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Consider the special case , {0}, [ ]X Xm n V I   , that is, X is an IID standard normal n-

vector. Then Y is an n-dimensional normal with 0 , T
Y YA V AA   .  This property is used 

for simulating correlated normals (Section 8.6.2). 

7.17 Joint Normal distribution 

7.17.1 Bivariate normal 

Recall that X is said to have a normal distribution with mean   and variance 2 0   if its 
density function is of the form: 
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In a parallel manner, a two dimensional RV X
1 2( , )TX X is said to have a non-singular 

bivariate normal distribution if its density function is of the form: 
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where, 
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The correlation coefficient is 12
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   since 12 1 2   . The bivariate N.D. is 

also denoted as  2 ,N V . Eq (7.72) can be expanded to: 
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  (7.73) 

Its standard form  (zero means, unit variances) is: 
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7.17.1.1 Singular bivariate normal 

X  has a singular bivariate normal distribution   if  
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 are identically distributed  

Where Z is N (0,1) and 1 2 1 2, , ,     are real  

i.e. if  
0V 

. 

7.17.1.2 Conditional and Marginal distributions 

If    
1 2 1 2 2( , ) ( ; , )X Xf x x N X V , the marginal distribution of  1X regardless of the 

correlation coefficient is univariate normal: 
1 1 1 1( ) ( , )Xf x N   . Likewise, for X2.  This 

property can be shown by integrating Eq (7.74) with respect to x2.  Since 
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1 2 1(1 ) ( )x x x    , Eq (7.74) gives us: 
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  (7.75) 

A subsitution yeilds: 
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  (7.76) 

 which is nothing but the standard normal density function. It is easy to show that the 
property holds for any arbitrary bivariate normal with non-zero means and non-unit 
variances.  

If X is bivariate normal, then the conditional density of X1 given a fixed value of X2=b is, 
once again, normal. Applying the definition of the conditional density function, and using 
the above result that the marginal density of X2 is normal: 
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  (7.77) 

For any arbitrary bivariate normal, the above result generalizes to the result that the 
conditional density of  X1 given X2 = x2 is Normal with conditional mean: 
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and conditional variance: 
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Clearly, if  0,   then 1|2 1  , 2 2
1|2 1  and 1|2 1 1|2 1|2 1 1 1 1( ; , ) ( ; , )f x f x    , i.e., X1 and 

X2 are independent. 

7.17.1.3 Linear combinations 

The linear combination of any bivariate Normal is again bivariate normal: 

If Y CX b   where X ~ 2 ( , )N V , then Y ~ 2 ( , )TN C b CVC    

7.17.1.4 Standard uncorrelated bivariate normal 

Like the standard normal random variable (zero mean and unit variance), we can define 
the standard uncorrelated normal. Its mean vector is (0,0)T and its covariance matrix is the 
identity matrix.  

Z  is 2 2(0, )N I     where   2

1 0
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I

 
  
 

 

Any bivariate Normal X ~ 2 ( , )N V  can be created from the standard uncorrleated 

bivariate normal by defining:  

X CZ b    

such that its mean and covariance matrix are: X b   and 2
T T

XV CI C CC  . 

Standard bivariate Normal: 

The standard bivariate normal has its mean vector as (0,0)T, the diagonal elements of its 
covariance matrix as unity, but the off diagonal terms are not necessarily zero.  
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Y  is 2(0, )YN V     where   
1

1YV



 

  
 

 

Any bivariate Normal X ~ 2 ( , )XN V  with the same correlation structure 

( , ) ( , )X i j YV i j V i j   can be created from Y by defining:  

i i i iX Y     

7.17.2 Multivariate normal distributions 

An n dimensional random variable X  with mean   and cov. matrix  V  is said to have a 

nonsingular multivariate normal distribution if   V  is positive definite and the joint PDF 
of X  is : 
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which is symbolically written as ~ ( , )nX N V . 

7.17.2.1 Properties    

(1)     If   ~ ( , )nX N V  

         and    Y CX b    where    
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then Y is n dimensional normal:    ( , )T
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(2)     If   ~ ( , )nX N V  

         and    Y CX b    where    
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then  i m
Y Y  is m dimensional normal:   ~ ( , )T

mY N C b CV C   

       

(3)   Z  is the standard independent multivariate normal variable, (0, )n nZ N I  

If we have a nonsingular n n  matrix C , then X  and ( )CZ   are identically 

distributed, with 
X

   and T
XV CC . 

Thus, if given  ( , )nX N V we can find C  such that ,TCC V  

then we can uncouple this distribution into (0, )n nZ N I  
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where 1( )Z C X    

7.17.2.2 Marginal distributions 

Consider the following partitions  
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7.17.2.3 Independence 

       1 2, ,X X X    are all as defined above.  

Then  1 2&X X   are independent if and only if  

           12 0V   

In this case (that 1 2,X X  are independent) 
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7.17.2.4 Conditional distribution     

consider the partition as above :  
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If     ( , )nX N V  

Then conditional distribution of 1X , given 2X = 2x  

is         1|2 11|2,kN V
 

where    
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and 1
11|2 11 12 22 21V V V V V   is independent of x2. 
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As an example, take n = 2: 
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7.17.2.5 MGF for multivariate Normal 
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7.17.3 Examples involving joint normal random variables 

7.17.3.1 Product of lognormals 

Consider the product,  

 1 2
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nY a Y Y Y     (7.79) 

If    iY  is  LN   for all i, the product Y is lognormal as well.  

The mean and variance of Y can be found the following way. Let mi be the median of Yi, 
and let Vi be the c.o.v. of Yi. 
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If  Yi’s are independent.   
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7.17.3.2 Example: power demand 

The peak daily power demand, D, in Los Angeles is a Normal variable with mean 5 GW 
and coefficient of variation (c.o.v.) 40%.  The power supply network for Los Angeles has 
a capacity, C, which is also a Normal random variable with mean 8 GW and c.o.v. 20%.  
C and D are independent of each other.   

A “brownout” is said to occur if D exceeds C. 

a) Find the probability of a brownout in Los Angeles on a given day. 

b) The probability of daily brownout needs to be reduced to 0.023.  This is possible by 
bringing up the capacity to Cnew .  What should be the mean of Cnew (assume that Cnew 
remains a Normal variable and its c.o.v. is still 20%) ? 

7.17.3.3 Independent vs uncorrelated Gaussian variables 

Examples 

 

7.18 Convergence of a sequence of RVs 

A sequence8 of real numbers is called convergent if it has a limit. A real number l is the 
limit of a sequence if for each positive ε there is an N such that for all n≥N we have 
| |nx l   .  A sequence can have at most one limit, and conventionally, +/- ∞ is not 

considered a valid limit.  Also, a sequence is convergent if and only if it is a Cauchy 
sequence.  A sequence is a Cauchy sequence if given ε > 0 there is an N such that for all 
n≥N and all m≥N, we have  | |n mx x   . 

Now consider a sequence of random variables 1 2{ , ,..., }nX X X . Not all sequences or 

random variables converge to anything.  But in some cases we know they do, as in the 
mean of n iid random variables.  Can we generalized this? The question whether a 
sequence of RVs converge arises naturally in cases of differentiation and integration of a 
stochastic process, X(t).   

Define the “derivative” of process X the usual way as: 

 
( ) ( )

( , ) , 0
X t h X t

Y t h h
h

 
   (7.80) 

 What does it mean? Is Y a legitimate stochastic process? If so, in what sense? What and 
how does it converge to?  We will deal with these questions in Sections 10.7 and 10.8. 
First, we describe the four different ways that convergence of a sequence of random 
variable can be talked of.  

                                                 
8 A sequence is a function of positive integers, i.e., <xn> is a function that maps each natural number n into the real 
number xn.  


