q1	 q2 Charge of cation and anion in esu ±4�8e-10

K Boltzmann’s constant 8�617 ∗ 10−5 eV/K

where the first two terms, representing the Born–Mayer
and Coulomb potentials, constitute the potential energy
while the last term represents the kinetic energy. T is the
absolute temperature and the remaining parameters [12] are
explained in Table 1. The cut-off radius, rc, is taken to be
the same for both potentials and equals rc = 4�5r in this
study, where r is the interionic distance of separation. The
interionic separation was treated as the independent variable
and was generated randomly within the bounds (2.25 to 3Å
for NaCl and 1.75 to 2.5Å for CsCl) by Genetic Algorithms.
The fracture toughness of the material is computed

by molecular dynamics using the Large Scale
Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [14], by studying the onset of fracture in a
precracked specimen under constant rate of loading. The
effects of temperature, initial crack length, and loading
rate have also been studied for varying interionic distance
(r), which remains the common variable for all the three
objectives that are optimized.
The domain of simulation is a rectangular parallelopiped

of dimensions 400Å × 200Å × 10Å (Fig. 1). Boundary
conditions are shrink wrapped in all directions, meaning
that the simulation domain moves concomitantly with the
strained lattice (no periodic boundary condition in any
direction). The system is an NPT ensemble (number of
atoms, pressure, and temperature are kept constant). The
interatomic potential is given by the sum of Born–Mayer
and Coulomb potentials as described above. Loading on
the specimen is displacement-controlled: one face (10Å×

Figure 1.—Specimen and load configuration used to determine fracture
toughness.

200Å) is kept stationary, the layer of atoms on its opposite
face are moved axially at a constant speed so as to deform
the whole lattice. The Verlet algorithm [15] is used for time
integration. A crack is formed in the domain by cutting off
the interaction potential between two adjacent planes [8].
For brittle and semibrittle materials, the stress intensity

factor

KI = Y

√
�a (2)

defines the state of stress around the crack tip, where 
 is
the far-field stress, a is the crack length (in case of edge
cracks), and Y is a geometric correction factor for finite sized
specimens. For an edge crack, the correction factor is [16]
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where w is the specimen width.
Figure 2 shows the visualization of crack formed in

the lattice by the absence of interaction between two
adjacent planes of atoms. This precracked specimen marks
the beginning of fracture mechanics study by molecular
dynamics. Figure 2 shows a section of the specimen
enlarged to make the crack easily visible.
Brittle fracture takes place as soon as the drop in

elastic strain energy and/or the energy supplied by external
forces, for a small increment in crack length, equals the
energy required to create the corresponding new crack
surface. Brittle fracture proceeds catastrophically beyond
this point. The energy-time history obtained thorough
molecular dynamics simulation shows a sharp drop at this
point of unstable fracture. The stress intensity factor at
this point equals Kc, the fracture toughness, which is a
temperature- and thickness-dependent quantity [16]. For
purely brittle materials, Kc is independent of crack length.

Figure 2.—Configuration of the simulated precracked specimen. Crack
formed is shown.
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In this study, fracture toughness is obtained for various
crack lengths and interionic distances. The effects of
temperature and loading rate are also investigated. For a
given combination of crack length �a�, temperature �T �,
loading rate �v�, and interionic distance �r�, the critical
force at the onset of unstable fracture �Fc� is identified from
the simulated force-time history. The fracture toughness is
then given as

Kc�T 	 r	 v� = Y �a� ∗
(
Fc

A

)
∗ √�a (4)

where A is the cross-sectional area.
After fracture toughness, the evaluation of the two

remaining objectives is a rather straight forward task. The
volume,

V = a3
L (5)

for both simple cubic and FCC system, where the lattice
parameter aL is related to the equilibrium interatomic
spacing r as aL = √

2r for FCC lattice, and a = r for
simple cubic structure. The calculation of volume is trivial
since the lattice of both NaCl and CsCl consists of two
interlocked FCC and simple cubic structures, respectively.
Since the mass of molecules in a unit cell for each case
is constant, density can be calculated from the mass and
volume calculated from Eq. (5).
The objective function for energy was directly computed

from Eq. (1).

4. Results and discussion

4.1. Molecular Dynamics Calculations
From molecular dynamics calculations we obtain the

time histories of displacement, energy, and force applied
on the system. A few examples are described for better
understanding of the procedure for determination of the
fracture stress which forms the basis of our fracture
toughness calculation.
Figure 3(a) shows uniform displacement with time (i.e.,

constant loading rate). From the plot of energy time history
[Fig. 3(b)], the instant at which catastrophic failure occurs
can be identified, and hence the corresponding critical force
can be obtained [17, 18] [Fig. 3(c)]. Fracture toughness can
be found using Eq. (1).

4.2. Temperature and Crack Length Dependence Study
The temperature dependence of the fracture toughness is

now investigated. Three different temperatures 1K, 298K,
and 500K are selected, and the results for NaCl and CsCl
systems are given below (Table 2 and its graphical version

Table 2.—Temperature dependence of Kc at different crack lengths for NaCl
lattice.

Crack length
in Å for a
specimen
width of
200Å

Kc in MPa
√
m at different Kc in MPa

√
m at different

temperatures for NaCl (K) temperatures for CsCl (K)

1 298 500 1 298 500

10 1.675 1.79 1.899 0.915 1.024 1.153
15 1.774 1.92 2.066 0.9088 1.02 1.1832
20 1.683 1.797 1.97 0.9594 1.025 1.1567
30 1.89 2.04 2.28 0.9309 1.06 1.285

Figure 3.—Typical plots showing time histories of displacement, total energy and force.
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Figure 4.—Kc vs. a at different temperatures for NaCl and CsCl structures.

Table 3.—Loading rate dependence of Kc at different crack lengths for NaCl
lattice.

Crack length
in Å for a
specimen
width of
200Å

Kc in MPa
√
m at different Kc in MPa

√
m at different

loading rates for NaCl (Å/pS) loading rates for CsCl (Å/pS)

45 60 80 25 35 50

10 1.695 1.63 1.67 0.922 0.942 0.915
15 1.81 1.75 1.775 0.9517 0.9614 0.9088
20 1.786 1.73 1.683 0.99 0.992 0.9594
30 1.99 1.96 1.895 0.975 0.997 0.9309

Note: 1 Å/pS = 100m/s.

Figure 5.—Kc vs. a at different loading rates for NaCl and CsCl structures
at 298K.

Figure 6.—Fracture toughness vs. interionic distance at different
temperatures.

Figure 7.—Pareto-frontiers and energy contour plots of NaCl and CsCl at 1K.
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Fig. 4). It is clear that Kc is largely indifferent to crack
length thus confirming that the fracture is brittle (although
there is a hump around a = 15Å which we suspect is due
to the finite width of the specimen slab). The increase in
fracture toughness with temperature is clear from the figure,
as more energy is needed for crack propagation at higher
temperatures.

4.3. Effect of Loading Rate on Kc

The effect of loading rate on fracture toughness is studied,
and the results given below.
Table 3 and its counterpart, Fig. 5 show the relation

between Kc and a at different loading rates at constant
temperature of 298K. We have made sure that the speeds
used in this study are less than half the Rayleigh wave
speed, Rn, in the given material, which is the limiting speed
of sound in a continuum solid [19]. The Rayleigh wave
speeds (Rn =

√
E
�

where E = elastic modulus and � =
density) in NaCl and CsCl are 18340ms−1 and 11530ms−1,
respectively [20].
From Fig. 5 it is clear that fracture toughness is largely

independent of the loading rate; and we have already shown
(Fig. 4) that fracture toughness is largely insensitive to crack
length as well. Hence, we find that Kc depends mainly on
temperature, and in the subsequent optimization study, we

investigate the variations in the three conflicting objectives
at three levels of temperature: 1K, 298K, and 500K.

4.4. Fracture Toughness as a Function of Interionic
Separation Distance
Figure 6 presents the objective function of fracture

toughness as a function of the independent variable, r , at
various temperatures for both materials. The loading rate for
NaCl is 60Å/ps, and that for CsCl is 35Å/ps. The increase
in r causes decrease of fracture toughness, and when r gets
closer to cutoff radius, the fracture toughness falls very close
to zero in both cases. The rapid change in the slope of Kc

vs. r plot can be explained by the rapid drop in interaction
energy between ions as the value of r approached cutoff
radius.
To evaluate the first objective, Kc, for different randomly

generated independent variable r ; intermediate values are
linearly interpolated as

Kc = Ki +
�r − ri�

�ri+1 − ri�
�Ki+1 − Ki� (6)

where Ki	Ki+1 and ri	 ri+1 are two consecutive values of
fracture toughness and interionic distances, respectively. Kc

represents the interpolated value of fracture toughness.

Figure 8.—Pareto-frontiers and energy contour plots of NaCl and CsCl at 298K.
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Figure 9.—Pareto-frontiers and energy contour plots of NaCl and CsCl at 500K.

4.5. Optimization of Conflicting Objectives
As mentioned before, the three objectives—high fracture

toughness, low density, and low energy—are conflicting,
and in this section we present the Pareto frontier and its
various cross-sections involving these three objectives. The
effect of temperature on the Pareto frontier is investigated
at three levels: 1K, 298K, and 500K. As also stated
previously, the optimization of the three objectives is
performed with a single independent variable, r .
Figures 7–9 present, on the left column, the Pareto

frontiers for B1(NaCl) and B2(CsCl) lattices at the three
different temperatures. In the right column, cross-sections
of the Pareto frontier at various values of optimal energy
are presented as contour plots.
From both NaCl and CsCl plots it is clearly visible that

high optimal fracture toughness can be designed by varying
r : the cost is higher energy and/or higher density. The same
way, lower density can be achieved by either settling for
low fracture toughness with high thermodynamic stability
(on one extreme), or going for a high fracture toughness
that only comes with decreased thermodynamic stability (on
the other extreme); of course, any other compromise with
intermediate values may also be made.
The above point is illustrated in Fig. 8; note the 3 points

of reference A, B, and C for NaCl at 298K. At similar

energy levels, the attainment of better fracture toughness,
i.e., from A to B and B to C can be achieved only by a
compromise in density which increases.
Figure 10 shows typical plots of individual property

correlations at the fixed value of the other objective. This
reiterates the conflicting nature of the objectives: energy
has to increase to attain better fracture toughness while the
density also gets higher which is not desirable. Hence the
use of genetic algorithms helps design new materials that
are optimal in all the three objectives, denoting the best
possible tradeoffs between them.
The choice between the two materials NaCl and CsCl

can be made in accordance with the user’s requirement.
The above results seem to indicate that CsCl, for a given
fracture toughness (say 1MPa

√
m, Fig. 8), has better density

and energy combination than does NaCl (1a.m.u/Å3 and
32000eV for CsCl compared to 1.4a.m.u/Å3 and 50000eV
for NaCl). Alkali halide fibers of high impact resistance
find potential applications in infrared fibers for laser power
delivery. They have come up as potential replacements of
conventional silica fibers with the advantage of having very
low power losses [21]. If fracture toughness is one of the
main objectives of such application, CsCl crystal would
clearly win over its NaCl counterpart.
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Figure 10.—Typical plots of individual optimized property correlations
showing NaCl at 298K.

5. Concluding remarks

The work has illustrated the potential use of
multiobjective genetic algorithms in solving inverse
problems, based on interatomic potentials, where we derived
the interionic separation for required mechanical and
physical properties. The conflicting objectives are optimized
to produce a Pareto-frontier leaving the designer with
flexibility in material selection. Of course, the examples
shown here do not lead to any “new” material design since
we start with two known ionic materials and play with
their interionic separation to vary the objective values—the
purpose was simply to demonstrate the methodology. The
next step would be to allow the potential model parameters
(Eq. 1), masses of the two species, and the interionic
separation to vary which would take us closer to the actual
design of new materials. Work is already under way.

References

1. Murrell, J.N.; Tennyson, J. Many-body contributions to the
intermolecular potential in alkali halide crystals and clusters. Mol.
Phys. 1981, 42, 747–755.

2. Kendrick, J.; Mackrodt, W.C. Interatomic potentials for ionic
materials from first principles calculations. Solid State Ionics
1983, 8, 247–253.

3. Babu, B.V.; Mubeen, J.H.S.; Chakole, P.G. Simulation and
optimization of wiped-film poly-ethylene terephthalate (PET)
reactor using multiobjective differential evolution (MODE).
Mater. Manuf. Process. 2007, 22, 541–552.

4. Sastry, K.; Johnson, D.D.; Thompson, A.L.; Goldberg, D.E.;
Martinez, T.J.; Leiding, J.; Owens, J. Optimization of semi-
empirical quantum chemistry methods via multiobjective Genetic
Algorithms: Accurate photodynamics for larger molecules and
longer time scales. Mater. Manuf. Process. 2007, 22, 553–561.

5. Saxén, H.; Pettersson, F.; Gunturu, K. Evolving nonlinear time-
series models of the hot metal silicon content in the blast furnace.
Mater. Manuf. Process. 2007, 22, 577–584.

6. Mitra, K.; Majumdar, S. Multicriteria optimal control of
polypropylene terepthalate polymerization reactor. Mater. Manuf.
Process. 2007, 22, 532–540.

7. Sahay, S.S.; Mehta, R.; Krishnan, K. Genetic-algorithm-based
optimization of an industrial age-hardening operation for packed
bundles of aluminum rods. Mater. Manuf. Process. 2007, 22,
615–622.

8. Kanninen, M.F.; Gehlen, P.C. Atomic simulation of crack
extension in BCC iron. Journal of Fracture Mechanics 1971, 7,
471–474.

9. Chakraborti, N.; Sreevathsan, R.; Jayakanth, R.; Bhattacharya, B.
Tailor-made materials design: An evolutionary approach using
multi-objective genetic algorithms. Comp. Mater. Sci. 2009, in
press. doi: 10.1016/j.commatsci.2008.03.057

10. Miettenen, K. Non-Linear Multiobjective Optimization; Kluwer
Academic Publishers: Norwell, 1999.

11. Deb, K. Multi-Objective Optimization by Evolutionary
Algorithms; John Wiley & Sons: Chichester, 2001.

12. Ghosh, A.; Basu, A.N. A unified study of the lattice statics and
dynamics of the cesium halides. J. Phys. C. Solid State 1976, 9,
4365–4374.

13. Kittel, C. Solid State Physics; John Wiley and Sons: Chichester,
1971; 102–125.

14. Allen, M.P. Introduction to molecular dynamics simulation.
Computational Soft Matter 2004, 23, 1–28.

15. Zhao, J.W.; Yin, X.; Liang, S.; Liu, Y.H.; Wang, D.X.; Deng,
S.Y.; Hou, J. Ultra-large scale molecular dynamics simulation for
nano-engineering. Chem. Res. Chinese U 2008, 24, 367–370.

16. Broek, D.E. Elementary Engineering Fracture Mechanics;
Kluwer Academic Publishers: Norwell, 1982; 75–77.

17. Rottler, J.; Barsky, S.; Robbins, M.O. Cracks and crazes: on
calculating the macroscopic fracture energy of glassy polymers
from molecular simulations. Phys. Rev. Lett. 2002, 89, 1–5.

18. Kassner, M.E.; Nasser, N.S.; Suo, Z.G.; Bao, G.; Barbour, J.C.;
Brinson, L.C.; Espinosa, H.; Gao, H.J.; Granick, S.; Gumbsch,
P.; Kim, K.S.; Knauss, W.; Kubin, L.; Langer, J.; Larson, B.C.;
Mahadevan, L.; Majumdar, A.; Torquato, S.; Swol, F.V. New
directions in mechanics. Mech. Mater. 2005, 37, 231–259.

19. Abraham, F.F. How fast can cracks move? A research adventure
in materials failure using millions of atoms and big computers.
Adv. Phys. 2003, 52, 727–90.

20. Washabaugh, P.D.; Knauss, W.G.; A reconciliation of dynamic
crack velocity and Rayleigh wave speed in isotropic brittle solids.
Int. J. Fracture 2004, 65, 97–114.

21. Harrington, J.A. Infra-red alkali halide fibers. Appl. Optics 1988,
15, 3097–3101.


