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Molecular Dynamics 
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Conservative system 
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k=1;m=1; 
w=sqrt(k/m); 
%Define the initial conditions for the single 
harmonic oscillator 
y(1) = 0.0; %location 
y(2) = 1.0; %velocity 
E0=0.5*m*y(2)*y(2); 
A=sqrt(2*E0/k); 
  
dt = 0.001; %the step size 
steps = 10000; %Total number of time steps 
  
t=0; 
for i=1:steps 
    t=t+dt; 
    x=A*sin(w*t); 
    v=A*w*cos(w*t); 
    cenergy(i)=0.5*k*x^2 + 0.5*m*v^2; 
    ctime(i)=i*dt; %c=closed form 
    cy1(i)=x; 
    cy2(i)=v; 
     
end 
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Microcanonical dynamics 
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Microcanonical dynamics 
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Introducing dissipation 
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Damped harmonic oscillator:

,
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function rungekutta4_viscous 
for(i=1:steps) 
    t = t+dt; 
    time(i)=t; 
    y = Runge4(t,y,dt,N); 
    energy(i) = 0.5*(k*y(1)^2+m*y(2)^2); 
end 
 
function y = Runge4(time,y,dt,N) 
step = dt/2.0; 
  
for(i=1:N) 
    k1(i) = step*eom(time,y,i); 
    t1(i) = y(i) + 0.5*k1(i); 
end 
for(i=1:N) 
    k2(i) = step*eom(time+dt,t1,i); 
    t2(i) = y(i) + 0.5*k2(i); 
end 
for(i=1:N) 
    k3(i) = step*eom(time+dt,t2,i); 
    t3(i) = y(i) + k3(i); 
end 
for(i=1:N) 
    k4(i) = step*eom(time+dt,t3,i); 
end 
for(i=1:N) 
    y(i) = y(i) + 
(k1(i)+2.0*k2(i)+2.0*k3(i)+k4(i))/6.0; 
end 
end 
 
 

function dydt = eom(t,y,i) 
if(i==1) 
    dydt = y(2); 
end 
if(i==2) 
    dydt = -k/m*y(1)-eta*y(2); 
end 



Viscous drag 
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Nose – Hoover thermostat 

• Modified EoM: 
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• Reservoir represented by the 
new variable 

• Reservoir acts as 
“damping/exciting” force, 

withdrawing energy at times 
and supplying energy at others 



NH Dynamics 
• N=3; % no. of equations 

• k=1;m=1; Qeta=1; 

• dt = 0.001; %Defines the step size  

• steps = 100000; %Total number of time steps  

• y(1) = 0.0; %initial location 

• y(2) = 1.0; %initial velocity 

• y(3)=1; %initial eta 

•   

• t = 0.0; %initializing time 

• for(i=1:steps) 

•     t = t+dt; 

•     time(i)=t; 

•     y = Runge4(t,y,dt,N); 

•     energy(i) = 0.5*(k*y(1)^2+m*y(2)^2); 

•     x1(i) = y(1); 

•     v1(i) = y(2); 

• end 
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function y = Runge4(time,y,dt,N) 
step = dt/2.0; 
  
for(i=1:N) 
    k1(i) = step*eom(time,y,i); 
    t1(i) = y(i) + 0.5*k1(i); 
end 
for(i=1:N) 
    k2(i) = step*eom(time+dt,t1,i); 
    t2(i) = y(i) + 0.5*k2(i); 
end 
for(i=1:N) 
    k3(i) = step*eom(time+dt,t2,i); 
    t3(i) = y(i) + k3(i); 
end 
for(i=1:N) 
    k4(i) = step*eom(time+dt,t3,i); 
end 
for(i=1:N) 
    y(i) = y(i) + 
(k1(i)+2.0*k2(i)+2.0*k3(i)+k4(i))/6.0; 
end 
end 
  
function dydt = eom(t,y,i) 
if(i==1) 
    dydt = y(2); 
end 
if(i==2) 
    dydt = -k/m*y(1)-y(3)*y(2); 
end 
  
if(i==3) 
    dydt=(y(2)^2-.5)/Qeta; 
end 
end 



NH Dynamics 
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NH Dynamics 
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Langevin dynamics 

13 

/

( )

( ) 0
( ) ( ') ( ')

At equilibrium, using MB distribution:

= 2

i i

i i
i

B

x p m

p p t
x

t
t t t t

m k T

γ αξ

ξ
ξ ξ αδ

α γ

=

∂Φ
= − − −

∂

< >=
< >= −





for(i=1:steps) 
    t = t+dt; 
    time(i)=t; 
    y = Runge4(t,y,dt,N); 
    energy(i) = 0.5*(k*y(1)^2+m*y(2)^2); 
end 

function y = Runge4(time,y,dt,N) 
step = dt/2.0; 
  
for(i=1:N) 
    k1(i) = step*eom(time,y,i); 
    t1(i) = y(i) + 0.5*k1(i); 
end 
for(i=1:N) 
    k2(i) = step*eom(time+dt,t1,i); 
    t2(i) = y(i) + 0.5*k2(i); 
end 
for(i=1:N) 
    k3(i) = step*eom(time+dt,t2,i); 
    t3(i) = y(i) + k3(i); 
end 
for(i=1:N) 
    k4(i) = step*eom(time+dt,t3,i); 
end 
for(i=1:N) 
    y(i) = y(i) + 
(k1(i)+2.0*k2(i)+2.0*k3(i)+k4(i))/6.0; 
end 
end 

function dydt = eom(t,y,i) 
global eta sqrt2etakT dt k m Qeta xmax 
if(i==1) 
    dydt = y(2); 
end 
if(i==2) 
    dydt = -k/m*y(1)-
eta*y(2)+sqrt2etakT*randn/sqrt(dt/2); 
end 
end 



Langevin dynamics 
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Langevin dynamics 
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Theory of probability 
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Motivation 

• We need to: 
– to infer about properties/state of a system 
– to  predict about outcome of a future event 
– to judge truth of a hypothesis 

 

• Lack of complete certainty 
– in state/properties of the system 
– in outcome of the future event 
– in truth of the hypothesis 
 

• Knowledge of 
– thought experiments  
– repeatability of given experiment, observed data 
– context of problem and similar situations 
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Three approaches to probability 

• Throw of a fair die.  How likely is a six? 
– Other examples: energy states in Maxwell Boltzmann distribution;   

fair coin toss; cryptology; lottery design;  

 
• Throw of a loaded die.  How likely is a six? 

– Other examples: pre-disposition to genetic disease (diabetes, 
thalassemia, cystic fibrosis etc.); effectiveness of new drug; age-
specific mortality; annual maximum wave height; sensitivity & 
specificity of diagnostic test; psephology 

  

• Global warming.  How likely is it to be true? 
– Other examples: accuracy of financial model/ weather model/ 

finite element model/ seismological model etc.; correct location of 
oil well; sports betting; fairness of a coin/die  
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Three approaches to probability 

• Classical:  equally likely outcomes – thought experiment 
• Frequentist: large number of identical trials – actual 

experiments 
• Judgmental/Bayesian: degree of belief – use of 

experience, association, intuition etc. 
 
 
 

• Issues:  
– Are these three approaches incompatible? 
– Can I mix them to get useful results? 

 



20 

Basic set theory 

• Universal set 
• Combination of sets 
• Set relations 
• Countable sets 
• Fields 
• sigma-fields 
• Measure  

– Measurable sets 
– Measure 
– Measure space 
– Measurable function 
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Set relations  

Idempotent laws 
(1 )a        A A A=                                           (1 )b         A A A=  

Associative laws 
(2 )a        ( ) ( )A B C A B C=                    (2 )b        ( ) ( )A B C A B C=     

Commutative laws 
(3 )a         A B B A=                                    (3 )b          A B B A=     

Distributive laws 
(4 )a         ( ) ( ) ( )A B C A B A C=           (4 )b         ( ) ( ) ( )A B C A B A C=      

Identity laws 
(5 )a         A A∅ =                                          (5 )b         A U A=  

(6 )a          A U U=                                         (6 )b         A ∅ = ∅  

Involution law 

 (7)   (A c)c A=  

Complement laws 

(8 )a          cA A U=                                         (8 )b          cA A = ∅  

(9 )a           cU = ∅                                              (9 )b          c U∅ =  

DeMorgan`s laws 

(10 )a        ( )c c cA B A B=                              (10 )b        ( )c c cA B A B=   



Limits of sets 
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Recall limit of the sequence of functions { ( )}if x . For a given value of x (x is omitted to 
make the notation cleaner), t he term lim inf fn denotes the maximum of the sequence of 
minima: 

10 1

lim inf max{min , ,...}n j j kn j j k j

f f f f
∞ ∞

+→∞ < <∞
= =

= =


These concepts directly apply to a sequence of sets  { }kA . The infimum and supremum of 
the sequence are the sets defined respectively as: 

 
1

i.e., set of points absent in a 
lim inf : (1- I ( ))

finite number of 'skn k An kj k j k

A A w w
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∞ ∞
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= =

  = = < ∞   
   

∑

 (0.  

 
1

i.e., set of points present in 
lim sup : ( )

all  'skn k An kj k j k

A A w I w
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∞ ∞
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= =

  = = = ∞   
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 (0.  

 

 The limit of the sequence { }kA  exists if the two limits are equal and may be denoted A: 

 lim inf lim supn nn n
A A A

→∞ →∞
= =  (0.  

which may be written in short as:  

 lim or     n nn
A A A A

→∞
= →  (0.4) 



Limits of sets: example 
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Set algebra 

Let X be any set1.  A non-empty collection A of subsets of X is an algebra of sets (i.e., a 
field) if: whenever A1, A2 are in A , so are X\A1 (i.e., complement of A1) and A1A2 (and 
therefore A1A2 also).  Generalizing, if A1, A2,…,An (n finite) are in A, so are A1 UA2…UAn 
and A1A2…An. 

Example: Let X={a,b,c}.  Then we could define a field A  as: 

A  = φ, X, {a}, {b,c}  

σ algebra (or σ field or Borel field):  The algebra described above is a σ algebra of sets if 
it holds for a countably infinite collection A1, A2, …. That is, whenever, the sequence A1, A2, 

…, belongs to A, so does 
1

Ai
i

∞

=


.  In other words, a σ algebra A  of subsets of a given set X 

contains the empty set φ and is closed with respect to complementation and countable 
unions.2   
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Measure 

Measurable set:  A couple (X,  A) is a measurable space where X is any set and A is a σ 

algebra of subsets of X.  A subset A of X is measurable with respect to A if A ∈  A. 

Measure: A measure m on a measurable space (X,  A) is a non-negative set function defined 
for all sets of the σ algebra A, if it has the properties:  

(i) m(φ) = 0.            (1) 

(ii) If A1, A2, …is a sequence of disjoint sets of A, then 
11

( ) ( )i i
ii

m A m A
∞ ∞

==

= ∑

.  (2) 

Measure space:  A measure space (X,  A, m) means a measurable space (X,  A) together 
with a measure m defined on A. 

Measurable function:  Let a function f be defined on the measurable space  (X,  A)  
described above.  Let the range of f be the extended real line.  If f satisfies any one of the 
following conditions, then it is a measurable function with respect to A: 

{ : ( ) } for each
{ : ( ) } for each
{ : ( ) } for each
{ : ( ) } for each

x f x
x f x
x f x
x f x

α α
α α
α α
α α

< ∈
≤ ∈
> ∈
≥ ∈

A
A
A
A
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Probability as a Measure - Axioms of probability 

  

 

1) 0 (A) 1P≤ ≤  for every measurable set A ∈ F. 

2) P (Ω) = 1 

3) If A1 , A2 … are disjoint sets in F then   

11

( A ) (A )i i
ii

P P
∞ ∞

==

= ∑

  

A probability space (Ω, F, P)  
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Example: field 

Example: throw of a die.  

Sample space, Ω = {1,2,3,4,5,6}  [More correctly, the sample space should be defined as 
{obtain 1 dot, obtain 2 dots etc.}, but we have already mapped the sample space on the real 
line.  Also note that we have not included events that the die falls off the table, or stands on a 
corner etc.] 

Depending on your interest, the field F can be defined in many ways.  

Say,  F = 2Ω , i.e., the power set of Ω, i.e., all combinations of the 6 sample points. 

Or, say, F = { φ, Ω, odds, evens} 

Or, say, F = { φ, Ω, 1, evens,{1,evens},{3,5,evens},{1,3,5}} 

In each case, probabilities must be assigned to each member of F . 
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Summary – probability theory 

• Probability 
– Likelihood of an event 

• Classical definition – thought experiment based 
• Relative frequency based – actual experiment based 
• Bayesian – judgment based 

 
– P(A) is a fraction between 0 and 1 
– P=0 means impossible event 
– P=1 means sure event 
– If A, B are disjoint events, P(AUB) = P(A) + P(B) 
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Example 

• An urn contains 8 Black, 9 Green and 3 Blue balls. 3 balls 
are drawn without replacement.  Find probability that: 
– All three are black 
– At least one is green 
– One of each colour is drawn 

 
 

Ans: 0.049, 0.855, 0.189 
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Example 

• Find the probability that in a game of bridge, each player 
will receive an ace 

Ans: 0.105 



Lottery design 
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59 white 
balls 
39 red 
balls 
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Example 

• m boxes and r particles, m>r 
• P[one particle per box in r pre-selected boxes] 

– Maxwell Boltzmann Statistics 
• Distinguishable particles 
• No restriction on number of particles per box 
• Number of equally likely ways to place the particles: 1st particle can 

go to any of m boxes, 2nd particle can go to any of m boxes, …, rth 
particle can go to any of m boxes. N = m^r 

• Number of favourable ways: 1st particle in r ways, 2nd particle in (r-1) 
ways, 3rd particle in (r-2) ways, …, rth particle in 1 way.  nA=r! 

• P=r!/m^r 
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Example 

• m boxes and r particles, m>r 
• P[one particle per box in r pre-selected boxes] 

– Bose Einstein Statistics 
• Indistinguishable particles 
• No restriction on number of particles per box 
• Total number of equally likely ways: Two fixed walls on two ends.   

(m-1) partitions to play with. r particles can go anywhere. Arrange  
(m-1+r) things of two kinds. N=(m-1+r)!/(m-1)!/r! 

• Number of favourable ways: only one.  
• P=r!(m-1)!/(r+m-1)! 
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Example 

• m boxes and r particles, m>r 
• P[one particle per box in r pre-selected boxes] 

– Fermi Dirac Statistics 
• Indistinguishable particles 
• At most one particle per box 
• Total number of equally likely ways: choose r non-empty boxes from 

m boxes. N=m!/r!/(m-r)! 
• Number of favourable ways: only one.  
• P=r!(m-r)!/m! 
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Probability of joint events 
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Conditional probability 

( )Definition: ( | )
( )

=
P ABP A B
P B

1 2 3 1

1 3 2 1 1 2 3 2 1 3 2 1 2 1 1

Generalizing: ( ... )
( | ... ) ( | ... ) ( | ) ( | ) ( )

−

− − −

=n n

n n n n

P A A A A A
P A A A A A P A A A A A P A A A P A A P A

Joint probability:  ( ) ( | ) ( ) ( | ) ( )= =P AB P A B P B P B A P A



37 

Statistical independence 

Definition: ( | ) ( )⊥ ⇔ =A B P A B P A

Symmetry:     
and    ( | ) ( ) ( | ) ( )

⊥ ⇔ ⊥
= ⇔ =

A B B A
P A B P A P B A P B

1 2 1 2

Mutual independence of n events:
( ... ) ( ) ( )... ( ),

for any and all subsets { 1, 2,..., } {1,2,..., }
=

⊂
i i ir i i irP A A A P A P A P A

r i i ir n
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Total probability 

1 2

i=1

A partition of the sample space:
{ , ,..., },   

such that, , and for 

n
n

i i j

S B B B

B B B i j

=

= Ω = ∅ ≠


i=1

For any set,  
n

iA AB=


1
i=1

Hence, ( ) ( ) ( )
n

n
i ii

P A P AB P AB
=

= = ∑

1
Can be expanded to: ( ) ( | ) ( )n

i ii
P A P A B P B

=
= ∑
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Bayes’ theorem 

1

1 1
1

1 1

New knowledge  has been obtained.
Updated probability of hypothesis, :

( ) ( | ) ( )( | )
( ) ( )

r

r r r
r

K
B

P B K P K B P BP B K
P K P K

= =

1
1

11

Can be expanded to:
( | ) ( )( | )

( | ) ( )
r r

r n
i ii

P K B P BP B K
P K B P B

=

=
∑

Sequential updating possible 
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Modeling of randomness – random variables 

• Random variable 
– numerical values differ from outcome to outcome 
– but shows statistical regularity 
– formally: function defined on sample space 
– defined by: probability distribution type, mean, variance etc. 

• Jointly distributed random variables 
• Stochastic processes 

 



Random variable 
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x -∞  

Ω 

ω 

Real line 

When the possible outcomes of an experiment (or trial) can be given in numerical terms, 
then we have a random variable in hand.  When an experiment is performed, the outcome 
of the random variable is called a “realization.”  A random variable can be either discreet, 
or continuous.  A random variable is governed by its probability laws. 

If a quantity varies randomly with time, we model it as a stochastic pr ocess.  A stochastic 
process can be viewed as a family of random variables. 

If a quantity varies randomly in space, we model it as a random field, which is the 
generalization of a stochastic process in two or more dimensions. 

Formally, a measurable function 1 defined on a sample space is called a random variable 
(Feller, vol 1, p. 212). That is, X is a random variable if ( )X X ω=  is a function defined 
on the sample space Ω , and for every real x, the set  

 { }: ( )X xω ω ≤  

is an event in Ω . Thus we confine ourselves to σ -algebra of events of the type X x≤ . 
Unless explicitly required, we suppress the argument ω  when referring to a random 
variable in the rest of this text.  
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A random variable is governed by its probability laws.  The probabili ty law of a RV can 
be described by any of the four equivalent ways:  

1. CDF (cumulative distribution function) 

2. PDF/PMF (probability density function for continuous rv’s, probability mass 
function for discrete rv’s) 

3. CF (characteristic function) 

4. MGF (moment generating function) 



Random variables 

• Cumulative distribution function: 
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The cumulative distribution function of the random variable X is defined as: 

 ( ) [ ]XF x P X x= ≤  (0.  

It starts from 0, ends at 1, and is a non-decreasing function of x. It is piecewise 
continuous for discrete RVs, and continuous for continuous RVs.  

Properties of CDF: 

 
( ) 0
( ) 1
( ) is a non-decreasing function of 

X

X

X

F
F
F x x

−∞ =
∞ =  (0.  

Thus, the probability of finding the random variable X in the semi-open interval (a,b] is: 

 [ ] ( ) ( )X XP a X b F b F a< ≤ = −   (0.3) 
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The expectation of any function ( )g X  of the random variable X is defined as: 

 
[ ( )] ( ) ( ) if X continuous

( ) ( ) if X discrete
i

X

i X i
all x

E g X g x f x dx

g x p x

∞

−∞

=

=

∫

∑
 (0.  

The expectation of a constant is the identity operator: 

 ( )  where  is a constantE c c c=  (0.  

Expectation is a linear operator: 

 ( ) ( )     E aX b a E X b+ = +  (0.  

  and if ( ) ( )1 2      Y g X g X= + + … , then  

 ( ) ( ) ( )( )1 2( )   E Y E g X E g X= + + …  (0.4) 
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Thus the mean of X  is its expectation: 

 
( ) , continuous RV

( )
( ) , discrete RV

i

X

i X i
all x

x f x dx
E X

x p x
µ

∞

−∞



= = 



∫

∑
 (9.  

and its variance is the expecation of its squared deviation from the mean: 

 

2

2 2

2

( ) ( ) , continuous RV
( )

( ) ( ) , discrete RV
i

X

i X i
all x

x f x dx
E X

x p x

µ
σ µ

µ

∞

−∞


−

 = − =  
 −

∫

∑
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Discrete distributions 

Such that:  ( ) 0 ,and  ( )=1 
all 

Probability mass function (pmf):
                                 ( ) [ ]

Cumulative distribution function (cdf): 
                                ( )

X i i

X i

p x i p xX i X ii

p x P X x

F x

≥ ∀ ∑

= =

1

2 2

1

[ ]

Mean, 

Variance, ( )

i
n

i i
i

n

i i
i

P X x

p x

p x

µ

σ µ

=

=

= ≤

=

= −

∑

∑
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Common discrete distributions                
Prof. B. Bhattacharya, Dept. of Civil Engineering, IIT Kharagpur 

Distribution PMF CDF Relation between parameters and 
moments 

Discrete uniform 1 2
1( ) , , ,...,X np x x x x x
n

= =  Step function of height 
1/n 

1

2 2

1

1 ,

1 ( )

n

i
i

n

i
i

x
n

x
n

µ

σ µ

=

=

=

= −

∑

∑
 

Bernoulli 
( ) (1 ), 0,1

where, 1
Xp x px q x x

p q
= + − =

+ =
 Steps of height q and p at 

0 and 1 respectively. 2

,p
pq

µ

σ

=

=
 

Geometric 
1( ) , 1, 2,3,....

where, 1

x
Xp x q p x

p q

−= =
+ =

 ( ) 1 , 1, 2,3,....x
XF x q i= − =

 2 2

1/ ,
(1 ) /

p
p p

µ

σ

=

= −
 

Binomial 
( ) , 0,1, 2,....,

where, 1

x n x
X

n
p x p q x n

x
p q

− 
= = 

 
+ =

 Not available in closed 
form 2

,np
npq

µ

σ

=

=
 

Multinomial 

1 2
1 2 1 2 1 2

1 2

1 1

!( , ,..., ; , ,..., , ) ...
! !... !

1,

kxx x
k k k

k
k k

i i
i i

np x x x p p p n p p p
x x x

p x n
= =

=

= =∑ ∑
 Not available in closed 

form 2

,i i

i i i

np

np q

µ

σ

=

=
 

Negative binomial 
1

( ) , , 1,....
1

where, 1

r x r
X

x
p x p q x r r

r
p q

−− 
= = + − 

+ =

 Can be given in terms of 
binomial CDF 2 2

/ ,
/

r p
rq p

µ

σ

=

=
 

Hyper-geometric ( ) , 0,1, 2,....,min( , )X

d N d
x n x

p x x d n
N
n

−  
  −  = =

 
 
 

 Not available in closed 
form 2

2

/ ,

( )
1

nd N
N nnd N d
NN

µ

σ

=

− −
=  − 

 

Poisson ( ) , 0,1, 2,3,....
!

x

Xp x e x
x

µ µ−= =  Not available in closed 
form 2

,µ µ

σ µ

=

=
 

Zeta or Pareto 

1

1

such that 1 / ( 1)

where ( ) Reimann zeta fn. 1 / , 1

( ) , 1, 2,3,...., 0

k

X

s

c

s k s

cp x x
xα

ζ α

ζ

α

∞

=

+

= +

= = >

= = >

∑

 Not available in closed 
form 

( )
( 1)
ζ αµ

ζ α
=

+
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Continuous distributions 

Such that:  ( ) 0 ,and  ( ) =1 
-

Probability density function (pdf):
                                 ( ) [ ]

Cumulative distribution function (cdf): 
                                

X

f x x f x dxX X

f x dx P x X x dx
∞

≥ ∀ ∫
∞

= ≤ ≤ +

-

2 2

-

( ) [ ]

Mean,  ( )

Variance,  ( ) ( )

X

X

X

F x P X x

xf x dx

x f x dx

µ

σ µ

∞

∞

∞

∞

= ≤

=

= −

∫

∫
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Distribution  
(explanation) PDF CDF Relation between parameters and 

moments 

Uniform 
1 / ( ),

( )
0, otherwiseX

b a a x b
f x

− ≤ ≤
= 


 Linearly increases from 0 at a to 1 

at b 
Xµ = (b+a)/2 
2
Xσ = 2( ) /12b a−  

Normal 

2
1 1( ) exp

22
X

X
X

xf x µ
σπσ

  − = −     
,  

 x−∞ < < ∞  

Not available in closed form. Can 
be given in terms of the standard 
normal CDF, Φ : 

( ) X
X

X

xF x µ
σ

 −
= Φ 

 
 

Obvious 

Gamma 

1( )( ) , 0
( )

k
x

X
xf x e x
k

λλλ
−

−= >
Γ

1

0
where ( ) gamma fn.=

 any positive real number

k tk t e dt

k

∞ − −Γ = ∫   

( , )( )
( )X
x kF x
k

λΓ
=

Γ
 

where ( , )x αΓ =  incomplete 

gamma fn 1

0

x
te t dtα− −= ∫  

 

2 2

/

/
X

X

k
k

µ λ

σ λ

=

=
 

Chi-squared with n dof 
(sum of n independent squared 
standard normal variables) 
(Gamma with k=n/2 and λ=1/2) 

/2 /2 1
/2

1( ) , 0
2 ( / 2)

x n
X nf x e x x

n
− −= ≥

Γ
 

n does not have to be integer 

( / 2, / 2)( ) , 0
( / 2)X

x nF x x
n

Γ
= >

Γ
 X nµ =  

2 2
X

nσ =  

Chi with n dof 
(square root of Chi-squared random 
variable with dof n) 
Chi with n= 1 is called “half normal”, 
with n = 2 is Rayleigh, and n=3 is MB 

2 /2 1
/2 1

1( ) , 0
2 ( / 2)

x n
X nf x e x x

n
− −

−= ≥
Γ

 
2( / 2, / 2)( ) , 0
( / 2)X

x nF x x
n

Γ
= >

Γ
 

( )
( )

2 2

( 1) / 2
2

/ 2X

X X

n
n

n

µ

σ µ

Γ +
=

Γ

= −

  

Student’s t distribution  
(ratio of standard normal to chi with 
dof n) 

( )( ) 2 ( 1)/2,1 / 2
(1 / )

( / 2)
nn

x n x
n nπ

− +Γ +
+ − ∞ < < ∞

Γ
  2

0

, 2
2

n n
n

µ

σ

=

= >
−

 

F distribution  
(ratio of two chi-squared random 
variables with dofs m and n)  

( )( )
( ) ( )

/2 ( )/2
/2 1/ 2

1 , 0
/ 2 / 2

m m n
mm n m mxx x

m n n n

− +
−Γ +    + >   Γ Γ    

 

 2
2

2

, 2
2
(2 2 4) , 4

( 2) ( 4)

n n
n

n m n n
m n n

µ

σ

= >
−

+ −
= >

− −
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Lognormal 
 
(exponentiated normal) 

( )Xf x =
2

1 1 lnexp
22

x
x

λ
ζπζ

  −
−  

   
,     x > 0 

Not available in closed form. Can 
be given in terms of the standard 
normal CDF, Φ : 

ln( )X
xF x λ
ζ

 −
= Φ 

 
 

2ln(1 )XVζ +=  

21ln( )
2Xλ µ ζ= −   

Maxwell Boltzmann  
(Chi with n=3) 

2 /2 22( ) , 0x
Xf x e x x

π
−= ≥  

2( / 2,3 / 2)( ) , 0
/ 2X

xF x x
π

Γ
= >  

2

22

83

X

X

µ
π

σ
π

=

= −
 

Gumbel (for maxima) ( )( )( )
x ux u e

Xf x e e
ααα

− −− − −= ,      
 x−∞ < < ∞  

( )

( )
x ue

XF x e
α− −−= , 

 x−∞ < < ∞  
 

Xσ =
6
π

α
 

Xµ =
0.5772u

α
+  

Frechet (for maxima) 1 ( )( ) ( )
, 0,

kk x
Xf x k x e

k x

α λα λ
α λ

−− − − −= −
> >

 
( )( )

, 0,

kx
XF x e

k x

α λ

α λ

−− −=
> >

 
2 2 2

(1 1 / )

(1 2 / ) (1 1 / )

k

k

k

k k

µ λ α

σ α

= + Γ −

 = Γ − − Γ − 
 

Weibull (for minima) 1
0 0

0

( ) exp
k k

X
x x x xkf x

u u u

x x

−  − −   = −         
>

,  
0

0

( ) 1 exp
k

X
x xF x

u

x x

 − = − −     
>

 
0

2 2
2

(1 1 / )
(1 2 / )

(1 1 / )

x u k
k

u
k

µ

σ

= + Γ +

Γ + 
=  −Γ + 

 

Exponential 
 
(Weibull with x0=0, k=1) 
(Gamma with k=1) 

( ) x
Xf x e λλ −= ,   0x ≥  ( )XF x =1 xe λ−− ,   0x ≥  

λ = 1/ Xµ  

Xσ = 1/ λ  

Rayleigh 
 
(Weibull with x0=0, k=2) 
(Chi with 2 dofs) 

22( ) expX
x xf x

u u u
    = −         

   

Wald  
(inverse Gaussian) 
(time taken by a Brownian particle to 
reach distance d for the first time with 
drift velocity v and diffusion 
coefficient β. Here 

2/ , /d v dµ λ β= =  ) 

 
1 2
2

3 2

( )( ) ( ) exp , 0
2 2X

xf x x
x x

λ λ µ
π µ

 −
= − > 

 
  Xµ µ=  

2 3 /Xσ µ λ=  

 

Distribution  
(explanation) PDF CDF Relation between parameters and 

moments 
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Cauchy 

1
21( ) 1 ( ) , 0X

xf x θ λ
πλ λ

−− = + >  
 

θ =  location parameter, λ =  scale parameter 

11 1( ) tan
2X

xF x θ
π λ

− −
= +  Xµ  does not exist. No finite moment of 

order 1 or greater exists 

Beta 
1 1( ) (1 ) ,

( ) ( )
x xα βα β

α β
− −Γ +

−
Γ Γ

 

0 1, 0, 0x α β< < > >  
 

2
2( ) ( 1)

αµ
α β

αβσ
α β α β

=
+

=
+ + +

 

Pareto 
 
(“heavy tailed”) 

0

0

( ) k
Xf x kk x

x x

−=
>

 0

0

0
0

( ) 1
, 0,

1 0

k
X

k

F x k x
k k

x x
k

−= −

>

> = >

 

 

 

Distribution  
(explanation) PDF CDF Relation between parameters and 

moments 
 



Random number generation 
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Random Number Generation for MCS 

• Monte-Carlo simulation is a method of solving numerical 
problems by generating a series of random variables 

• Series of (pseudo)-random numbers are computer-
generated  

• Properties of a good generator: 
– Accuracy 
– Long Period 
– High Speed 
– Short Setup time 
– Small Length of compiled code 
– Machine independence 
– Versatility in possible applications 
– Simplicity and readability 
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Monte-Carlo Simulation - Application 

• Establish statistical properties of functions of random 
variables/processes (no closed-form solution) 

• Estimate probabilities of rare events 
• Obtain evolution or response of stochastic systems 
• Evaluation of definite integrals and expectations 
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Simulation of Random Numbers 

• multiplicative congruential 
generator: 
 
 
 

• Seed: x0 
 

• Period of generator, m0: 
 
 

• Generally:  
 

mxu

mcxx

ii

ii

=

= − mod1

imi xx =+ 0

2
0

2 bits/word

2

b

b

m b

c m
m −

=





31

5

0

"Best" RN Generator:
2 1

7 16807
(full period)

m
c
m m

= −

= =
=
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Example: RN generation 

mxu

mcxx

ii

ii

=

= − mod1

0

Given: 13, 100
set:   1
Sequence: 1, 13,  69, 97, 61, 93, 9, 17, 21, 73,
                  49, 37, 81, 53, 57, 41, 33, 29, 77

Period = 20 

c m
x

= =
=
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Generating Continuous Random Variables 

Theorem: If F is a continuous CDF,  
and if U is a Uniform RV in (0,1),  
then the RV X defined as 
    X = F-1(U) 
is distributed according to F. 

u 

fU(u) 

1 

u1 
u4 

u3 
u2 

 

0 x 

FX(x) 

0                       x2 x3   x4      x1   

Inversion 
method 
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Example of Inversion Method 

• Example: Generate X~Exp(λ) 
• Generate u~U(0,1) 
• Invert: FX(x)=1 – exp(-λx) = u 
• Hence, x = - (1/l)ln(1- u)  
• Return x 
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Inversion Method for Discrete RVs 

• Generate U(0,1) as before 

1

1 2 1

1 2 1

( ) sup{ : ( , 1, 2,...}
i.e.,set
iff ...

...

X k X k

k

k

k k

x F u x F x u k
X x

p p p u
p p p p

−

−

−

= = ≥ =
=

+ + + <
≤ + + + +
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Example of Discrete RV Generation using Inversion 

• Example: N~Geometric(p) 
• q = 1 – p 
• FN(n)= 1- qn 

 

•  generate u ~ U(0,1) 
•  n = sup { x: 1 – qx >= u, x integer}  
           [Equivalently, n = int (ln(1-u)/ln(q) + 1] 

•  return n 
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1.1.1.1 Generating independent normal vectors 

A vector of uncorrelated normals, X (with mean vector µ  and covariance matrix V =
2
i ijσ δ ) can be generated: 

(i) By inverting the standard normal distribution function Φ : 
 Generate independent uniforms U , ~ (0,1)iU U  :  

 Invert each of them according to: 

 1( )i i i ix uµ σ −= + Φ   (0.  

 return x 

 

  
(ii) By generate unit vectors in standard normal space, and generate radial 

distance.   
 Generate n independent angles, ~ (0,2 )i U πΘ   
 generate squared radius R2 (independent of the vector Θ ), 2 2~ ( )R nχ   is 
chi-squared with d.o.f. n.  Then, each Xi is given by: 

 cos( )i i i ix rµ σ θ= +   (0.  

 return x 



Generating correlated normals 
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1.1.1.1 Generating correlated normals 

A vector of correlated Normals, X, (with mean vector µ  and covariance matrix V ) can 
be generated as follows:  

 Perform Cholesky fa ctorization of the covariance matrix: let C be the 
lower triangle factor of V , i.e., 'CC V=  

 Generate independent standard normals z as above.   

 Convert them according to  

 x C zµ= +   (0.  

 return x  



Joint probability densities 
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Jointly distributed random variables 
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We start with the joint cumulative distribution function (JCDF) of two random variables 
X and Y.  It is given by the probability: 

 , ( , ) [ , ]X YF x y P X x Y y= ≤ ≤  (9.  

It must be a monotone function taking values between 0 and 1. In the discrete case, it is 
given by the sum of the joint probabiliy mass function (JPMF): 

 , ,( , ) [ , ] ( , )
ij

X Y X Y i j
x xy y

F x y P X x Y y p x y
≤≤

= ≤ ≤ = ∑ ∑  (9.  

while in the continuous case, it is given by the integration of the joint probability density 
function (JPDF),  , ( , )X Yf x y ,  

 , ,( , ) ( , )
y x

X Y X YF x y f u v du dv
−∞ −∞

= ∫ ∫   (0.3) 
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The JPMF is a non -negative function and sums to one . Its interpretation of the JPMF is 
as in the one variable case: 

 , ( , ) [ , ]X Y i j i jp x y P X x Y y= = =  (9.  

Likewise, the joint probability density function of two continuous random variables non-
negative, contains a volume of unity under it, and is interpreted as: 

 , ( , )x yf x y  [ ( , ) ( , )]x y P X x x x Y y y y∆ ∆ = ∈ + ∆ ∈ + ∆  (0.2) 

          

The probability content of a region A can be given by: 

 
,

,

( , ), discrete case

[( , ) ]
( , ) , continuous case

A X Y
all y all x

A X Y

I p x y
P x y A

I f x y dx dy
∞ ∞

−∞ −∞



∈ = 



∑∑

∫ ∫
  (0.  

where A

1, if ( , )
I  

0,  otherwise
x y A∈

=

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The conditional PMF of X given Y has taken a particular value is: 

 ,
|

( , )
( , ) [ | ]

( )
X Y

X Y y
Y

p x y
p x y P X x Y y

p y= = = = =   (0.  

 
The JPMF can be written in terms of the conditional and marginal PMFs as: 

 , | |( , ) ( , ) ( ) ( , ) ( )X Y X Y y Y Y X x Xp x y p x y p y p y x p x= == =   

The conditional PDF of X given a particular realization of Y is, 

 ,
/

( , )
( , )

( )
X Y

X Y y
Y

f x y
f x y

f y= =   (0.  

The explanation can be given as: 

|

,

( , ) [ ( , ) | ( , )]

[ ( , ), ( , )]
[ ( , )]

( , )
( )

X Y y

X Y

Y

f x y dx P X x x dx Y y y dy
P X x x dx y y y dy

P Y y y dy
f x y dxdy

f y dy

= ≈ ∈ + ∈ +

∈ + ∈ +
=

∈ +

=

 

The joint PDF can be given as the product of the conditonal and the corresponding 
marginal: 

 , | |( , ) ( , ) ( ) ( , ) ( )X Y X Y y Y Y X x Xf x y f x y f y f y x f x= == =   (0.2) 
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      Let Y be a linear combination of n random variablex, X. 

 0
TY a A X= +   

where 1 2{ , ,..., }T
nA a a a= .  Let Xµ be the mean vector of X and let  

 

11 12 1

21 22

1

... n

X

n nn

V

σ σ σ
σ σ

σ σ

 
 
 =
 
 
 



  

 

  

 be the covariance matrix of X, so that cov( , )ij i jX Xσ = .  Then the mean of Y is
 

 0
T

Y Xa Aµ µ= +   

and the variance of Y is: 

 2 T
Y XA V Aσ =   

Further, if X is jointly Normal (discussed next), Y is Normal too. 
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A sequence1 of real numbers is c alled convergent if it has a limit. A real number l is the 
limit of a sequence if for each positive ε there is an N such that for all n≥N we have 
| |nx l ε− < .  A sequence can have at most one limit, and conventionally, +/ - ∞ is not 
considered a valid limit.  Also, a sequence is convergent if and only if it is a Cauchy 
sequence.  A sequence is a Cauchy sequence if given ε > 0 there is an N such that for all 
n≥N and all m≥N, we have  | |n mx x ε− < . 

Now consider a sequence of random variables 1 2{ , ,..., }nX X X . Not all sequences or 
random variables converge to anything.  But in some cases we know they do, as in the 
mean of n iid random variables.  Can we generalized this? The question whether a 
sequence of RVs converge arises naturally in cases of differentiation and integration of a 
stochastic process, X(t).   
Define the “derivative” of process X the usual way as: 

 ( ) ( )( , ) , 0X t h X tY t h h
h

+ −
= →  (0.  

 What does it mean? Is Y a legitimate stochastic process? If so, in what sense? What and 
how does it converge to?   
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Consider a probability space ( Ω, F, P).  The statement that two random variables X’ and 
X are equal “almost surely” means that, except for events belonging to a set of zero 
measure, the statement is true with probability 1: 

 ' a.s. [ '( ) ( )] 1X X P X w X w w A= ⇔ = = ∀ ∈  (0.  

where , and ( ) 0c cA A B P A⊂ = . The set Ac is called the exception set.  

This brings us to the definition of almost sure (a.s.) c onvergence of a sequence of 
random variables: 

 lim [ ] 1nn
P X X

→∞
= =  (0.  

This is spoken as “a.s.” convergence and written as . .a s
nX X→  . Eq (0.2) is equivalent 

to any of the following statements:  

(i) nX X→  except for a set of events with probability zero. That is, there is a 
measurable set A such that P(A)=1and for every w in A, lim Xn(w)=X(w).  

(ii)     lim | | 0nn
k n

P X X ε
→∞

≥

 
− ≥ = 

 


    (0.3) 

(iii) limsup ( ) liminf ( ) for "almost all"n nnn
X w X w w

→∞→∞
=   (0.  

For a.s. convergence to be relevant, all RVs must be defined on the same sample space. 
Further, such RVs are generally highly dependent. 
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1.1.1 Convergence in Lp 

 lim [| | ] 0p
nn

E X X
→∞

− =   (0.  

When p = 2, this is mean square convergence. 

Mean square convergence is also written as l.i .m. nx
X X

→∞
=  and pronounced as  “limit in 

mean.” 

Mean square convergence is meaningful only if the random variable is second -order, i.e., 
2[ ]iE X < ∞  for every n.  

1.1.1 Convergence in probability 

For any ε > 0,  

 lim [| | ] 0nn
P X X ε

→∞
− > =   (0.1) 

1.1.1 Convergence in distribution 

 lim ( ) ( )
nX Xn

F x F x
→∞

=  for every continuity point x of FX.  

It is the weakest mode of convergence. If a sequence of RVs is defined in terms of a 
sequence of the parameter (plural?), then convergence of the parameter sequence usually 
means convergence in distribution for the sequence  (with the limiting value of the 
parameter). 
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1.1 Law of large numbers 

Consider the case of partial sum Sn of n RVs that are mutually independent, but not 
necessarily identiacally distributed:  

 1 2 ...n nS X X X= + + +  (0.  

Let 2( ), var( )k k k kE X Xµ σ= =  if they exist . Define Yn=Sn/n , i.e, the average.  Does the 
sequence Yn converge to anything?  Say the se quence Yn “converges” in some sense to μ. 
The nature of convergence will depend on the probability structure of the Xi’s. And the 
nature of convergence determines which Law of Large Numbers governs – the strong 
type or the weak type. 

Strong law:  If the co nvergence is in L 2 norm, or almost surely, then we have the strong 
law of large numbers.   The convergence of the series 2 2/k kσΣ  is a sufficient condition 
for the Strong Law to hold for the sequence of mutually independent RVs  (Kolmogorov 
criterion). Also, if the sequence is IID and the mean exists, the Strong Law holds.   

Weak law:  If the convergence is only in probability, then we have the weak law of large 
numbers. The Weak Law holds whenever the Xk are uniformly bounded, i.e., wheneve r 
there exists a constant A such that | Xk| <A for all k.  Another sufficient condition for the 
Weak Law to hold is 2 2(1/ ) 0kn σΣ → . 
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If X and Y are independent, the conditional distribution (or density  or mass ) of one is 
identical to its ma rginal. Equivalently, the joint distribution  (or density or mass)  is the 
product of the marginals.  Each of these is both a necessary and sufficient condition for 
independence of X and Y.  

 

|

,

|

,

( , ) ( ) for all , (continuous or discrete)

( , ) ( ) ( ) for all , (continuous or discrete)
 is independent of 

( , ) ( ) for all , (discrete)

( , ) ( ) ( ) for all , (c

X Y y X

X Y X Y

X Y y X

X Y X Y

F x y F x x y
F x y F x F y x y

X Y
p x y p x x y
f x y f x f y x y

=

=

=

=
⇔

=

= ontinuous)









 

 (0.1) 

If  X  and Y are independent, so are g(X)  and  h(Y)  

1.1.1.1 Generalization to n dimensions 

A vector {Xt ,tϵT}of random variables is mutually independent iff for all subsets J of T, 
the joint CDF is the product of the marginal CDFs: 

 ( , ) [ ]J t t t
t J

F x t J P X x
∈

∈ = ≤∏  (0.1) 
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Recall that X is said to have a normal distribution with mean µ  and variance 2 0σ >  if: 

 2 2
11/2

1 1( ; , ) exp[ ( ; , )]
22

f x Q xµ σ µ σ
πσ

= −   (0.  

where,   2 2 2
1 2

1( ; , ) ( ) ( ) ( )Q x x x xµ σ µ µ σ µ
σ

−= − = − −  

Aside : 2 1( ; , ) xf x µµ σ φ
σ σ

− =  
 

 

In a parallel manner, a two dimensional RV X 1 2( , )TX X= is said to have  a non-singular 
bivariate normal distribution if its density function is of the form: 

 1/2
1 1( ; , ) exp[ ( ; , )]

22
f x V Q x V

V
µ µ

π
= −   (0.  

where  

1
2

2
1 1 12

2
2 12 2

2
12 1 2

( ; , ) ( ) ( )

0,

T

i

Q x V x V x

V

µ µ µ

µ σ σ
µ

µ σ σ

σ σ σ σ

−= − −

  
= =   

   
> <
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An n dimensional random variable X  with mean µ  and cov. matrix  V  is said to have a 
nonsingular multivariate normal distribution if   V  is positive definite and the joint PDF 
of X  is : 

 1
/ 2 1/ 2

1 1( ; , ) exp ( ) ( ) , | | 0
(2 ) | | 2

T
X nf x V x V x V

V
µ µ µ

π
− = − − − > 

 
 (9.  

 

which is symbolically written as ~ ( , )nX N Vµ . 
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A stochastic process (also called random function) is a family of random variables 
( ){ },X t t T∈ indexed by a parameter (or index) t  belonging to an index set T . 

Heuristically it is a function of “time”, whose time histories (or sample functions, or 
realizations) are generally different in different trials, but follow the probability law 
governing the process. The probability law governing the process is most generally 
described by a finite dimensional joint probability distribution.  

The parameter t  can be discrete or continuous.  The range of ( )X t  for a given t , may be 
discrete or continuous. If the index set is finite, the stochastic process is a random vector, 
if T  is countably infinite, we have a random sequence. For  a particular 

( )
11 1 1, tt X X X t= =  is a random variable, and 

1t
x  is one realization of  

1t
X .  Likewise, 

( )x t  is one sample function of  ( )X t , t T∈ .   
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If the index s et is finite, the  SP is a random vector, if T is countably infinite , we have a 
random sequence.  

For particular ( )
11 1 1, tt X X X t= =  is a random variable 

1t
x  is one realization of  

1t
X  

( )x t  is one sample fn. of  X(t)           t T∈  

Thus X(t) represents an “emsemble” of sample functions.  

In general, the probability law ( )
1 2( ), ( )...., ( ) 1 2, ......,

nX t X t X t nf x x x  for the SP X(t) is described 

by the joint pdf of  ( ) ( ) ( )1 2, ,....., nX t X t X t  for all integers  n, and for all instances  

( )1 2, ,...., .nt t t T∈  

 

Which means we need : 

( )
1 2

1 2

( 1) 1 1

( ), ( ) 1 2 1 2

( ), ( ),...., ( ) 1 2 1 2

for all

( , ) for all ,

( , ,...., ) for all , ,....,

soon.

n

X t

X t X t

X t X t X t n n

f x t
f x x t t

f x x x t t t




 

 

Of course if we know
1 2( ), ( ) 1 2( , ),X t X tf x x we also know 

1( ) 1( ).X tf x  
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1.1.1.1 Mean value function  

 ( )( ) ( )( ) ( ) .X X tt E X t xf x dxµ
∞

−∞

= = ∫   (0.  

1.1.1.2 Variance function 

 [ ]22
( )( ) ( ) ( )X X X tt x t f x dxσ µ

∞

−∞

= −∫   (0.  

1.1.1.3 Auto covariance function (ACVF) 

 
( ) ( ) ( ) ( ) ( )

( )( )
11 2 ( ), ( ) 1, 2 1 2

( , ) cov , ( ) ( ) ( ) ( )

( ) ( ) ( )

XX

X X X s X t

K s t X s X t E X t X s E X t E X s

x s x t f x x dx dxµ µ
∞ ∞

−∞ −∞

= = −  

= − −∫ ∫
  (0.  

2
( ) ( , )X t XXK t tσ∴ =  

1.1.1.4 Autocorrelation function (ACF) 

 [ ] 1 2 ( ), ( ) 1 2 1 2( , ) ( ) ( ) ( , )XX X s X ts t E X s X t x x f x x dx dxφ
∞ ∞

−∞ −∞

= = ∫ ∫  (0.  

so that the autocovariance function is: 

 ( , ) ( , ) ( ) ( )XX XX X XK s t s t s tφ µ µ= −  (0.5) 
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Stationary processes – weak and strong stationarity 

It is very convenient to separate SPs into two broad classes:  stationary and non-
stationary (i.e. evolutionary). 

Stationarity involves some kind invariance; here it is w.r.t. time. 

Let us approach stationarity step by step. 

X(t) is “mean-value stationary” if the mean value fn is invariant under a time shift. i.e,  

 ( ) ( ) for any X Xt r t rµ µ+ =   (0.  

This is true only if  ( )X Xtµ µ=  is independent of t. 
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1.1.1 Weak stationarity  

X(t) is “covariance stationary” (or second moment stationary or weakly stationary or 
simply “stationary”) if  

 ( , ) ( , ) for anyXX XXK s r t r K s t r+ + =   (0.  

or, equivalently, 

 ( , ) ( , ) for anyXX XXs r t r s t rφ φ+ + =   (0.  

This is possible only if 
( , ) is a function of ( ) and not of or individually.XXK s r t r t s t s+ + −  

 
( )

( , ) ( ) for a covariance stationary processXXK s t G t s
G τ

∴ = −

=
  (0.  

where time shift lagt sτ = − = = .  Equivalently, the process X(t) is covariance 
stationary, if 

 ( , ) ( ) ( )XX s t R t s Rφ τ= − =   (0.  

This immediately means the variance function 2 2( )X Xtσ σ=  is independent of  t .  
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A process X(t) is “stationary of order k” if ( ) ( ) ( ){ }1 2, ,....., kX t X t X t and    

( ) ( ) ( ){ }1 2, ,....., kX t r X t r X t r+ + +  are identically distributed for an arbitrary set of k 
points 1,...., and anykt t r : 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 2 1 2, ,....., , ,.....,( , ,..., ) ( , ,..., )
k kk kX t X t X t X t r X t r X t rf x x x f x x x+ + +=   (0.  

A process X(t) is “strictly stationary” if above holds for any k and any r. 

In particular, second order stationarity is written as: 

 ( ) ( ) ( ) ( )1 2 1 21 2 1 2 1 2, ,( , ) ( , ) for any , ,X t X t X t r X t rf x x f x x t t r+ +=   (0.  

and first order stationarity is written as: 

 ( ) ( )( ) ( ) for any ,X t X t rf x f x t r+=   (0.  

which means that it is independent of time.  

If X(t) is kth order stationary, then it is 1st order stationary, 2nd order stationary, …., upto 
(k -1)th  order stationary. 
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kth moment stationarity may be defined similarly for any 1,...., and anykt t r : 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2[ ... ] [ ... ]k kE X t X t X t E X t r X t r X t r= + + +   (0.  

It should be obvious that kth order stationarity is a stronger statement than kth moment 
stationarity.  

kth  order stationary ⇒  kth moment stationary,  but the converse is not necessarily true. 

Further, kth  moment stationary does not imply (k-1)th moment stationary. 

Of course verifying strict stationarity is very tedious & cumbersome if at all possible. So 
we remain satisfied with the much more lax condition of “second order stationarity” or 
“weak stationarity”  described above. It helps in many many practical situation s. Just as 
we most often get estimates of only ,µ σ  for a random variable,  for a SP too we most 
often get mean value and covariance functions only. 

One notable exception is the Gaussian process which is completely defined by its mean 
and covariance function s. Therefore, for a Gaussian process, covariance stationarity and 
strict stationarity are equivalent conditions. This is the reason  that Gaussian processes 
hold such a prominent place in the canons of stochastic processes. 
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1.1.1.1   Power spectral density 

F.T. does not exist for a weakly stationary random process , because (almost all) x(t)’s are 
not absolutely integrable in ( ),−∞ ∞ , because x(t) dose not vanish at and−∞ ∞ . 

 

But the F.T. of the ACVF (GXX) of a weakly stationary process  does exist (in most cases). 
Which gives the power spectrum of X(t): 

 
0

1 1( ) ( ) ( )
2

i i
XX XX XXS G e d G e dωτ ωτω τ τ τ τ

π π

∞ ∞
− −

−∞

= =∫ ∫  (0.  

and the inverse FT gives back: 

 ( ) ( ) i
XX XXG S e dωττ ω ω

∞

−∞

= ∫   (0.  

2

Requirment: ( ) is absolutely integrable:

( ) , does not havea purely periodiccomponent

Pr : ( ) 0
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( ) ( ) .

: (0) ( ) .
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−∞
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∫

∫
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Motivation: So far we have based our description of SPs on a large number 
of sample functions (called an “ensemble”), i.e., we assume that we can 
reset the process as many times as we want, and then observe each sample 
function for a very very long time. 

What if the ensemble is not available ? What if only one realization of the 
SP is all that is available?  

Examples abound: earthquake excitations, stock market indices, annual 
rainfall at a location, dynamics of gas, etc.  

From this one sample function we can not get the ensemble statistics of 
course: what we get are the “temporal statistics”. Can we say that a certain 
temporal average equals the corresponding ensemble average?  If so, under 
what conditions?  

If for a process the temporal and ensemble averages for a certain parameter 
are equal,  the process is termed as ergodic in that parameter.  As we will 
see, ergodicity requires stationarity. But all stationary processes need not 
be ergodic.  In most cases, ergodicity needs to be assumed, instead of 
being proved. (Like statistical independence). 
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1.1.1 Mean value ergodicity 

Consider the temporal mean value: 

 
( ) ( )

( )
0

1
2

1(alternate form)

T

T
T

T

M X t X t dt
T

X t dt
T

−

= =

=

∫

∫
  (0.  

( )where is the length of the record, is thesinglesample function.T x t  

The first question that naturally arises is, w hat do we do with th is temporal average? 
Does 

( )( )approach ?TM E X t  

Obviously, this question can be entertained only if ( )( )E X t  is independent of t. So we 
rephrase the question as: For a weakly stationary process, does as  ?T XM Tµ→ → ∞  

If it does, then the process X(t) is ergodic in the mean: 

 lim mean valueergodicT XT
M µ

→∞
= ⇒   (0.2) 
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What are the conditions for this equality to hold?   

Let us study the variance of the estimate MT and its behaviour as the averaging window 
expands.  Clearly, for a stationary process, MT is an unbiased estimator since,  

 ( )1 1( ) 2
2 2

T

T X X
T

E M EX t dt T
T T

µ µ
−

= = =∫   (0.  

Its variance is: 

 

( ) ( )

( )

2 2 2
1 2 1 22

2

2

1var( ) ( ) ( )
4

1 | |1
2 2

T T

T T T X
T T

T

XX
T

M E M E M EX t X t dt dt
T

G d
T T

µ

ττ τ

− −

−

= − = −

 = − 
 

∫ ∫

∫

   (0.  

where KXX is the ACVF of X(t). MT is a consistent estimator iff the right hand side of Eq 
(0.2) goes to zero as T grows large. Slutsky ’s theorem (Papoulis p. 526) allows a more 
wider class of processes to be mean value ergodic: 

 ( )
0

1( ) is ergodic  lim 0
T

XXT
X t G d

T
τ τ

→∞
⇔ =∫   (0.3) 
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Examples: 
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X C
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( )
0

( ) cos sin
,  are zero mean, unit variance, independent RVs
( ( ))

var( ( )) 1
( ) cos

1 1lim lim sin 0

( ) is mean ergodic

XX
T

XXT T
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A B
E X t c

X t
G w

G d wt
T T

X t

τ τ

τ τ
→∞ →∞

= + +

=
=

=

= =∫

  (0.  

 2

2

( ) ( )

1 | | 1var( ) ( )(1 ) 0
2 2 2

( ) is mean ergodic

T

T

T T

X t c t
M c

M t d
T T T

X t

ξ

τδ τ
−

= +
=

= − = →∫
  (0.4) 
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1.1.1 The Markov property 

Let a stochastic process X(t) be observed at arbitrary but ordered times 
1 2 1 1... ...k k k nt t t t t t− +< < < < < < < . If the conditional probability of the state at time 1kt +   

given the k observations at 1 2, ,..., kt t t  equals the cond itional probability given the most 
recent of these k observations, 

 1 1 1 1 2 2 1 1

1 1

[ ( ) | ( ) , ( ) ,..., ( ) , ( ) ]
[ ( ) | ( ) ]

k k k k k k

k k k k

P X t x X t x X t x X t x X t x
P X t x X t x

+ + − −

+ +

= = = = = =
= =

  (0.  

then X(t) is a Markov process.  
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A general continuous state continuous time Markov process can be described by the 
differential form of the Chapman Kolmogorov equation: 

 

[ ]

2

2

( , | , ') ( , ) ( , | , ')

1 ( , ) ( , | , ')
2

( | , ) ( , | , ') ( | , ) ( , | , ')

p z t y t A z t p z t y t
t z

B z t p z t y t
z

W z x t p x t y t W x z t p z t y t dx

∂ ∂
= −

∂ ∂
∂

+
∂

+ −∫

 (0.  

The initial condition is ( , | , ) ( )p z t y t y zδ= − . By “integrating out” the conditioning 
event ( ')X t y= ,  Eq (0.1) can be given a more pleasing appearance: 

 

[ ]

2

2

( , ) ( , ) ( , )

1 ( , ) ( , )
2

( | , ) ( , ) ( | , ) ( , )

p z t A z t p z t
t z

B z t p z t
z

W z x t p x t W x z t p z t dx

∂ ∂
= −

∂ ∂
∂

+
∂

+ −∫

 (0.  

with an initial condition that is more well-behaved: 0 0 0 0( ( ) ) ( , )P X t x p x t= = .  



Markov processes 

 

92 

The first term is the drift term: 

 
0

| |

0

1( , ) lim ( ) ( , | , )

1lim [ ( ) ( ) | ( ) ]

t
x z

t

A z t x z p x t t z t dx
t

E X t t X t X t z
t

ε
∆ →

− <

∆ →

= − + ∆
∆

= + ∆ − =
∆

∫
 (0.  

 The second term is the diffusion term 

 

2

0
| |

2

0

1( , ) lim ( ) ( , | , )

1lim [{ ( ) ( )} | ( ) ]

t
x z

t

B z t x z p x t t z t dx
t

E X t t X t X t z
t

ε
∆ →

− <

∆ →

= − + ∆
∆

= + ∆ − =
∆

∫
 (0.  

The third term is the jump term. The jump rate is given by 

 
0

1( | , ) lim ( , | , )
t

W x z t p x t t z t
t∆ →

= + ∆
∆

 (0.  

It is assumed that A and B converge uniformly in , ,z tε ; and W converges uniformly in x, 
z and t for all 0ε >  such that | | 0x z− ≥ . 
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Recall that the jump term is non -existent in a diffusion process. The Chapman 
Kolmogorov differential equation thus becomes  

 

2

2

1( , ) ( , ) ( , ) ( , ) ( , )
2

p z t A z t p z t B z t p z t
t z z

∂ ∂ ∂
= − +

∂ ∂ ∂  (0.  

which is known as the Fokker Planck equation with initial  condition
0 0( ( ) ) ( , )P X t x p x t= = . 

The equivalent Ito stochastic differential equation is  

 ( , ) ( , ) ( )dz A z t dt B z t dW t= +   (0.2) 
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Wiener process
zero drift
unit diffusion
x(0)=0

Examples: 

Wiener process. A=0, B=1. 

FPE becomes, 

 
2

2

1( , ) ( , )
2

p z t p z t
t z

∂ ∂
=

∂ ∂
 (0.  

Heat equation with conductivity ½.  Initial condition: ( ,0) ( )p z zδ= . 

Solution is:  
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Ornstein Uhlenbeck process
Drift= - x, diffusion =1

Ornstein-Uhlenbeck process. A= - cz, B=1. 

Solution: 

  

2
0

| |

1( ) ~ ( , [1 ])
2

1( , )
2

ct ct

c t s
ZZ

Z t N z e e
c

K s t e
c

− −

− −

−

→
  (0.1) 
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1.1.1.1 Deterministic process 

If jump and diffusion are zero, the process is deterministic. The form of the FPE then 
becomes that of Liouville’s equation: 

 ( , ) ( , ) ( , )i
i i

p z t A z t p z t
t z

∂ ∂
= −

∂ ∂∑  (0.  

that is, 

 ( , )i
i

dz A z t
dt

=  (0.2) 
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1.1.1.1 Detailed balance 

At time t, phase point is ( , ; )x v tΓ   

At time t+τ, it evolves to ( ', '; )x v t τΓ +  

The joint probability of these two events is: ( ', ', ; , , )p x v t x v tτ+   

 

Reset: at time t, phase point is ( ', '; )x v tΓ −   

Does phase point at time t+τ evolve to ( , ; )x v t τΓ − + ? 

The joint probability of these two events is: ( , , ; ', ', )p x v t x v tτ− + −   

 

Are these two probabilities equal? If so, we have detailed balance.  

 

For a stationary Markov process, the two probabilities are respectively: 

( ', ', ; , ,0) ( , )sp x v x v p x vτ  and ( , , ; ', ',0) ( ', ')sp x v x v p x vτ− − −  
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1.1.1.1 Consequence of detailed balance 

Define 1iε = ±  for replacing zi with εi zi depending on whether zi is odd or even. 

Detailed balance then can be written as: 

 

( , | ',0) ( ') ( ', | ,0) ( )
Also, 

( ) ( )

Then for FPE,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

s s

s s

i i s i s ij s
j

i j ij ij

p z z p z p z z p z

p z p z

A z p z A z p z B z p z
z

B z B z

τ ε τ ε ε

ε

ε ε

ε ε ε

=

=

∂
= − +

∂

=

∑

  (0.1) 
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1.1.1.1 Kramer’s equation for Brownian motion 

The SDE is: 

 
'( ) 2 ( )B

dx v
dt

dvm x v k T t
dt

η η ξ

=

= −Φ − +
  (0.  

The corresponding FPE terms are: 

 
0 0

,1 0 2[ '( ) ] B

v
A B

k Tx v
m

ηη

    = =   − Φ +   

  (0.  
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Using the first result of detailed balance, we get: 

 

2

0
( , ) ( , ) ( , ) ( , )

2

Substituting,
0

'( ) '( ) 2

The second yields,

that is, 

exp[ ] ( )
2

s s s

s s s

s
s

s

A x v p x v A x v p x v p
v

v v
p p px v x v

v

pvp
v

vp f x

ε
η

η η η

 
 − = − + ∂ 

∂ 

 − −     = + ∂     Φ − Φ +    ∂ 

∂
− =

∂

= −

  (0.  

Substituting this stationary Markov probability into the original FPE, we get:  

 

2

0 '( )

which gives,
( ) exp[ ( )]

Thus,

( )( , ) exp
2s

B B

fv x vf
x

f x C x

x mvp x v C
k T k T

∂
= − − Φ

∂

= −Φ

 −Φ
= − 

 

  (0.2) 
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