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ABSTRACT 

Exactness of the Bouc-Wen hysteresis model entirely depends on the correctness of 
the model parameters. This paper applies Extended and Unscented Kalman filtering 
approach with adaptive process and measurement error covariance matrix to identify 
these parameters in an efficient way. We define time invariant model parameters as 
states of the process while the error in model output is defined through the 
measurement equation. In addition we compare two different methods of 
identification of the hysteresis parameters based on their computational cost and 
convergence criteria and their fields of applicability are discussed.  First, in the 
“iterative” approach, parameter updating is done iteratively comparing model output 
to measured response for a fixed time span. While in the second (“sequential”) 
approach, updating is performed in real time comparing true and model response in 
each time step. Two numerical cases are investigated: a SDOF system and a three 
story shear frame building for validation. 

INTRODUCTION 

Recent research in structural health monitoring includes precise prediction about the 
response of existing structures subjected to loading beyond their prescribed design 
limit. However, this excess loading can cause nonlinear behaviour in the structure for 
which response cannot be predicted by its simplistic linear model. In order to have a 
reliable model researchers rely on nonlinear hysteretic material models and of them 
Bouc-Wen model [1, 6] is most acknowledged in recent research owing to the ease of 
implementation and broadband applicability [2] on different material types. The 
precision of this type of material model however depends entirely on the exactness of 
the model parameters which needs to be perfectly calibrated to obtain an accurate 
nonlinear predictor model. These parameters are therefore identified as solutions of 
an inverse problem using response history of the existing system. Gradient or 
Hessian based optimization or evolutionary algorithms can be found as common 
approaches to solve these inverse problems. However due to the inherent 
nonlinearity within the system performance of these algorithms are not always 
certain. In addition evolutionary algorithms [4, 7] are often impractical for complex 
expensive models owing to the cost constraint. In this paper we use filtering 
techniques to identify the parameters efficiently with an objective to keep model 
simulations as minimum as possible to develop a computationally inexpensive 
parameter identification algorithm.  

PARAMETER IDENTIFICATION 

In this study we use first order extended Kalman filter (EKF) and unscented Kalman 
filter (UnKF) as they can handle nonlinearity in the equation. Nonlinearity in process 
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and measurement equations are dealt in EKF through 1st order Taylor series 
expansion to locally linearize the nonlinear equations whereas UnKF propagates 
uncertainty by using specially selected sigma points and their weights. Details of 
these filtering techniques can be found in much celebrated articles of Julier and 
Uhlmann [3] and Welch and Bishop [5]. In this study unlike existing filtering based 
techniques we define the process equation as the time evolution of the model 
parameter while the measurement equation deals with mismatch between measured 
and model predicted response. Thus process and measurement equations are: 

                         { }1  ;     ( )k k k k observed k kx x u y FEM x vε+ = + = − +                          (1) 

where ku  and kv  are process and measurement noise respectively with covariance Q 
and R. kε  is due to the error in model output as well as measurement noise kv .k 
signifies iteration step or time step depending on whether the approach is iterative 
(ITR) or sequential (SEQ) respectively. FEM(*) is the nonlinear finite element model 
which uses Bouc-Wen model to describe its material and observedy  is the measured 
response. Filtering thus aims to find the optimum value of the parameters i.e. kx  for 
which the error is minimum in least square sense. In this study we solve the same 
problem in two different approaches, namely iterative (ITR) and sequential (SEQ) 
which is discussed in detail in the following section. 

ITERATIVE AND SEQUENTIAL METHOD 

In iterative method (ITR) in each iteration measurement equation evaluates the 
nonlinear model and compares the response for the whole time span with the 
measured response. This error measure is then used to calculate the gain matrix for 
that particular iteration step which is then used to predict states for the next iteration 
step. On the other hand in the sequential method (SEQ) parameter updating is done 
in real time. In each time step measurement equation evaluates the nonlinear model 
to predict response value for the next time step which is then compared with the 
measured response. Algorithm then proceeds to calculate the gain matrix to update 
states for the next time step. As nonlinear systems are sensitive towards initial 
condition these are kept unaltered during the model simulation. Both the algorithms 
are detailed below. 

Table 1: Iterative and Sequential algorithms 

Algorithm 1: Algorithm 2: 

1. Initialize  xk which is the parameter 
estimate at iteration step k. 

2. Go to:  measurement equation.  
3. Simulate the nonlinear model for 

time span 0 to t and obtain yk
estimate. 

4. Calculate the error measure at kth 
iteration step i.e. (yk

actual- yk
estimate).  

5. Go to: Process equation  

1. Initialize x(t) which is parameter 
estimate at time instant t . 

2. Go to:  measurement  equation  
3. Simulate the nonlinear model to 

obtain yestimate(t+dt). 
4. Calculate the error measure 

yactual(t+dt)- yestimate(t+dt). 
5. Go to: Process equation  
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6. Calculate gain. 
7. Predict parameters for next 

iteration step xk+1. 
8. Repeat step 2 and 3 till tolerance is 

achieved. 

6. Calculate gain. 
7. Predict parameter estimate 

x(t+dt). 
8. Repeat step 2 and 3 till signal 

length exceeds. 

Thus while with iterative algorithm filtering is done in pseudo-time, where it is 
represented by iteration steps, sequential algorithm is based in real time and updating 
is performed only when new set of data is available. Iterative scheme analyses the 
system for complete duration in each iteration step making the algorithm 
computationally demanding. On the other hand, with sequential scheme the model 
does not run for the whole time span making it computationally inexpensive. 
However, in this algorithm the horizon to reach the optimum solution is limited by 
length of measured time signal and therefore it may or may not satisfy tolerance 
criteria before the signal ends which is not a problem for iterative algorithm as it can 
achieve required precision in expense of computation time. 

ADAPTIVE SCHEME FOR Q AND R 

It is observed that for parameter identification using Kalman filtering fast 
convergence depends on the proper selection of the state and measurement error 
covariance matrix i.e. Q and R. Kalman filter is generally used to filter out the noise 
from the signal with the underlying assumption that process or measurement noise is 
a zero mean white noise sequence with constant covariance. However use of Kalman 
filtering technique in parameter identification is characteristically different. For 
example the measurement mismatch, which in case of filtering used to be attributed 
to only noise in the signal, is actually a combined effect of wrong parameter selection 
as well as noise in the measured signal. Thus instead of representing R by a constant 
entity an adaptive selection depending on the measurement error would be practical. 
We can further observe that the gain is a function of Q and R and therefore 
theoretically we can control the gain by choosing proper Q and R.

  
                              ( ) ( ) 1

1 1 11 1 1
T T T

k k k k k k k kk k k kK F P F Q H H P H R
−

− − −− − −= + +
                                 (2)

 

It is evident from the above equation that higher values for Q or lower value for R 
will cause larger updating in each step but upon reaching near to the actual solution it 
may oscillate around the actual value. On the other hand smaller Q and higher R will 
cause small updating in each step rendering the method to be time taking and 
computationally demanding. It is observed that at the initial phase of algorithm 
generally larger updating of parameters is needed which should get damped as the 
parameter values converges towards their respective true values. Therefore instead of 
using constant Q and R value we use an adaptive scheme for Q and R which can 
ensure rapid yet smooth convergence. This is a trivial issue for complex time 
consuming nonlinear FE model updating as rapid along with smooth convergence 
reduces simulations required to achieve the optimum solution. The philosophy 
behind the adaptive scheme for Q is that at the initial steps when prior states are less 
reliable we can assume a high value for Q causing high gain but as the measurement 
error decreases Q should decrease as well. State covariance matrix P holds the 
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information about the variance in error between true and estimated states. We 
therefore use this information to define an adaptive scheme for Q, which forces Q to 
take a higher value when P is high and as P decreases it forces Q to decrease as well. 
This approach is given in the following equation as: 

1 1 1
1

( )*      =  .
( )

k
k k noise

k

diag PQ Q Q where
diag P

δ δ−
−

= +  

The time invariant part Qnoise is due to true process noise which is dominant only 
when the error dependent part diminishes to some lower values than Qnoise.  

In this parameter identification problem, measurement error, which is due to model 
error owing to incorrect parameter values and as well as measurement noise, is 
considered together as noise in the measurement equation. Thus it is practical to 
define measurement noise covariance matrix R as an inversely proportional function 
of measurement error itself. As the error decreases R increases reducing gain in each 
step. The adaptive scheme for R is described below:  

3 10log ( )
2min( * , )k

k noiseR diag e Rδ εδ − =    

Where 2δ  and 3δ  are scaling parameter defining the increase in the value of R as 
error converges. The error invariant part of the equation Rnoise describes the true 
measurement noise covariance which will be dominant when error dependent part 
becomes larger than Rnoise allowing the algorithm to incur noise effects as well.  

RESULTS AND DISCUSSION 

Two sets of numerical experiment are performed and the details of modelling, 
assumed parameters values, simulation related information is furnished concisely in 
Table 2. For each problem the response signal is contaminated with 2% noise to 
better represent field measurement scenario where noise contamination is obvious. 
Iterative and sequential algorithms are then applied on the noisy signal to identify the 
parameters. Comparisons on the computational demand for both the problems and 
for both the proposed methods i.e. iterative and sequential are given in Table 3. Table 
3 also lists total time taken by each algorithm with EKF and UNKF and required 
iteration steps (IP1 And IP2) and corresponding time (TP1 and TP2) to reach two 
pre-set precision point P1 and P2 (1E-3 and 1E-5). 7th column of Table 3 lists 
required run time for model only (TFEM) which tracks how much time the algorithm 
uses to evaluate the model only. This data is important in the sense that as the 
nonlinear model becomes complicated and computationally expensive TFEM increases 
significantly whereas remaining part termed here as TID depends only on the order of 
calculation and therefore does not increase in that extent. This helps to set the 
primary objective for the proposed algorithm to keep number for model simulation 
minimum in order to achieve faster convergence. Based on the results a general 
suggestion is recommended on the applicability of the proposed methods on different 
category of problems. 

From the result we observe that for a small inexpensive model like the SDOF system 
iterative algorithm outperforms its sequential counterpart. Although considering 
TFEM we obtain a better understanding about the efficiency of these algorithms. TFEM 
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Table 2: Details of SDOF and MDOF numerical experiments 

Case SDOF MDOF 
Problem Single spring-mass-damper  Three story shear frame building 
Parameters A   α  β   γ  α  β   γ  n  

0.5 0.4 4 2.1 0.4 4 2.1 2 
Sampling  100 Hz 50 Hz 
Time span 5 Sec. (ITR) and 20 Sec. (SEQ) 31 Sec. for both 
Noise  2% 2% 
Force  Sinusoidal forcing El- Centro ground motion 
Simulation 
time for:  

2

4
For full simulation  : 1.568 10
For each time step   : 2.384 10

−

−
×
×

  
2

4
For full simulation   : 4.732 10
For each time step    : 9.312 10

−

−
×
×

 

Precision  3 5P1 1 10  and P2 1 10− −= × = ×   
3 5P1 1 10  and P2 1 10− −= × = ×  

 

Table 3: Results for both SDOF and MDOF systems. ITR-Iterative, 
SEQ=Sequential, IP1, IP2= Iteration to reach P1 and P2, TP1, TP2=Time to 
reach P1 and P2 

 Total time IP1 TP1 IP2 TP2 TFEM 
 Case SDOF 
ITR-EKF 6.398 29 4.526 41 6.398 3.075 
ITR-UnKF 10.656 45 6.850 70 10.656 9.450 
SEQ-EKF 65.815 458 7.535 1571 25.848 1.806 
SEQ-UnKF 91.589 642 14.706 1882 43.092 3.895 
 Case MDOF 
ITR-EKF 46.170 98 29.004 156 46.170 36.663 
ITR-UnKF 68.914 92 30.599 117 68.914 49.491 
SEQ-EKF 126.315 369 29.878 921 74.574 4.1445 
SEQ-UnKF 156.699 502 50.425 1282 128.775 10.384 

depends on the computational demand of the model which is bound to increase with 
the model order whereas TID doesn’t increase in that extent. This guides us to the 
conclusion that in order to achieve an inexpensive algorithm required model 
simulation should be maintained at its minimum possible level. From the result we 
find that although sequential approach takes more time to reach convergence it 
actually ran the model for lesser time than its iterative counterpart. The iterative 
algorithm outperforms only because TFEM is very small compared to TID for this 
simple SDOF model. This claim can be verified from the second numerical 
experiment with a MDOF system. Although based on the total required time 
consideration iterative algorithm comes out to be the best. However, for iterative 
scheme the total time increased almost 6-8 times compared to the SDOF system 
whereas the same is increased lesser than 2 times for sequential scheme. This 
difference will be more prominent with the increasing time demand of the model. 

However, considering the precision restriction for both approaches iterative scheme 
offers flexibility to choose the precision level whereas in the case of sequential 
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algorithm requires signal of sufficient length to achieve desired precision. In the 
SDOF problem we achieved the required precision with a 5 sec. measured response 
history while to achieve the same precision level sequential scheme needed response 
signal of 20 sec. Thus, this algorithm is not suitable for the cases with limited data 
points.  

In a nutshell, we observe that the adaptive scheme for Q and R helps the algorithm to 
enhance its time efficiency to achieve convergence. Since these methods are 
computationally inexpensive they are capable of handling complex and costly system 
models. Iterative scheme is found to be most suitable for simpler system with less 
time demand, whereas for costly system models sequential scheme is best suited as it 
does not require evaluating the complete system in successive iterations. 
Furthermore, while the iterative algorithm demands availability of the complete 
signal prior to the commencement of the algorithm which restricts its online 
applications, sequential algorithm uses new sets of data only when they are available. 
Thus iterative algorithm is suitable for simpler model with limited length of signal 
but sequential algorithm holds promise as an efficient online identification algorithm. 

CONCLUSION 
Proposed algorithms focus on developing a filtering based parameter identification 
technique which ensures rapid yet smooth convergence reducing simulation demand 
of the expensive FE model. To achieve this reduced simulation demand adaptive 
scheme for Q and R is employed which achieved optimum solution much faster than 
conventional technique of using constant covariance matrices. This study also 
compares the pros and cons of sequential and iterative approaches and classifies the 
problems based on the field of applicability criteria for these two approaches. It is 
found that while iterative algorithm can be used for model with limited data 
sequential scheme can be used online and is also suitable for costly models. 
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