Extreme Value Theory in Civil Engineering

Baidurya Bhattacharya

Dept of Civil Engineering IIT Kharagpur December 2016

Homepage: www.facweb.iitkgp.ernet.in/~baidurya/

Preliminaries: Return period

- IID random variables $\{X_1, X_2, X_3, ...\}$ with CDF F_X
 - Occurrence (or success) = $\{X_i > x_p\}$ in *i*th trial
 - $p = P\{success\} = P\{X_i > x_p\} = 1 F_X(x_p)$
 - $-x_p$ = level corresponding to exceedance probability p
- Sequence of independent and identical Bernoulli trials:
 - Geometric random variable
 - Time between successive occurences is random
 - "Mean Return Period" associated with x_p is 1/p (in units of trial time interval)

Preliminaries: Characteristic value

- IID random variables $\{X_1, X_2, X_3, ...\}$ with CDF F_X
 - Success = $\{X_i > x_p\}$ in *i*th trial
 - $p = P\{success\} = P\{X_i > x_p\} = 1 F_X(x_p)$
 - $-x_p$ = level corresponding to exceedance probability p
- *n* repeated trials Binomial random variable
 - Mean number of occurrences = np
- x_n = Characteristic value of X_i
 - if mean number of occurrences, $np(x_n) = 1$
 - that is, $1 F_X(x_n) = 1/n$

Motivation: Time-dependent reliability

First Passage $T = \inf [t : C(t, \underline{x}) < D(t, \underline{x}), t \ge 0, \underline{x} \in \Omega]$ Time:

Baidurya Bhattacharya, Professor of Civil Engineering, Indian Institute of Technology Kharagpur

Design issues

- Maximum load
- Minimum capacity
- Associated uncertainties
- Data driven

• Time-dependent failure probability

$$P_f(t) = P[R(\tau) - D - L(\tau) \le 0 \quad \text{for any} \quad \tau \in [0, t]]$$

• Simplification

$$P_f(t) = P[R_e - D - L_{\max,t} \le 0]$$

• Need to estimate $L_{\max,t}$

Maximum live load estimation

• Maximum live load

 $L_{\max,t} = \max\{L_1, L_2, ..., L_{N(t)}\}$

• Distribution function

$$F_{L_{\max,t}}(l) = P[L_1 \le l, L_2 \le l, ..., L_{N(t)} \le l]$$

- Simplifications
 - independence
 - stationarity

$$F_{L\max,t}(l) = [F_L(l)]^{N(t)}$$

Extreme value theory: problem statement

- Sequence of random variables $\{X_i\}$
- What are the limiting forms of Z_n and W_n ?

$$Z_{n} = \max(X_{1}, X_{2}, ..., X_{n}) \sim H_{n}$$
$$W_{n} = \min(X_{1}, X_{2}, ..., X_{n}) \sim L_{n}$$

- n unknown
- Degeneracy of limit distributions: n infinite
- Nature of population distributions, F_i
- Dependence in the sequence
- Non-stationarity of the sequence

IID (classical) case

- $\{X_i\}$ is an IID sequence - X_i and X_j are independent for $i \neq j$
 - $-F_i = F$ are same for all i
- $H_n(x)$ and $L_n(x)$ are degenerate distributions

$$P[Z_n \le x] = H_n(x) = F^n(x)$$
$$P[W_n \le x] = L_n(x) = 1 - (1 - F(x))^n$$

$$\lim_{n \to \infty} H_n(x) = \begin{cases} 0, x < \omega(F) \\ 1, \text{ otherwise} \end{cases}$$

 $\omega(F) =$ upper end point of F

$$\lim_{n \to \infty} L_{(n)}(x) = \begin{cases} 0, x \le \alpha(F) \\ 1, \text{ otherwise} \end{cases}$$

a(F) =lower end point of F

Code for CDF of Xmax vs. n

- %This program generates a sequence of n IID exponential RVs and stores it maximum, xmax
- %It then repeats the process mct times
- %The distribution of xmax is plotted
- %The plot is repeated for a different n
- clear all;
- mct=1000;
- n=input('give n\n');
- for mcti=1:mct,
- for i=1:n,

```
x(i)=-log(rand);
```

- end
 - xmax(mcti)=max(x);

```
freq(mcti)=mcti/(mct+1);
```

- end
- xmaxsorted=sort(xmax);
- loglog(xmaxsorted,freq);
- sizes=['n=' num2str(n)];
- hold on;
- text(xmaxsorted(mct/2),.5,[sizes],'BackgroundColor',[1 1 1],'EdgeColor','black');
- axis([0,100,0,1]);

Example: degeneracy for large n

• Can we normalize Z_n and help matters?

$$\lim_{n \to \infty} P\left[\frac{Z_n - a_n}{b_n} \le x\right] = \lim_{n \to \infty} H_n(a_n + b_n x) = H(x)$$

- Issues
 - How many possible forms for *H*?
 - How does H depend on F?
 - How to find a_n and b_n
 - What is the speed of convergence?

• Can we normalize $W_{(n)}$ and help matters?

$$\lim_{n \to \infty} P\left[\frac{W_{(n)} - a_n}{b_n} \le z\right] = \lim_{n \to \infty} L_{(n)}(a_n + b_n z) = L(z)$$

- Issues
 - How many possible forms for L ?
 - How does L depend on F?
 - How to find a_n and b_n
 - What is the speed of convergence?

Normalization

As $n \to \infty$, Instead of $F_{\max}(x) = F_X^n(x)$ Look at $F_X^n(x_n)$ where $x_n = f(x, n)$ Simplest form for x_n : $x_n = a_n + b_n x$

Normalization example

$$X_{i} \sim \text{Exponential(1)}$$

$$F_{\max}(x) = F_{X}^{n}(x) = (1 - \exp(-x))^{n}$$
As $n \to \infty$,
Replace $x \leftarrow \alpha(x - u) + \ln(n)$
Obtain: $F_{\max}(x) = \lim_{n \to \infty} \left(1 - \frac{\exp(-\alpha(x - u))}{n}\right)^{n}$
 $= \exp(-\exp(-\alpha(x - u)))$

Code for CDF of normalized Xmax vs. n

- %This program generates n IID Exponentials and stores the maximum xmax.
- %xmax is then recentered and scaled as a function of n
- %The process is repeated n times
- clear all;
- mct=1000;
- n=input('give n\n');
- scale=input('give scale\n');
- shift=input('give shift\n');
- if n==1,scale=1;shift=0;end
 - for mcti=1:mct,
 - for i=1:n,
 - $x(i) = -\log(rand);$
 - end
 - xmax(mcti)=(max(x)-log(n)+shift)/scale;
 - freq(mcti)=mcti/(mct+1);
- end
- xmaxsorted=sort(xmax);
- loglog(xmaxsorted,freq);
- sizes=['n=' num2str(n)];
- hold on;
- text(xmaxsorted(mct/2),.5,[sizes],'BackgroundColor',[1 1 1],'EdgeColor','black');
- axis([0,100,0,1]);

Baidurya Bhattacharya, Professor of Civil Engineering, Indian Institute of Technology Kharagpur

Limit distributions in IID case

- There are only three types of non-degenerate distributions *H*(*x*) for maxima
- There are only three types of non-degenerate distributions *L*(*x*) for minima
- Necessary and sufficient conditions exist for *F*(*x*) to yield above max or min distributions
 - Note: Two distributions *F* and *G* are of the same "type", if F(x) = G(ax+b) where *a*, *b* are constants

Generalized EV distribution for maxima

In IID case, H(z) must be of the same type as:

$$H_c(z) = \exp\left[-(1+cz)^{-1/c}\right], \ 1+cz > 0$$

 $c = 0 \Rightarrow \text{Gumbel (Type I) distribution:} \quad H_G(z) = e^{-e^{-z}}, -\infty < z < \infty$ $c > 0 \Rightarrow \text{Frechet (Type II) distribution:} \quad H_F(z) = \begin{cases} e^{-z^{-\gamma}}, z > 0\\ 0, z \le 0 \end{cases}$ $c < 0 \Rightarrow \text{Weibull (Type III) distribution:} \quad H_W(z) = \begin{cases} 1, & z > 0\\ e^{-(-z)^{-\gamma}}, z \le 0 \end{cases}$

where $\gamma = |1/c|$

Generalized EV distribution for minima

In IID case, L(z) must be of the same type as:

$$L_{c}(z) = 1 - \exp\left[-(1 - cz)^{-1/c}\right], \ 1 - cz > 0$$

 $c = 0 \Rightarrow \text{Gumbel (Type I) distribution: } L_G(z) = 1 - e^{-e^z}, -\infty < z < \infty$ $c > 0 \Rightarrow \text{Frechet (Type II) distribution: } L_F(z) = \begin{cases} 1 - e^{-(-z)^{-\gamma}}, z \le 0\\ 1, z > 0 \end{cases}$ $c < 0 \Rightarrow \text{Weibull (Type III) distribution: } L_W(z) = \begin{cases} 0, z < 0\\ 1 - e^{-z^{\gamma}}, z \ge 0 \end{cases}$

where $\gamma = |1/c|$

Domains of attraction for maxima

(A)
$$\lim_{t \to \infty} \frac{1 - F(tx)}{1 - F(t)} = x^{-\gamma}, \quad \gamma > 0$$

(B)
$$\int_{a}^{\omega(F)} (1 - F(x)) dx < \infty, \text{ any finite } a, \quad \alpha(F), \quad \omega(F) = \text{ lower and upper end points of } F$$

(C)
$$\lim_{t \to \omega(F)} \frac{1 - F(t + xR(t))}{1 - F(t)} = e^{-x}, \qquad R(t) = E(X - t \mid X > t), \quad t > \alpha(F)$$

• $F \in D(H_F)$ if and only if $\omega(F) = \infty$ and (A) holds for F $a_n = 0, b_n = \inf(x : 1 - F(x) \le 1/n)$ • $F \in D(H_W)$ if and only if $\omega(F) < \infty$ and (A) holds for $F^*(x) = F(\omega(F) - 1/x)$ $a_n = \omega(F), b_n = \omega(F) - \inf(x : 1 - F(x) \le 1/n)$ • $F \in D(H_G)$ if and only if $\omega(F) = \infty$ and (B), (C) hold

$$a_n = \inf(x: 1 - F(x) \le 1/n), b_n = R(a_n)$$

Domains of attraction for minima

(A)
$$\lim_{t \to \infty} \frac{F(tx)}{F(t)} = x^{-\gamma}, \qquad \gamma > 0$$

(B)
$$\int_{\alpha(F)}^{a} F(x) dx < \infty, \text{ any finite } a, \quad \alpha(F), \omega(F) = \text{ lower and upper end points of } F$$

(C)
$$\lim_{t \to \alpha(F)} \frac{F(t + xr(t))}{F(t)} = e^{x}, \qquad r(t) = E(t - X \mid X < t), t > \alpha(F)$$

- $F \in D(L_F)$ if and only if $\alpha(F) = -\infty$ and (A) holds for F $c_n = 0, d_n = \sup(x : F(x) \le 1/n)$
- $F \in D(L_w)$ if and only if $\alpha(F) > -\infty$ and (A) holds for $F^*(x) = F(\alpha(F) - 1/x), x < 0$

 $c_n = \alpha(F), d_n = \sup(x : F(x) \le 1/n) - \alpha(F)$

• $F \in D(L_G)$ if and only if (B), (C) hold

 $c_n = \sup(x : F(x) \le 1/n), d_n = r(c_n)$

- Cauchy
- Uniform
- Exponential
- Rayleigh

Examples

Limit distribution for minima from Cauchy parent

$$F(x) = \frac{1}{2} + \frac{\arctan(x)}{\pi}; \quad -\infty < x < \infty$$

Check Eqn (A) for minima:
$$\lim_{t \to \infty} \frac{F(tx)}{f(t)} = \lim_{t \to \infty} \frac{\frac{1}{2} + \frac{\arctan(tx)}{\pi}}{\frac{1}{2} + \frac{\arctan(tx)}{\pi}}$$
$$= \lim_{t \to \infty} \frac{\frac{x}{1 + (tx)^2}}{\frac{1}{1 + t^2}}$$
$$= \lim_{t \to \infty} \frac{x(1 + t^2)}{1 + t^2 x^2} = x^{-1}$$

That is, $\gamma = -1$, and Cauchy lies in the domain of attraction of Frechet for minima. The normalizing constants are:

$$c_n = 0$$
$$d_n = \tan\left[\pi\left(\frac{1}{2} - \frac{1}{n}\right)\right]$$

Examples

• Limit distribution for maxima from uniform parent

The complemetary CDF of the uniform is:

$$F^{*}(x) = 1 - \frac{1}{x}, x \le 1$$
$$\lim_{t \to \infty} \frac{1 - F^{*}(tx)}{1 - F^{*}(t)} = \lim_{t \to \infty} \frac{\frac{1}{tx}}{\frac{1}{t}} = x^{-1}$$

Since $\gamma = 1$, uniform gives rise to Weibull maxima.

The normalizing constants are:

$$a_n = \omega(F) = 1$$

$$b_n = \omega(F) - F^{-1} \left(1 - \frac{1}{n} \right)$$

$$= 1 - 1 + \frac{1}{n} = \frac{1}{n}$$

• Limit distribution for minima from exponential parent

$$F^*(x) = 1 - \exp\left(\frac{1}{x}\right)$$
$$\lim_{t \to -\infty} \frac{F^*(tx)}{F^*(t)} = \lim_{t \to -\infty} \frac{1 - \exp\left(\frac{1}{tx}\right)}{1 - \exp\left(\frac{1}{t}\right)} = \lim_{t \to -\infty} \frac{\exp\left(\frac{1}{tx}\right)\left(\frac{1}{t^2}\right)\left(\frac{1}{x}\right)}{\exp\left(\frac{1}{t}\right)\left(\frac{1}{t^2}\right)} = x^{-1}$$

Since $\gamma = 1$, exponential gives rise to Weibull minima. $c_n = \alpha(F) = 0$ $d_n = F^{-1}\left(\frac{1}{n}\right) - \alpha(F) = -\log\left(1 - \frac{1}{n}\right) \approx \frac{1}{n}$

Domains of attraction

Domain of Attraction Type		
Distribution	For maximum	For minimum
Normal	Gumbel	Gumbel
Exponential	Gumbel	Weibull
Log-normal	Gumbel	Gumbel
Gamma	Gumbel	Weibull
Gumbel _M	Gumbel	Gumbel
Gumbel _m	Gumbel	Gumbel
Rayleigh	Gumbel	Weibull
Uniform	Weibull	Weibull
Weibull _M	Weibull	Gumbel
Weibull _m	Gumbel	Weibull
Cauchy	Frechet	Frechet
Pareto	Frechet	Weibull
Frechet M	Frechet	Gumbel
Frechet m	Gumbel	Frechet

M=for maximum m=for minimum

Estimation of EV distribution parameters

- Block maxima probability plot
- Return period plot
- Problem: not all data are utilized

Generalized Pareto Distribution

A 1

Exceedances of X over high threshold uDefine: Y = X - u

$$G(y) = P[Y \le y | Y > 0] = 1 - [1 + (cy/a)]^{-1/c}$$

$$a > 0, 1 + (cy/a) > 0$$

same c as in GEV distribution