
CHAPTER 2. BASIC SET THEORY 

2.1 Basic definitions 

Sets are the basis on which modern probability theory is defined. A set is a well-defined 
collection of objects.  The objects are called “elements” or “members” of the set. 
Typically a set is denoted by uppercase letters A, B, C, P  etc. and the elements are 
denoted by lowercase letters a,b,c, x, y etc. A set is completely described by its members. 
The description can be achieved either by (i) listing (i.e., enumerating) the members, 
e.g.: 

X = {a,e,i,o,u} when describing the set of vowels. 

or, (ii) by stating the membership rule, e.g.: 

X={x: x is an integer between 1 and 100} when describing the set of the first 100 
natural numbers. The second approach is more powerful.  

Symbolically, x A  states “x is an element of A,” and x A  denotes otherwise.  

Universal set: In the context of a problem, all sets of interest may be subsets of some 
large fixed set. This superset is called the universal set.  

Null set: The null set, or the empty set, is the set wih no elements. It is denoted by the 
special symbol  .   

Countable set: A set is countable if its members can be placed in a one-to-one 
correspondence with the set of natural numbers. Otherwise, the set is uncountable.  

2.2 Set relations 

Subset: If every element of a set A is also an element of set B, then A is called a subset of 
B, written symbolically as: ,orA B B A  . If A is a subset of B and B has at least one 
element that does not belong to A, then A is a proper subset of B, written symbolically 
as: , orA B B A  . 

Superset: If A B , then B is called a superset of A. If A B , then B is a proper 
superset of A. 

Equality of sets: If every element of A is an element of B and vice versa, i.e., 
and A B B A   , then the two sets are equal, written as: A = B.  

Transitivity: If  and , then .A B B C A C    

Example:  Find the sets that are equal among the following: 

ܣ ൌ ሼݔ: ଶݔ		 െ ݔ4 ൅ 3 ൌ 0ሽ	 

ܤ ൌ ሼݔ: ଶݔ		 െ ݔ3 ൅ 2 ൌ 0ሽ	 

ܥ ൌ ሼݔ: ݔ ∈ ܲ, ݔ ൏ 3ሽ, ܲ ൌ set	of	positive	integers	 

ܦ ൌ ሼݔ: ݔ ∈ ܲ, ݔ ൏ 5, ,oddሽ	is	ݔ ܲ ൌ set	of	positive	integers	 

Answer: A = D, B = C. 



2.3 Operations on sets 

Venn diagrams can be used for graphical representation of sets and their relations.  

Operations on one or more sets produce new sets. Basic operations are: 
complementation, differencing, symmetric differencing, etc.  

 

2.3.1 Boolean combination of sets 

Given two sets A and B, their intersection C is the set such that it contains only those 
elements that belong to both: 

 { : and }C A B C x x A x B        (2.1) 

The union is the set D such that it contains elements that belong to A or B or both: 

 { : or or }D A B D x x A x B x A B          (2.2) 

2.3.2 Identities 

Various equalities can be described through set operations – idempotent law, 
commutative law, associative law, distributive law, involution law, de Morgan’s law etc.  

 

Idempotent laws 

(1 )a        A A A                                           (1 )b         A A A  

Associative laws 

(2 )a        ( ) ( )A B C A B C                    (2 )b        ( ) ( )A B C A B C     

Commutative laws 

(3 )a         A B B A                                    (3 )b          A B B A     

Distributive laws 

(4 )a         ( ) ( ) ( )A B C A B A C           (4 )b         ( ) ( ) ( )A B C A B A C      

Identity laws 

(5 )a         A A                                           (5 )b         A U A  

(6 )a          A U U                                         (6 )b         A    

Involution law 

 (7)   (A c)c A  



Complement laws 

(8 )a          cA A U                                         (8 )b          cA A   

(9 )a           cU                                                (9 )b          c U   

DeMorgan`s laws 

(10 )a        ( )c c cA B A B                              (10 )b        ( )c c cA B A B   

2.3.2.1 Prove DeMorgan’s Laws 

 

 



2.3.2.2 Prove the second distributive law 

 

2.3.2.3 Prove (AUB)\(AB) = (A\B)U(B\A) 
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2.3.3 Partition of a set 

A partition  { }iAP=  of the universal set U is a collection of mutually exclusive and 

collectively exhaustive sets, Ai: 
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   (2.3) 

2.4 Limits of sets 

Feller IV.1: Recall limit of the sequence of functions { ( )}if x . For a given value of x (x is 

omitted to make the notation cleaner), the term lim inf fn denotes the maximum of the 
sequence of minima: 
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The notation on the right is the shorthand for max (denoted by cup or union) and for min 
(denoted by cap or intersection), respectively. Likewise, the minimum of the sequence of 
maxima is: 
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These concepts directly apply to a sequence of sets { }kA . The infimum and supremum of 

the sequence are the sets defined respectively as: 
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 The limit of the sequence { }kA  exists if the two limits are equal and may be denoted A: 

 lim inf lim supn n
n n

A A A
 

   (2.8) 

which may be written in short as:  

 lim or     n n
n

A A A A


   (2.9) 

From P6, Resnik Probability Path: 
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2.5 Ordered sets 

An ordered set S is a set in which an order is defined.  An order on a set S is a relation 
“<” with the following two properties (Rudin): 

1. If and x S y S   then one and only one of the following three statements is true: 

 x y x y y x    (2.10) 

2. If three elements x,y and z belong to S,  and  

 if and , then x y y z x z    (2.11) 

 

The relation “<” may be read as “is less than” or “is smaller than” or “precedes”. 

2.5.1 Supremum or least upper bound:  

S is an ordered set and E S . If there exists such that for every ,S x x E     we 

say E is bounded above and  is an upper bound of E. Now, if  is an upper bound of E 
such that any    is not an upper bound of E, then  is called the least upper bound or 
supremum of E: 

 sup E   (2.12) 

The supremum  may or may not belong to E. 

An ordered set S has the l.u.b. property if for any non-empty subset E that is bounded 
above, its supremum sup E   exists in S.  

2.5.2 Infimum or greatest lower bound: 

Similar to the sup definition above: 

Let G be an ordered set and G S . If there exists such that for every ,S x x G     

we say G is bounded below and  is a lower bound of G. Now, if  is a lower bound of G 
such that any    is not a lower bound of G, then  is called the greatest lower bound 



or infimum of G: 

 inf G   (2.13) 

The infimum  may or may not belong to G. 

An ordered set S has the g.l.b. property if for any non-empty subset G that is bounded 
below, its infimum inf G   exists in S.  

 

2.6 Set algebra 

Let  be any set1.  A non-empty collection A of subsets of  is an algebra of sets (i.e., a 

field) if: whenever A1, A2 are in A, so are  \A1 (i.e., complement of A1) and A1A2 

(and therefore A1A2 also).  Generalizing, if A1, A2,…,An (n finite) are in A, so are A1 
UA2…UAn and A1A2…An. 

Example: Let  ={a,b,c}.  Then we could define a field Aas: 

A= , , {a}, {b,c}  

Example: 

S={1,2,3,4} 

Describe F, the smallest field containing {1} and {2,3} 

ܨ  ൌ ൛ሼ∅ሽ, ሼ1ሽ, ሼ4ሽ, ሼ1,4ሽ, ሼ2,3ሽ, ሼ2,3,4ሽ, ሼ1,2,3,4ሽ	ൟ 

 algebra (or  field or Borel field):  The algebra described above is a  algebra of sets 
if it holds for a countably infinite2 collection A1, A2, …. That is, whenever, the sequence 

A1, A2, …, belongs to A, so does 
1

Ai
i




 .  In other words, a  algebra Aof subsets of a 

given set  contains the empty set  and is closed with respect to complementation and 
countable unions.3   

Measurable space:  A couple (, A) is a measurable space where  is any set and A is 

a  algebra of subsets of .  A subset A of  is measurable with respect to A if A  A. 

Measure: A measure m on a measurable space (, A) is a non-negative set function 

defined for all sets of the  algebra A, if it has the properties:  

                                                 
1 in the context of probability, X is considered to be the sample space  

2 A finite sequence (of size n) is a function whose domain is the first n natural numbers. An infinite sequence is a 
function whose domain is the set N of natural numbers. A set A is called countable if it is the range of some sequence 
(finite or infinite).  The set A is finite and countable if it is the range of some finite sequence.  The set A is countably 
infinite if it is the range of some infinite sequence.  
3 When the events A1, A2, …, are countably infinite, we can take the Borel field constituting the probability space to 
consist of all subsets of .  When  is uncountably infinite (e.g., the real line R), we do not want the Borel field to be 
the collection of all subsets of  to constitute a probability space.  In this case, we only consider events of the type 

iX x  and the Borel field to consist of all finite intervals in R.   



(i) m() = 0.           (2.14) 

(ii) If A1, A2, …is a sequence of disjoint sets of A,  

then 
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 .        (2.15) 

Measure space:  A measure space (, A, m) means a measurable space (,A) together 

with a measure m defined on A. 

Measurable function:  Let (, A) and (’, A’) be two measurable spaces.  Then the 
function (or map) : 'f   is called measurable if the inverse satisfies 

 1( ')f  A A  (2.16) 

In the special case that  is the sample space and the range of f is the extended real line, 
i.e., '    and  ' ( )B A  the sigma algebra of intervals on the real line, then f must 
satisfy any one of the following conditions in order to be a measurable function with 
respect to A: 
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Then, as we will see in CHAPTER 4, f is called a random variable. 
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