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7.12 Function of one random variable - derived distribution

X'is a RV. Let a quantity Y be functionally dependent on X:
Y =9(X) (7.50)

Then, Y too is a random variable, if the function g holds certain properties (P&P p. 123):

1. Its domain must include the range of X.
2. It must be a Borel function, i.e., for every Y, the set Ry such that g(X) <y must

consist of the union and intersection of a countable no. of intervals. Only then is
Y <y an event.

3. The events g(X)==xoo must each have zero probability.

What are the probabilistic characteristics of Y ? We are interested to find the distribution
of Y and its statistics such as mean and s.d. from the distribution of X. As we will see, the
event {Y <y} implies {X € Ry} , where Ry is some range depending on Y, so that, the

CDF of Y is:

() =PIX eR,] (7.51)aaa

Two cases will be looked at for the function of one RV, one when ¢ is a monotonic
function, and two, when it is not. F, is known in every case.

7.12.1 g(X) is one to one

7.12.1.1 Xis discrete

Since g is one to one, Y= g(X) too is discrete.

pY(yi) = P[Y = yi] = P[X = g’l(yi)] = Py (g*l(yi))
F (y)=P[Y <y]=P[g(X)<y]=P[X <g7'(Y)]= Z D, (%) (7.52)

all i <g™ (y)

7.12.1.2 X is continuous

Since g is one to one, Y = g(X) too is continuous.
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y=g(x)

Y1

X1 X

Figure 7-1: monotonic tranformation from x to y

It is clear from Figure 7-2 that {Y <Y,} < {X <X} for any (X, y;) pair. Hence, the CDF
of Y can be written as:

F,(y)=PIY <y]=P[g(X)< y]=P[X < g '(y)] (7.53)

which, by definition, is the integral:

-1(y)

F()=PIX<g ' WMI=["  f(x0dx (7.54)

Using Leibniz rule’ for differentiation under the integral sign, we obtain the PDF of Y as:

fy=2F, =< 4 (g'(y)
dy dy
- ddl X(g*‘(y»dg 16l (755)
g
_t (g'l(ymdg W),

The absolute value is imposed to account for cases when g(X) is a decreasing function.

7 Leibniz rule for differentiation under the integral sign:

¢ (@)
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7.12.1.3 Example: Normal to lognormal transformation

X~ N(t.0) = Le e
~ ,O X)=———e ~
Hy Oy X \/Eiz'o'x
Y =¢*
dIn 1
fy (y) = fx(In y)‘d—yy =y fx (Iny)
111 ey
x=g"'(y)=In =———e2 X
g (y)=Iny s

7.12.1.4 Example: laser directed at a random angle

In Section 6.1.2 we looked at the Cauchy distribution as the tangent of a Uniform random
variable. The problem was posed as a laser gun being directed on a wall at a random
angle: the distribution of the angle was known and the distribution of the projection was
required. Here we look at the problem differently: the distribution of the location is
known, that of the angle is required.

7.12.2  g(X) is many to one

7.12.2.1 Xand Y are discrete

y=9(x) and g7 (y) = {X, Xy X, }
k k(y)

A =yy=Ux =x)= X =x ()
k(y)

LB = D) P (X (Y)

i(y)=1

7.12.2.2 X and Y are continuous

If X and Y are continuous, then the PDF of Y,

, where g7 (Y) = {X;, X0 X }

K dx.
fY(Y): fx (Xi)_I
Z‘ dy (7.56)

and the CDF of Y is given by Eq aaa above.
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da
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Figure 7-2: non-monotonic tranformation from x to y

For example, in Figure 7-2, y; has only one inverse but y; has three. Consequently,

{Y <y} ={X<x} and {Y <y} ={X <x,Ux, <X <x;}

7.12.2.3 Example: Normal to Chi squared transformation
X ~N(0,1)
Y =X
PY <y]=P[—Jy < X <./y]

=F (JY) - Fe(—y)
d(—
fL(y)= Ty (ﬁ)diyﬁ _f, (_ﬁﬂd_yﬁ)

1 1
= fx (\/y) + fx (_\/y)
2.y 2y
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N
Example:
U =CP?, P~N(u,.0c,)
f, =?
u

— —+ = —v -4+ (U
Set U =u, thenP—J_r\/;, so that p, = 4/4 andp2—+,14
Now,
dp 1 1T
du|l 2+Juc
dp,f_1 1
du| 2+/uc

Then, by eqn (7.56) the pdf of U is:
dpi
fo ()= Zf (pi)]

1~ %—H ) 1\[/ /lp
1 S

1
= [e P +e )
\N2rop

S
T

Alternately, the problem can be solved from first principles:

Given, U =cP?, we can write:
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P[U <u]=P[cP* <u
P[

]
- fere
C C

u/ _ _ U/ _
=¢[M e e “
Up Gp
\F—up v
ARSI lp—¢< e i

fo(U)= oo 2Juc op op 2Juco,

_1 yu/c-up ? 1

2 op +e 2 op ]

1
=—— e
2\2rx~uco, [
Example:

The range R of a javelin thrower is given by :

2

R :V—Osin2¢
g

where V) is the initial velocity, g is acceleration due to gravity,¢ is the angle made with
the horizontal at the time of throw.

a) Variabilities in the thrower’s performance makes V, a random variable, with mean m0O
and standard deviation s0. Find the approximate mean and standard deviation of R in
terms of m0, s0, ¢ and g.

b) Now assume that V, is Logormally distributed, with m0 = 20 m/sec and s0 = 2m/sec.

For a throwing angle ¢ = 45 degrees, what is the probability that the thrower’s range will
be more than 52 meters?

Example: wind induced wave ht, Z = LV ?
14000
where f= fetch, d = depth of lake, V = wind speed .
Since V =random, so is Z .
Example:
Wave force on cylinder:

F= Fdrag + Finertia = Cd ﬁau | U | +Cm BVU
29 g

Cd=drag coeff
Cm=inertia coeff
a=area of cylinder/length

v=volume of cylinder / length
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U= water velocity

U(dot)=water acceleration

7.12.3 Xis continuous but Y is discrete
Continuous to discrete transforms are also possible.
say X is measurement of damage (continuous) and Y is damage class (discrete).

So, X€ A} = Y =Y,, then:

PY = VI=PIX € AT _ (™ ¢ (ax

7.13 Function of several random variables
Y =9(X,,X,,..X,) (7.57)

Special case when g is a linear combination is discussed in Section 7.15.

PDF of Y?

7.13.1 Example: convolution of two random variables

Wave height (H) and wave period (T) at a location off Hawaii during a storm are jointly
distributed random variables. The joint probability density function is given by:

k(35—-h-t), 0<h<20, 0<t<15

0, otherwise

fH,T (hat) = {

where h is in feet and t is in seconds.
a) Find k.

b) It has been found that a certain offshore installation will be safe as long as H+ T <10. What is
the probability that the installation will be safe?

Answer:
(a) By equating the volume under the joint PDF to one, we obtain k = 1/5250
(b) The probability that the installation is safe is given by:

P[H+T <10]=|

all

tLuh I(h+t<10) fH,T (h,t)dhdt
k[ [ 35-h-tydhat
=k[" (3sn-h*/2-ht) " dt

10
=le_0 (t> /235t +300)dt
=0.270
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7.13.2 Example: difference of two exponential random variables

A structure has exponentially distributed capacity with mean pc. The load, independent of the
capacity, is also exponential with mean pp.

(a) Find the reliability of the structure.

(b) A proof load test is performed on the structure as follows. A known load, ¢y, is placed on the
structure, and the structure survives without any damage. With this new information, find the
updated reliability of the structure.

Answer:

(a) Taking advantage of the indepdence between C and D we can write the reliability =
PID<C] as: [ 1(d<0)f p(c.d)dedd =] Fy(0)f(c)de, which upon solving the

integration yields P[D < C] = g / ( + tp)-

7.14 Expected value of a function of random variable(s)

7.14.1 Function of one random variable

Regardless of whether g is one to one or not, the expectation is defined as:

T g(x) f, (x)dx for continuous X
E(Y) = E(Q(X)]={ (759)
> g(x) py(x) for discrete X

all x
To obtain an approximate mean of Y, expand g(X) in Taylor series around zs.
1 n
E(Y)= g(ﬂx)+59 (1) o

7.14.2 Function of several random variables

The expected value of Y = g(X,, X,,...X, ) is:

T T g(x) f, (x)dx for continuous X
EY)=E(@(X)]=1" (7.59)
DT g(X) py(X) for discrete X

allx, allx,

To obtain an approximate mean of Y expand g(X) in Taylor series around zi.

18L& 2
E(Y)=g(w) +EZZ 88 89 o;  where uis the mean vector and ojj is the covariance.
- i-1 j-1 OX0X; p
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7.15 Sum of several RVs

X =[X,,X,,.... X, is a vector of n jointly distributed random variables with mean

vector:
Hy
=" (7.60)
Hy
covariance matrix:
0 On O
V, = 0:21 Oy § (7.61)
Oy eer .o O

and joint density function f, (X).

Let the random variable Y be a linear combination of X.

Y =a,+aX (7.62)sum7aaa

where @ is a scalar and a=1{a,,a,,...,a,} is a row vector multiplying the column X. We
wish to find the statistics of Y.

7.15.1 Mean and variance of the sum

Regardless of the distribution of X, the mean of Y is,
Hy =, +au, (7.63)
and the variance of Y is:
oy =aV,a’ (7.64)

As we shall see in Section 7.17 below, if X is jointly normal , then the linear combination
Y too is Normal.

7.15.2 Example: sum of two IID geometric RVs

The PMF of the Pascal RV can be derived by convolution using Eq (5.10). Forr =2, we
have:
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P[X,=n]=P[G,+G, =n], P(G =m)=g""p

n-1

= P[G2 =n-m|G, :m]P[G1 =m]
m=1
n—-1

=> P[G,=n-m]P[G,=m] since G, and G, are independent
m=1
n-1

:Z qn—m—lp qm lp
m=1
n-1

— qn—2 p2
m=1

:(n_l)quZ pZ

7.15.3 Example: sum of two IID uniforms
X, ~U(0,1),X, ~U(0,1) and X,, X, are independent of each other.
Find the distribution of their sum, Y = X, + X,

0 ' 1 2 X,
Xl X2

Figure 7-3: sum of two uniforms

The distribution of the sum can be conveniently written with the help of the indicator
function as,

F(y)= [ 106+% <y 00 f, 06)dx, dx,

all X, X,

where the independence of X; and X, has been utilized. Differentiating, we obtain the
PDF of Y which involves the delta function as follows:
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f (V)= [ 00q+x=y)f, () f 06)dx dx,

all x;,%,

= [ 00 F, (y=x)dx,

all x,

Recognizing that the PDFs of X1 and X2 are non-zero only in the interval [0,1] we
simplify the PDF of Y as:

f,(y)= _1[ MI(0<y—x <1)dx

=0

For 0 <y <1, we need to restrict 0< x1 <y, yielding,
y
f, (y)= j(l)(l)dxl =y,0<y<l
0
For 1 <y <2, x; does not need any restriction, yielding,

f, (y):j(l)l (y—1<x <y)dx,

- | e

X =y-1
=2-y, 1I<y<?2
Y, O<yx<l
Thus fy(y):{

2-y, l<y<?2
which is the triangular density function.

7.16 Several functions of several random variables
Papoulis p. 143, 183.
Let X ={X,cceeucn. X, }. Letk functions be defined on X:

Y =0,(X)
: (7.65)
Y, =9, (X)
fY
7.16.1 The joint density
If k =n, the joint density function of Y is:
fo (X X )
£, (Yoo =2 . 7.66
o YY) | I (Xoveen X)) | (7.66)
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where the Jacobian of the transformation is:

09, ... 99,
OX, oX,,

J= : . :
ag, ag,
0% OX,,
It k#n,
k+l — Xk+1
When k <n, choose _x
If k>n
Express Yo foeeeeenes Y, intermof Y, ......... Y,

If there are several solutions to the problem, i.e., several x vectors {Xx",x®,..} give rise
to the same y vector:

Use the sum over all such solutions:

fy (x",...,x. )

fy (Vyevenennn y”):ZIJ(xl(”,...,xn“))l (7.67)
7.16.2 Linear combination
We genralize Eq sum7aaa to obtain m linear combinations Y =[Y,,Y,,...,Y, ] of X:
Y, a, | [a,a,a, |[[X
Y= ?(2 =A+AX = :a‘” + :aﬂ a”.'_" o :Xz (7.68)
Yo Q) [ B By e A | (X

where A, is an m-dimensional column vector and A is an m x n coefficient matrix. The
mean and covariance matrix of Y are respectively,

Uy = A+ Ap, (7.69)
V, = AV, AT (7.70)

We shall see next in Section 7.17 that if X is jointly normal , then Y too is jointly normal.
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Consider the special case m=n, x4, ={0},V, =[l], thatis, X is an IID standard normal n-

vector. Then Y is an n-dimensional normal with x4, = A, V, = AA' . This property is used

for simulating correlated normals (Section 8.6.2).

7.17 Joint Normal distribution

7.17.1 Bivariate normal

Recall that X is said to have a normal distribution with mean x and variance o~ >0 if its
density function is of the form:

> 1 1 >
N(X; @, 0 )IWGXP[—EQ(X;#,U )] (7.71)

1
where, Q,(X;u,0°)= — (X- 1)’ =(X—p)o(x— ). Itis related to the standard
o

normal form ¢ through: N(X;u,6%) = l¢(x—,uj.
o o

In a parallel manner, a two dimensional RV X = (X, X,)" is said to have a non-singular
bivariate normal distribution if its density function is of the form:

1 1
N, (X V) = ———grexp[--Q, (X . V)] (7.72)
27| 2

where,

QX V) =(x— )"V (X - p1)

_| _ 0-12 Op | 0-12 PO,0,
H= V= 2 | 2
H O, O, PO,0, 0,

012

The correlation coefficient is p = ,| p| <1 since |o},| < 0,0, . The bivariate N.D. is

172

also denoted as N, ( A% ) . Eq (7.72) can be expanded to:

1
N, (X, Xo5 4y, 1,501,055 P) =
2 1 2 1 2 1 2 272'0-10-2@

_ 1 X — A 2_ X —H || X4 X —H, 2
exp{ 2(1_:02)“ i j 2/7( 0 J( 0, jJ{ 0, j]}

Its standard form (zero means, unit variances) is:

X

(7.73)
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