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Preliminaries: Return period 

• IID random variables {X1 , X2 , X3,…}  with CDF FX 
– Occurrence (or success) = {Xi > xp} in ith trial 
– p = P{success} = P {Xi > xp} = 1 – FX(xp) 
– xp = level corresponding to exceedance probability p 

• Sequence of independent and identical Bernoulli trials: 
– Geometric random variable 
– Time between successive occurences is random 
– “Mean Return Period” associated with xp  is 1/p (in units of trial 

time interval) 
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Preliminaries: Characteristic value 

• IID random variables {X1 , X2 , X3,…}  with CDF FX 
– Success = {Xi > xp} in ith trial 
– p = P{success} = P {Xi > xp} = 1 – FX(xp) 
– xp = level corresponding to exceedance probability p 

• n repeated trials – Binomial random variable 
– Mean number of occurrences = np 

• xn  = Characteristic value of Xi  
– if mean number of occurrences, np(xn) =1 
– that is, 1 – FX(xn) = 1/n 
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Motivation: Time-dependent reliability 
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Design issues 

• Maximum load 
• Minimum capacity 
• Associated uncertainties 
• Data driven 
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Reliability problem statement 

• Time-dependent failure probability 
 

• Simplification 
 

• Need to estimate Lmax,t  

]],0[anyfor0)()([)( tLDRPtPf ∈≤−−= τττ

]0[)( max, ≤−−= tef LDRPtP

Baidurya Bhattacharya, Professor of Civil Engineering, Indian Institute of Technology Kharagpur 



Maximum live load estimation 

• Maximum live load 
 

• Distribution function 
 

• Simplifications 
– independence 
– stationarity 
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Extreme value theory: problem 
statement 

• Sequence of random variables {Xi} 
• What are the limiting forms     of Zn and Wn ? 

 
 
 
 

• Issues 
– n unknown 
– Degeneracy of limit distributions: n infinite 
– Nature of population distributions, Fi 

– Dependence in the sequence 
– Non-stationarity of the sequence 
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IID (classical) case 

• {Xi} is an IID sequence 
– Xi and Xj are   independent 
 for i ≠ j 
– Fi = F are same for all i 

 
• Hn(x) and Ln(x) are 

degenerate distributions 
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Code for CDF of Xmax vs. n 

• %This program generates a sequence of n IID exponential RVs and stores it maximum, xmax 

• %It then repeats the process mct times 

• %The distribution of xmax is plotted 

• %The plot is repeated for a different n 

•  clear all; 

• mct=1000; 

•     n=input('give n\n'); 

•      for mcti=1:mct, 

•         for i=1:n, 

•             x(i)=-log(rand); 

•         end 

•         xmax(mcti)=max(x); 

•         freq(mcti)=mcti/(mct+1); 

•     end 

•      xmaxsorted=sort(xmax); 

•      loglog(xmaxsorted,freq); 

•     sizes=['n=' num2str(n)]; 

• hold on; 

•  text(xmaxsorted(mct/2),.5,[sizes],'BackgroundColor',[1 1 1],'EdgeColor','black'); 

• axis([0,100,0,1]);  
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Example: degeneracy for large n 
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Normalization 

• Can we normalize Zn and help matters? 
 
 
 

• Issues 
– How many possible forms for H ? 
– How does H depend on F ? 
– How to find an and bn 
– What is the speed of convergence? 
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Normalization 

• Can we normalize W(n) and help matters? 
 
 
 

• Issues 
– How many possible forms for L ? 
– How does L depend on F ? 
– How to find an and bn 
– What is the speed of convergence? 
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Normalization 
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Normalization example 
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Code for CDF of normalized Xmax vs. n 

• %This program generates n IID Exponentials and stores the maximum xmax.  

• %xmax is then recentered and scaled as a function of n 

• %The process is repeated n times 

• clear all; 

• mct=1000; 

• n=input('give n\n'); 

• scale=input('give scale\n'); 

• shift=input('give shift\n'); 

• if n==1,scale=1;shift=0;end 

•     for mcti=1:mct, 

•         for i=1:n, 

•             x(i)=-log(rand); 

•         end 

•         xmax(mcti)=(max(x)-log(n)+shift)/scale; 

•         freq(mcti)=mcti/(mct+1); 

•     end 

•     xmaxsorted=sort(xmax); 

•     loglog(xmaxsorted,freq); 

•     sizes=['n=' num2str(n)]; 

• hold on; 

• text(xmaxsorted(mct/2),.5,[sizes],'BackgroundColor',[1 1 1],'EdgeColor','black'); 

• axis([0,100,0,1]); 
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Limit distributions in IID case 

• There are only three types of non-degenerate 
distributions H(x) for maxima  

• There are only three types of non-degenerate 
distributions L(x) for minima 

• Necessary and sufficient conditions exist for F(x) to 
yield above max or min distributions  
 
– Note: Two distributions F and G are of the same “type”,  if 

F(x) = G(ax+b) where a, b are constants 
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Generalized EV distribution for maxima 
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Generalized EV distribution for minima 

1/
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Domains of attraction for maxima 
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Domains of attraction for minima 
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Examples 

• Cauchy  
• Uniform 
• Exponential 
• Rayleigh 
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Examples 

• Limit distribution for minima from Cauchy parent 
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Examples 

• Limit distribution for maxima from uniform parent 

1

1

The complemetary CDF of the uniform is:
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Examples 

2
1

2
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Since  = 1, exponential gives rise to Weibull minima. 
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• Limit distribution for minima from exponential parent 
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Domains of attraction 

Domain of Attraction Type

Distribution For maximum For minimum
Normal Gumbel Gumbel
Exponential Gumbel Weibull
Log-normal Gumbel Gumbel
Gamma Gumbel Weibull
Gumbel M Gumbel Gumbel
Gumbel m Gumbel Gumbel
Rayleigh Gumbel Weibull
Uniform Weibull Weibull
Weibull M Weibull Gumbel
Weibull m Gumbel Weibull
Cauchy Frechet Frechet
Pareto Frechet Weibull
Frechet M Frechet Gumbel
Frechet m Gumbel Frechet

M=for maximum
m=for minimum



Estimation of EV distribution 
parameters 

• Block maxima – probability plot 
• Return period plot 
• Problem: not all data are utilized 
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Generalized Pareto Distribution 

1/( ) [ | 0] 1 [1 ( / )] cG y P Y y Y cy a −= ≤ > = − +
0,  1 ( / ) 0a cy a> + >

Exceedances of X over high threshold u 
Define:   Y = X - u 

same c as in GEV distribution 
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