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Summary
Periodic health assessment of large civil engineering structures is an effective way

to ensure safe performance all through their service lives. Dynamic response-based

structural health assessment can only be performed under normal/ambient operat-

ing conditions. Existing Kalman filter-based parameter identification algorithms that

consider parameters as the only states require the measurements to be sufficiently

clean in order to achieve precise estimation. On the other hand, appending parame-

ters in an extended state vector in order to jointly estimate states and parameters is

reported to have convergence issues. In this article, a constrained version of the dual

extended Kalman filtering (cDEKF) technique is employed in which two concurrent

extended Kalman filters simultaneously filter the measurement response (as states)

and estimate the elements of state transition matrix (as parameters). Constraints are

placed on stiffness and damping parameters during the estimation of the gain matrix

to ensure they remain within realistic bounds. The proposed method is compared

against the existing Kalman filter-based parameter identification techniques on a

three-degrees-of-freedom mass-spring-damper system adopting both unconstrained

and constrained estimation approaches. cDEKF is then employed on a numerical

six-story shear frame and a 3D space truss to validate its robustness and efficacy

in identifying structural damage. The results suggest that cDEKF algorithm is an

efficient online damage identification scheme that makes use of ambient vibration

response.
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1 INTRODUCTION

Online health monitoring of civil infrastructure systems

enables real-time identification of damage and thus helps

maintain a system above required levels of safety. In general,

any structural health monitoring system comprises of three

major components (a) a network of sensors, (b) a response

data acquisition system to record the structural response,

and (c) a computationally inexpensive health assessment

algorithm to detect abnormal changes in the structure.[1,2]

In systems research, control theory-based fault identifi-

cation under uncertainty has been prevalent over last few

decades. The adoption of such control-based techniques in

structural health monitoring is challenging, owing to the

relatively large system sizes and the necessity of system iden-

tification in an uncontrolled noisy environment. Sequential

data assimilation-based Bayesian filtering techniques have

been successfully employed[3–6] in this attempt. Of the differ-

ent kinds of Bayesian filters used for state and/or parameter

estimation, the Kalman filter (KF)[7] is the most widely used

approach owing to the simplicity of the estimation proce-

dure. In KF, the system is defined through a set of states that

are observed through a set of measurements. The state esti-

mates are propagated in time using a process model. This prior

information is then updated using the new information in the

current measurement.
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1.1 Kalman filter for parameter identification

KF has been successfully applied to a wide variety of con-

trol problems,[8,9] for example, signal filtering, subject track-

ing, system control, and so forth. Besides, it has also been

extensively applied in parameter identification problems in

which a set of model parameters is considered as the sys-

tem states and observed through model-predicted response.

This approach demands a nonlinear mapping of parame-

ters to measurements, which makes the parameter estimation

problem nonlinear.

Because KF is a linear state estimator, it cannot be

employed for nonlinear system estimation. Nonlinear vari-

ants of KF (e.g., extended KF (EKF), unscented KF (UKF),

etc.) are capable of dealing with nonlinearity either by local

linearization of the system using Taylor series expansion

(EKF)[10] or by propagating the first two moments of states

through suitably selected sigma points and corresponding

weights (UKF).[11,12] Hoshiya et al.[3] applied EKF for struc-

tural parameter identification and later several others used

similar approaches for different types of parameter identi-

fication problems on linear time invariant systems.[4,6,13,14]

Yang et al.[15] developed adaptive tracking using EKF to esti-

mate structural damage online, which was later implemented

on systems with known[16] and unknown inputs.[17] Other

variants of KF for health monitoring purposes, for example,

UKF,[18] particle filter,[19] Monte-Carlo filter,[20] and so forth,

also exist in the literature.

However, for both linear and nonlinear time-varying sys-

tems, in which the system undergoes drastic changes over

a small time interval, the application of these filters can be

disastrous. This is due to the fact that as the parameters are

identified over time in an optimal sense, on introduction of

sudden change in the system, the solution may leave the

optimal range and can even diverge resulting in completely

unrealistic solutions. This necessitates dual and simultaneous

estimation of states and parameters for time-varying systems.

1.2 Dual estimation of state and parameter

Existing applications of dual estimation consider states and

parameters jointly in an extended state vector of a joint bilin-

ear state space formulation. Subsequently, EKF is employed

to identify the extended state vector. This approach is com-

monly referred to as the joint EKF (JEKF) technique.[21–23]

JEKF, however, has issues with the convergence of the

solution.[24] Ljung[25,26] attributes this fault to the simpli-

fied gradient calculation of the state transition function with

respect to parameter keeping the states constant. Nelson[27]

blames the crude linearization of the higher order coupling

between states and parameters for this improper convergence.

To avoid this coupling issue, Nelson[27] used two separate

KFs for states and parameters. However, due to the assumed

linearity in the system, this approach loses practicality for

nonlinear systems.

Wan[28,29] introduced dual-EKF or DEKF as a nonlinear

extension of Nelson’s dual KF[27] for simultaneous estima-

tion of states and parameters. Application of DEKF algorithm

is, however, limited in literature. Existing applications of

DEKF are performed in the fields of vehicular motion

control,[30] reservoir monitoring,[31] speech recognition,[29]

battery management,[32] and so forth. To our knowledge, no

study exists on DEKF for structural damage detection. This

article employs DEKF for online structural damage identifi-

cation using ambient vibration response. Unlike other prob-

lems already explored with the DEKF algorithm, the state

space representation of civil infrastructure systems is larger

and more complex, which necessitates certain constraints to

be imposed in the solution procedure in order to obtain a

practical solution.

In this article, the proposed constrained DEKF (or cDEKF)

method is compared with EKF-based parameter identification

algorithms with parameters as either the only states (termed

as parameter EKF or PEKF in this article) or a subset of

the extended state vector (JEKF), and attempts are made to

identify possible complications that may arise in the applica-

tion of those approaches. The proposed cDEKF algorithm is

employed on two numerical examples: (a) a six-story shear

frame and (b) a large truss bridge (40 nodes and 152 mem-

bers). While the first example attempts to demonstrate the

method explicitly, the latter explores the proposed method’s

applicability in large structures. The possibility of raising any

false alarm is also investigated in this endeavor.

2 BACKGROUND

The dynamics of any generalized stochastic system (linear or

nonlinear) can be described in its state space domain by a set

of process and measurement equation as

Process equation: ẋ(t) = f (x(t), 𝜃(t)) + vx(t);
Measurement equation: y(t) = h(x(t), 𝜃(t)) + wx(t) (1)

where x(t) and y(t) are the state and measurement vectors,

respectively. 𝜃(t) is the time-varying parameter of the system.

vx(t) and wx(t) are process and measurement noise modeled

as uncorrelated Gaussian.f (•) and h(•) are the state transition

function and measurement function, respectively, which can

be replaced by their corresponding Jacobians:

Ac(t) =
𝜕f (x(t), 𝜃(t))

𝜕x
|x(t) and Cc(t) =

𝜕h(x(t), 𝜃(t))
𝜕x

|x(t)
around the current states as their locally linearized surrogate

models. Thus, the equivalent linearized system dynamics can

be presented as

ẋ(t) = Ac(t)x(t) + vx(t);
y(t) = Cc(t)x(t) + wx(t) (2)
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For general mechanical systems, the state transition matrix

Ac(t) can be expanded as

Ac(t) =
[

zn In
−M(t)−1K(t) −M(t)−1D(t)

]
(3)

where zn and In are nth order null and identity matrices,

respectively, and M(t), K(t), D(t) are the system’s mass,

stiffness, and damping matrices, respectively.[33]

The continuous time state transition matrix Ac(t) is rela-

tively more interpretable than its discrete counterpart because

detailed information about the structural stiffness can be

obtained by exploiting its structure as given in Equation (3).

However, as the estimation is performed in discrete time

domain using sampled measurement, this formulation should

be transformed accordingly. Toggling between discrete time

domain formulation and its continuous counterpart can be

achieved using zero-order hold technique. The discrete coun-

terpart of the system dynamics sampled with a frequency 1/Δt
can be defined for the kth (i.e., t = kΔt) time instant as

xk = Akxk−1 + vx
k;

yk = Ckxk + wx
k (4)

where xk, yk, Ak, Ck, vx
k, and wx

k are the discrete counterparts

of the corresponding continuous entities above. Each element

of the discrete time state transition matrix Ak is considered to

be a parameter of the system. In this formulation, the process

equation describes the time evolution of the states xk while

the measurement equation maps the unobserved states onto

corresponding measurements.

For a given noisy measurement y1:k (i.e., measurement

array for the timespan 1 to k recorded from the system), KF

estimates the system states xk|k (xi|j defines the estimate of

system state x at ith time instant based on information up

to time instant j) by recursively updating the prior estimate

of states (i.e., xk|k − 1) using the information in the measure-

ment. Because the noise vx
k and wx

k are uncorrelated Gaussian,

Equation (4) describes a Gauss–Markov process in xk, and

hence xk has the Markovian property.

𝜌(xk|xk−1, … , x1, x0) = 𝜌(xk|xk−1) (5)

In each step of filtering, the updated (or posterior) probability

density function 𝜌(xk |y1:k) of the current state xk conditioned

upon measurements y1:k can be described as

𝜌(xk|y1∶k) = 𝛼𝜌(xk|y1∶k−1)𝜌(yk|xk) (6)

where the Markov property has been used. The 𝜌(xk |y1:k − 1)

and 𝜌(xk |y1:k) are the prior and posterior probability densities,

respectively, of state xk. 𝜌(yk |xk) is the likelihood of observ-

ing a measurement yk with an estimate of state as xk. 𝛼 is a

normalizing coefficient.

KF assumes Gaussian distribution for the initial state and

the noise terms. Thus, the maximum-a-posteriori estimate

corresponds to the mean of the posterior distribution condi-

tioned on the measurements y1:k:

x̂k|k = arg max
xk

𝜌(xk|y1∶k) (7)

x̂k|k signifies estimate of the state xk for a given measurement

information up to time step k. Thus for a given measurement,

this algorithm estimates only the states of a system for which

the system model is explicitly known, which in turn neces-

sitates complete knowledge of the system’s parameters. The

time evolution of parameters cannot be estimated through this

formulation.

2.1 KF-based parameter estimation

To identify system parameters using KF, the parameters are

defined as either the only system states (PEKF) or additional

(JEKF) states. In the former approach, the system dynamics

is defined using a set of time-invariant parameters 𝜃k as the

system states:

𝜃k = 𝜃k−1 + v𝜃
k ;

𝜖k = {yk − h(𝜃k)} + w𝜃
k (8)

As most parameters of interest are not directly measurable,

this approach uses a system model h(•) that maps estimated

parameters to measurement to make them observable. In this

approach, {yk − h(𝜃k)} is considered as the measurement

function that measures the mismatch 𝜖k between actual mea-

surement yk and the model-predicted response h(𝜃k). Because

this ignores the filtering of response states xk, a sufficiently

clean measurement becomes a necessity,[23] which is often

unavailable.

With parameters appended in the state vector (JEKF), the

process equation of the system becomes jointly bilinear as{
xk
𝜃k

}
= f

({
xk−1

𝜃k−1

})
+
{

vx

v𝜃

}
k

(9)

where 𝜃k is the parameter of the system and {vxv𝜃}T
k is

Gaussian process noise. The states and parameters can be

simultaneously estimated from this formulation as

{x̂k|k, 𝜃̂k|k} = arg max
{xk ,𝜃k}

𝜌({xk, 𝜃k}|y1∶k) (10)

JEKF is demonstrated in Algorithm 1, where the process

function f is a simulator model (e.g., finite element (FE)

model) to propagate the state estimates to the next time instant

and Ak is the corresponding linearized model at time instant k.

Thus in each step of JEKF, a rigorous gradient calculation

involves costly FEM simulation, which increases the compu-

tational burden.

It has been previously discussed in this article that with aug-

mented (or extended) state vector approach (JEKF), the esti-

mation may suffer from improper convergence (as described

by Ljung[25,26] and Nelson[27]). On the other hand, with

the decoupled approach (PEKF), the measurement signal is
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required to be sufficiently clean. Parameter estimation using

noisy measurement signals therefore demands a new method

so that filtering the noise can be done together with param-

eter identification. This leads to the proposed constrained

DEKF (cDEKF) algorithm as an alternative to the existing

dual estimation methods.

3 DUAL EXTENDED KALMAN FILTER

The DEKF algorithm applied in this article is due to Wan

who introduced this algorithm for the speech recognition

problem. This approach has been successfully implemented

for dual estimation of the states and parameters in several

articles.[29–32] The DEKF algorithm additionally augments

Equation 1 with a process model to describe the time evolu-

tion of the parameters as

xk = f (xk−1, 𝜃k−1) + vx
k ;

𝜃k = 𝜃k−1 + v𝜃
k ;

𝜖k = {yk − h(xk, 𝜃k)} + wx
k

(11)

where 𝜃k is an array of elements Aij
k (i and j signifies row

and column number) of state transition matrix Ak, which is a

locally linearized surrogate model of state transition function

f (xk − 1,𝜃k − 1). v𝜃
k is the process noise related to the additional

process model for the parameters. Noise terms vx
k, v𝜃

k , and wx
k

are modeled as zero mean Gaussian sequence with covariance

matrices Q𝜃 , Qx, and Rx, respectively.

To employ Bayesian estimation to estimate the system

states conditioned on current estimates of parameters, the

DEKF algorithm expands Equation 10 as

{x̂k|k, 𝜃̂k|k} = arg max
{xk ,𝜃k}

𝜌(xk|𝜃k, y1∶k)𝜌(𝜃k|y1∶k) (12)

which in DEKF is implemented as two separate estimation

schemes for the states and the parameters:

x̂k|k = arg max
xk

𝜌(xk|𝜃k, y1∶k)

𝜃̂k|k = arg max
𝜃k

𝜌(𝜃k|y1∶k)
(13)

In each step, the algorithm thus toggles between estimating

states based on current estimates of parameters and estimating

parameters based on current estimates of states.

3.1 Constrained DEKF algorithm

Although DEKF has been established as an efficient dual

estimator for several other fields, the performance of this pow-

erful tool for structural damage detection is not yet much

explored. Unlike existing applications of DEKF, the civil

infrastructures systems are dimensionally higher and more

complex. Detailed models of such systems with high num-

bers of degrees of freedom (DOFs) are required to monitor

their current health. To avoid this curse of dimensionality,

an estimation of a reduced-order system has been proposed

in Sen and Bhattacharya,[34] which involves a recursive sim-

ulation of the system FE model, making it computationally

expensive. The alternate option of using the elements of state

transition matrix as parameters with the DEKF algorithm

without applying any constraints may lead to infeasible solu-

tions with the possibility of triggering false alarm about the

structural health. Certain realistic constraints on the probable

solution region are therefore required to be incorporated in

the algorithm.

Several constrained KF algorithms exist in literature, deal-

ing with hard or soft, equality or inequality, linear or nonlinear

constraints.[35–38] Simon[39] presented an extensive review on

the existing techniques to constrain KF. To handle equality

constraints (such as noise-free measurement, perfect mea-

surement, and perfectly known properties of system), Ungrala

et al.[40] performed an additional measurement update step

to impart the complete measurement information into the

estimate. Simon et al.,[41] on the other hand, described a pro-

jection technique to employ an equality constraint. Inequality

constraints (such as solution boundaries, region of optimal

solutions) are also handled in literature deterministically or

statistically by different researchers.[42,43]

In KF algorithms, the gain matrix is analytically derived

with the objective to minimize the trace of state covariance

matrix. The analytical derivation of gain matrix is presented

in the appendix (see Appendix). However, because in the

proposed approach the constraints are additionally incorpo-

rated in the solution during gain estimation, the closed-form

solution is no longer available and can only be estimated

through optimization. The gain estimation scheme, posed in

this approach as a constrained optimization problem, can be

described as

arg min
K

{trace{P = (I − KC)P̄(I − KC)T − KRkKT}}

Subjected to:

{
Inequality constraint: x ⩽ x̂k|k ⩽ x
and equality constraint: Cgx̂k|k = d

}
(14)
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where x and x are the lower and upper prescribed bound-

aries for the states defined by the user. Cg is the output

matrix for perfect measurement d. Accordingly, in expense

of enhanced computation due to optimization, the achieved

estimates ensure that the solution never leaves the region of

optimality. To handle this augmented computational demand,

the optimization-based gain estimation is, however, attempted

only when the solution leaves the region of optimality. For the

remaining cases, the analytical approach for gain estimation

(as described in Appendix) is applied.

Simultaneous estimation of states (xk) and parameters

(𝜃k) from the measured response (yk) constrained within

a specified boundary by cDEKF is described in detail in

Algorithm 2.

4 NUMERICAL VALIDATION

Numerical experiments are performed to demonstrate the

efficiency of the proposed cDEKF algorithm for structural

damage detection. In this attempt, cDEKF employed certain

equality and inequality constraints to constrain the estimates

within realistic bounds. A set of noise-free signals, consid-

ered as perfect measurement, are used as equality constraints.

It should be mentioned here that although noise-free sig-

nals are mostly unavailable in reality, we have incorporated

this to validate the proposed method’s efficiency to handle

clean measurements, if available (e.g., modal frequency). To

employ inequality constraints for the parameters (i.e., the ele-

ments of state transition matrix), two discrete time state space

models of the system are prepared using the upper and lower

bounds of the physical structural parameters. Elements of the

state transition matrices of these two models are then used to

define the solution bounds for parameter estimates as inequal-

ity constraints. Matlab function “fmincon” is employed to

solve this constrained optimization problem.

Prior to validating the proposed cDEKF algorithm for

structural damage assessment problems, it is compared with

existing EKF-based (PEKF and JEKF) parameter estimation

algorithms that consider physical structural parameters as

system states. In this context, the general DEKF algorithm

is first compared with PEKF and JEKF to demonstrate the

requirement of the constraining strategies in the estimation.

The constrained version of DEKF (i.e., the proposed cDEKF)

is then compared with the general DEKF (and also with

two other JEKF-based constrained estimation techniques) to

demonstrate the benefits of this modification. In the follow-

ing, the proposed cDEKF algorithm is employed to detect

damage in two structures: (a) a six-storey building and (b)

a bridge truss. Details of these numerical experiments are

presented in the following.

4.1 Numerical experiment 1: comparison of proposed
cDEKF with existing algorithms

A three-DOF mass-spring-damper system is considered (see

Figure1) to compare the performance of the DEKF-based

algorithm with those of PEKF and JEKF. The mass, stiff-

ness, and damping of this three-DOF system are considered

to be 125kg, 480kN/m, and 10N − sec/m, respectively. The
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FIGURE 1 Schematic diagram of a three-degree-of-freedom system

system’s responses at all free DOFs under external excitation

at the third DOF are recorded for a 10-s span with a sampling

frequency 1000 Hz and subsequently contaminated with 10%

noise. Unconstrained PEKF, JEKF, and DEKF algorithms are

then employed to identify two control parameters, that is,

stiffness and damping, from this noisy response signal. The

size of identifiable state vector for the JEKF algorithm is thus

8 (6 response states and 2 parameter states) and 2 (2 param-

eter states) for the PEKF case. For the DEKF algorithm, on

the other hand, all the 36 elements of state matrix (6 × 6) are

considered as parameter states. Thus, DEKF deals with 36

parameter states and six response states.

FIGURE 2 Comparison of unconstrained parameter extended Kalman filter (PEKF), joint extended Kalman filter (JEKF), and constrained dual extended

Kalman filtering (cDEKF) algorithms

Form Figure 2, it can be observed that with noisy sig-

nal, the PEKF algorithm performs poorly because it contra-

dicts to its requirement of a sufficiently clean signal. While

both JEKF and DEKF estimated the parameters perfectly,

DEKF achieved convergence faster than JEKF. However, en

route to convergence, the DEKF algorithm estimated some

completely unrealistic values (e.g., negative damping value

(Figure 2b) and an unusually high value of stiffness ( > 5000

kN/m) (Figure 2a)).

To restrict the solution within a practical solution

domain, the estimation is further performed with the

cDEKF algorithm and compared with existing constrained

JEKF algorithms. The assumed solution boundaries are

presented here:

200kN∕m < Story stiffness < 600kN∕m
1 × 10−15N − Sec.∕m < Damping < 30N − Sec.∕m (15)

Two different constraining strategies to incorporate inequality

constraints are applied on the JEKF algorithms. The former

(JEKF (Clipped)) employs a clipping technique described

in Prakash et al.[43] In this method, from a set of realiza-

tions of state vectors generated using estimated mean and

covariance, the samples that fail to satisfy the constraints are

clipped. Subsequently, the moments of states are re-estimated

from the refined data set and are used as predicted estimates.

The second adopted strategy (JEKF (Curtailed)) is due to

Simon et al.,[44] in which each estimated state pdf is curtailed

beyond its prescribed limits in case it leaves the region of opti-

mality. Finally, the proposed cDEKF algorithm is employed

and compared against the other two constrained estimation

techniques.

Evidently, Figure 3 demonstrates that the proposed method

as well as the other two constrained techniques estimated

the parameters precisely with intermediate estimations never

exceeding the optimal solution boundaries. However, there

are additional benefits of cDEKF over the other constrained

JEKF algorithms, which are discussed next.

Although the performance of JEKF is satisfactory for this

particular problem, during the gradient calculation of state

transition function with respect to parameters, the states

are kept constant and thus by recursive derivations of states

with respect to parameters are avoided. This simplifica-

tion may have a detrimental effect on the convergence for
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FIGURE 3 Comparison of constrained joint extended Kalman filter (JEKF) (curtailed), JEKF (clipped), and dual extended Kalman filter (DEKF)

(optimized gain) algorithms

FIGURE 4 Schematic diagram of the damaged and undamaged model of a six-story shear frame

systems with strong coupling between states and parameters.

The problem taken up to demonstrate the proposed method’s

fitness is simple and thus cannot exhibit the convergence

issues suffered by the JEKF algorithms. For that, the reader is

requested to refer to Nelson and Stear,[27] which incorporates

the citations and details related to difficulties in the JEKF

approach.

It should also be noted that with the cDEKF algorithm the

problem size (36 parameter states and six response states) is

larger than the JEKF algorithm (six response states and two

parameter states), and it may appear that the cDEKF is com-

plicating the estimation procedure. However, the additional

FE modeling step within the JEKF algorithm to propagate the

state estimation must be considered because this may cause

significant computational burden. On the contrary, cDEKF

algorithm does not require any FE modeling step. Thus,

even though cDEKF handles problems that are dimensionally

larger, its computational demand is always less than that of

JEKF algorithms.

4.2 Numerical experiment 2: six-story shear frame

The second numerical example demonstrates the capability of

the cDEKF algorithm to locate structural damage. The sys-

tem considered for this example is a simple six-story shear

frame approximated using a six-DOF lumped mass model

(see Figure 4) so that initial and updated matrices can be

explicitly presented. The undamaged model is described by

stiffness matrix K0 and mass matrix M0 with 1% Rayleigh

damping.

K0 =

⎡⎢⎢⎢⎢⎢⎢⎣

800 −800 0 0 0 0

−800 2400 −1600 0 0 0

0 −1600 3200 −1600 0 0

0 0 −1600 4000 −2400 0

0 0 0 −2400 4800 −2400

0 0 0 0 0 − 2400 5600

⎤⎥⎥⎥⎥⎥⎥⎦
kN∕m;

(16)

M0 = diag{ 1500 3000 3000 4500 4500 6000 }kg (17)

where “diag” is diagonalization operator that creates a sparse

matrix with the elements at the diagonal positions.

Assumed modeling details for the undamaged and dam-

aged models are given in Figure 4. Damage is induced in the

model by reducing 25% story stiffness of the fourth story.

Ambient vibration response is simulated from the damaged

model using the Newmark-beta algorithm by exciting all of

its six free nodes by a Gaussian white noise, and acceleration
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FIGURE 5 Online damage estimation using constrained dual extended Kalman filtering algorithm. Blue and red lines represent the parameter values

corresponding to the undamaged and damaged state, respectively. The green line represents the parameter estimation over time. Element numbers, presented

in the bracket, are the row-column index of the parameter in the discrete time state transition matrix. The acceptable solution bounds are demonstrated using

their higher and lower limits

responses are recorded at a sampling frequency of 1000Hz for

a time span of 10 s.

Inequality constraints for the state filter are assigned by fix-

ing an estimation boundary two times larger than the noisy

signal band. All the 144 elements of the state transition matrix

are considered as parameters. However, considering the indi-

vidual symmetric property in the bottom left and right blocks

of state transition matrix, the required number of identified

parameters drops down to 114.

For the inequality constraints on parameters, the upper

and lower limits (i.e., 𝜃̄, 𝜃) are specified using the following

boundaries in story stiffness.

k = { 500 500 500 500 500 500 }kN∕m

and k = { 2000 2000 2000 2000 2000 2000 }kN∕m
(18)

For the equality constraints on states, one out of six mea-

sured signals is considered to be perfectly noise free. The

cDEKF algorithm is subsequently applied on the noisy mea-

surement to estimate the parameters in order to assess the

current structural health.

Figure 5 demonstrates a sample parameter estimation over

time for four diagonal elements of the lower left block of

the state transition matrix ([7,1],[8,2],[9,3], and [10,4]). The

selection of these four elements is due to their critical posi-

tions in the state transition matrix through which the health

of the first four DOFs can be interpreted. To avoid confu-

sion, we should mention here that the difference between

the elements of discrete time state transiton matrices asso-

ciated to damage and undamage states are termed in this

article as “nodal damage” (cf. Figure 5), which does not

mean damage in the nodes of the structure. It rather sig-

nifies the deterioration in stiffness in the numerical nodes

of its FE model. This idea has been maintained throughout

this article.

FIGURE 6 Actual and identified nodal damage in the shear frame

FIGURE 7 Schematic presentation of undamaged and damaged state of

the truss

It can be observed that the estimated parameter values

never overshot the specified solution boundaries. Eventually,
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the identified state transition matrix is transferred from dis-

crete time to continuous time domain using the zero-order

hold technique. Considering no change in mass matrix due

to the induced damage, the updated stiffness matrix (Kid) is

extracted from which the damage is interpreted by direct com-

parison against the undamaged stiffness matrix K0. Kid is

given below:

Kid =

⎡⎢⎢⎢⎢⎢⎣

797.2 −803.1 0.15 0.2 0.1 0.5
−803.1 2400 −1616.1 0.2 0.16 0.17

0.15 −1616.1 2794.5 −1204.2 0.24 0.32
0.2 0.2 −1204.2 3636.6 −2413.9 0.9
0.1 0.16 0.24 −2413.9 4789.6 −2397.8
0.5 0.17 0.32 0.9 −2397.8 5591.9

⎤⎥⎥⎥⎥⎥⎦
kN∕m; (19)

The identified damage in each of the nodes of the shear

frame is plotted in Figure 6 where it can be seen that

the cDEKF algorithm successfully identified the occurrence,

location, and intensity of the damage.

4.3 Numerical experiment 3: space truss
The next numerical example is performed on a 152-member

space truss comprising of 120 DOFs (see Figure 7). Details

are listed in Table1. Damage in the truss is induced by reduc-

ing the undamaged cross section of specific truss members

(see Figure 7b). Nine bottom nodes (node numbers 2-10) are

instrumented with an accelerometer capable of picking verti-

cal accelerations only. The truss is excited at all 18 top nodes

(node numbers 12-20 and 32-40) by a zero-mean Gaussian

white noise excitation, and acceleration responses for a time

span of 10 s at the instrumented DOFs are simulated using the

Newmark-beta algorithm at a sampling frequency of 1000 Hz.

The inequality constraints for parameters are defined

by restricting member elasticities between zero (i.e.,

complete damage) and twice its undamaged value, that

is, 4 × 1011N/m2. No equality constraints are used

for this numerical example because it is observed that

with a high-dimensional problem, too many constraints

TABLE 1 Geometric detailing of the space truss

Member groups Connectivity Length (m) C/S area (cm2)

1: Stringers 1-2, 2-3, 3-4, 4-5, 5-6, 21-22, 22-23, 23-24, 24-25, 25-26 3 180

2: Top chords 12-13, 13-14, 14-15, 15-16, 32-33, 33-34, 34-35, 35-36 3 463

3: Vertical posts 2-20, 3-19, 4-18, 5-17, 22-40, 23-39, 24-38, 25-37 4 143

4: Diagonal bracing 1-20, 3-20, 3-18, 5-18, 5-16, 21-40, 23-40, 23-38, 25-38, 25-36 5 181

5: Floor beams and struts 20-40, 19-39, 18-38, 17-37, 16-36, 1-21, 2-22, 3-23, 4-24, 5-25 4 463

6: Lateral (wind) bracings 1-22, 2-21, 2-23, 3-22, 3-24, 20-39, 19-40, 19-38, 18-39, 18-37 5 181

7: Sway bracings 1-40, 2-40, 3,39, 4-38, 5-37, 21-20, 20-22, 19-23, 18-24, 17-25 5 181

FIGURE 8 Actual and identified damage in the truss for damage in members 4-24, 4-38, and 7-27
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in the estimation procedure unnecessarily burden the

computation.

Figure 8 presents results of an example problem on the

truss with damage in multiple locations. In this example,

members 4-24, 4-38, and 7-27 are considered to be dam-

aged. This example is performed for four different conditions

involving two different damage severities (20% and 40%) and

two different levels of measurement noise (2% and 5% sig-

nal to noise). Figure 8 clearly demonstrates that the cDEKF

algorithm successfully identified the location of the damage

precisely within the sensor resolution. In these figures, the

truss is segmented into 10 sections of equal length with nine

equally spaced nodes at the accelerometer locations. Subse-

quently, as per Equation (20), the damage is estimated through

the difference in the elements of identified discrete time state

transition matrix.

dij =
Aij

u − Aij
id

Aij
d

(20)

where Au and Aid are undamaged and identified state transi-

tion matrices, and {i,j} signifies the row and column of the

corresponding matrix. To identify the location of the damaged

node, diagonal elements of the damage matrix d are plotted

in Figure 8. For better comparison, the actual nodal damage

derived analytically is also presented in these figures. Figure

8 identifies that the damage has affected the 4th and 7th node

the most, which perfectly localizes the damage in the vicinity

of the 3rd and 6th accelerometer locations.

4.3.1 False alarm sensitivity
The susceptibility of the proposed algorithm to false identi-

fication is investigated next.[45,46] The space truss structure

is subjected to 160 different damage scenarios (eight damage

locations × four noise levels × five damage levels), and for

each scenario, 100 identifications are performed correspond-

ing to 100 realizations of measurement noise.

We define the “False alarm (FA) index” as the fraction

of instances the algorithm resulted in a false prediction of

damage in undamaged locations:

FA = 1

N

N∑
i=1

[
1 − I{lid = lact}

]
; (21)

lact and lid are the actual and identified damage locations. I

is the indicator function that takes the value 1 if the detected

damaged node is truly damaged or zero otherwise.

Results corresponding to 32 of the assumed damage sce-

narios are shown in Table2 along with the average estimation

error obtained as

𝜖avg = 1

N

N∑
i=1

100
||||||||da − did

da

|||||||| (22)

where da is the analytically computed damage and did is

the estimated damage. The percentage error is subsequently

TABLE 2 False alarm index and corresponding damage estimation error
for different case studies.

Case no Damaged elements Noise % Damage % 𝜖avg% FA index

1 5-6 2 20 4.5571 0.01

2 5-6 5 20 14.6546 0.04

3 5-6 2 40 5.0730 0

4 5-6 5 40 15.49859 0.02

5 7-35 2 20 7.9311 0

6 7-35 5 20 15.7133 0.03

7 7-35 2 40 6.2483 0

8 7-35 5 40 14.8812 0.05

9 28-34 2 20 8.6794 0.02

10 28-34 5 20 13.3312 0.07

11 28-34 2 40 4.4365 0.02

12 28-34 5 40 9.2184 0.03

13 5-18 2 20 4.4730 0

14 5-18 5 20 12.1497 0.02

15 5-18 2 40 5.9450 0

16 5-18 5 40 8.9278 0.03

17 35-36 2 20 8.3915 0.04

18 35-36 5 20 12.1867 0.06

19 35-36 2 40 5.7502 0

20 35-36 5 40 9.1487 0.02

21 5-25,5-37 2 20 5.0473 0

22 5-25,5-37 5 20 13.3613 0.01

23 5-25,5-37 2 40 9.8339 0.01

24 5-25,5-37 5 40 6.1643 0.02

25 8-29,8-9 2 20 5.4004 0

26 8-29,8-9 5 20 9.2479 0

27 8-29,8-9 2 40 4.8179 0

28 8-29,8-9 5 40 10.2790 0.02

29 3-39,3-18 2 20 2.1617 0.01

30 3-39,3-18 5 20 9.2265 0.04

31 3-39,3-18 2 40 3.5420 0

32 3-39,3-18 5 40 8.0384 0.03

averaged over all N numbers of performed experiments. The

fifth column of Table2 lists the average estimation errors (see

Equation (22) for all successful cases of damage identifica-

tion. The FA index is also found to be satisfactorily low.

The variation of the FA index for different noise and damage

severity levels are plotted in Figure 9.

It should be noted here that the nodal stiffness is a function

of all the member stiffnesses attached to that particular node.

Thus, even though the member has undergone considerable

damage, its contribution to the nodal stiffness deterioration

is mostly small (cf. Figure 8, where 40% or 20% damage

in member is only able to cause approximately 25% or 10%

deterioration in nodal stiffness). Thus, this method is limited

to certain levels of damage in the members that can cause

significant change in the nodal stiffness.

Evidently from Figure 9, it can be observed that with

small magnitude damage (<20%) or due to more noise in

the measurement (>5%), the precision in damage intensity
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FIGURE 9 Study of false alarm for increasing noise level and damage severity

identification deteriorates, increasing the probability of false

alarm. This is quite justified because small damage often fails

to put a prominent signature on the measurement resulting

in some undamaged elements falsely identified as slightly

damaged due to noise. However, the proposed method is

found not to be causing significantly high numbers of false

alarm for damage levels ⩾20% and noise ⩽5%. The negligi-

bly small false alarm probability can still be avoided either

by denser instrumentation or by recursive identification of the

same system.

5 CONCLUSION

This article successfully developed a cDEKF for online dam-

age identification in large civil infrastructure systems from

noisy ambient response data. Comparative studies established

the efficacy of the proposed algorithm over existing PEKF-

and JEKF-based parameter identification algorithms. The

possibility of unrealistic estimation due to the high dimen-

sionality in the civil engineering systems was avoided by

placing bounds on parameter in the constrained gain opti-

mization scheme. Unlike other existing constrained filtering

techniques, the proposed methodology employed constrained

optimization to estimate a suboptimal Kalman gain that satis-

fies the feasibility condition for the estimated parameters.

Numerical examples, performed on a shear frame build-

ing and a space truss, demonstrated the proposed method’s

prompt and precise detection capability. Due to the formu-

lation of the problem, the damage localization can only

be achieved within sensor resolution. The chances of rais-

ing false alarm is also investigated and found to be within

acceptable limits. Being a Kalman filtering-based parame-

ter identification technique, this algorithm inherently assumes

Gaussianity in the parameters and in the process that in

turn restricts the algorithm to be used for the systems with

non-Gaussian parameters.
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APPENDIX

Analytical derivation of Kalman gain
Consider the linearized state space model of a dynamic

system defined in discrete time domain as described by

Equation 4. For a given noisy measurement yk, the estimation

of states x̂k|k using Kalman filter is performed in two consec-

utive steps. In the first step (“Prediction step”), the previous

estimate x̂k−1|k−1 is propagated through the state transition

matrix Ak to obtain a one step ahead prediction x̃k|k−1 of the

states given information up to and including (k − 1)th time

step. This predicted estimate is subsequently corrected in the

next step (i.e., “Correction step”) using mismatch in predicted

and actual measurement at kth time step. This is achieved by

a gain matrix Kk (namely, “Kalman gain”), which updates the

state prediction x̃k|k−1 to give corrected estimate x̂k|k.

Prediction step: x̃k|k−1 = Akx̂k−1|k−1

Correction step: Feedback: 𝜖k = yk − Ckx̃k|k−1;
Update: x̂k|k = x̃k|k−1 + Kk𝜖k

(A1)

With Kalman filtering, in each iteration, we seek an optimal

gain matrix Kk that minimizes the covariance of the error in

the estimated states. This covariance of error between actual

and estimated states can be estimated as COV{xk − x̂k|k}
denoted as P̂k|k:

P̂k|k = COV
{

xk −
{

x̃k|k + Kk(yk − Ckx̃k|k−1)
}}

(A2)

Expanding yk as yk = Ckxk + wk (see Equation 4) and rear-

ranging the component terms in the previous equation, the

following expression is obtained for state covariance estimate

P̂k|k as a function of gain matrix Kk.

P̂k|k = (I − KkCk)P̃k|k−1(I − KkCk)T − KkRkKT
k (A3)

where Rk = COV{wk} is the measurement noise covariance

matrix. P̃k|k−1 = COV{xk−x̃k|k−1} is the predicted covariance

matrix obtained by propagating prior covariance estimate

P̂k−1|k−1 through the system model as

P̃k|k−1 = AkP̂k−1|k−1AT
k ; (A4)

In order to satisfy minimum error covariance in state esti-

mate, the gradient of P̂k|k with respect to Kk is equated to zero,

which gives optimal Kalman gain Kk as

Kk =
CT

k P̃k|k−1

CkP̃k|k−1CT
k + R k

(A5)

This is the analytical derivation of the Kalman gain matrix

that, in each step of filtering, updates the predicted state

estimate to give the current estimate of states.
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