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7.12 Function of one random variable – derived distribution 

X is a RV. Let a quantity Y be functionally dependent on X: 

 ( )Y g X  (7.50) 

Then, Y  too is a random variable, if the function g holds certain properties (P&P p. 123): 

1. Its domain must include the range of X. 
2. It must be a Borel function, i.e., for every y, the set Ry such that ( )g x y must 

consist of the union and intersection of a countable no. of intervals. Only then is 
Y y  an event.  

3. The events ( )g X    must each have zero probability. 

What are the probabilistic characteristics of Y ? We are interested to find the distribution 
of Y and its statistics such as mean and s.d. from the distribution of  X.  As we will see, the 
event    implies yY y X R  , where Ry is some range depending on y, so that, the 

CDF of Y is: 

 ( ) [ ]Y yF y P X R   (7.51)aaa 

Two cases will be looked at for the function of one RV, one when g is a monotonic 
function, and two, when it is not. XF  is known in every case. 

7.12.1 g(X) is one to  one  

7.12.1.1 X is discrete 

Since g is one to one,  Y= g(X)  too is discrete. 
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7.12.1.2 X is continuous 

Since g is one to one, Y = g(X) too is continuous.  
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Figure 7-1: monotonic tranformation from x to y 

It is clear from Figure 7-2 that 1 1{ } { }Y y X x    for any (x1, y1) pair. Hence, the CDF 

of Y can be written as: 

 1( ) [ ] [ ( ) ] [ ( )]YF y P Y y P g X y P X g y       (7.53) 

which, by definition, is the integral: 
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Using Leibniz rule7 for differentiation under the integral sign, we obtain the PDF of Y as: 
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 (7.55) 

The absolute value is imposed to account for cases when g(X) is a decreasing function.  

                                                 
7 Leibniz rule for differentiation under the integral sign: 
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7.12.1.3 Example: Normal to lognormal transformation 
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7.12.1.4 Example: laser directed at a random angle 

In Section 6.1.2 we looked at the Cauchy distribution as the tangent of a Uniform random 
variable. The problem was posed as a laser gun being directed on a wall at a random 
angle: the distribution of the angle was known and the distribution of the projection was 
required.  Here we look at the problem differently: the distribution of the location is 
known, that of the angle is required. 

 

7.12.2  g(X) is many to one 

7.12.2.1 X and Y are discrete 
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7.12.2.2 X  and Y are continuous 

If X and Y are continuous, then the PDF of Y, 
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 (7.56) 

and the CDF of Y is given by Eq aaa above.  
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Figure 7-2: non-monotonic tranformation from x to y 

For example, in Figure 7-2, y2 has only one inverse but y1 has three. Consequently, 

2 2{ } { }Y y X x    and 1 11 12 13{ } { }Y y X x x X x      

7.12.2.3 Example: Normal to Chi squared transformation     
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                    x  

 

Example: 
2U CP ,            ( , )P N     
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Then, by eqn (7.56) the pdf of U is:                              
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Alternately, the problem can be solved from first principles:     

Given,  2U cP , we can write: 
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Example: 

The range R of a javelin thrower is given by : 

2sin
2

0

g

V
R 

 

where V0 is the initial velocity, g is acceleration due to gravity,  is the angle made with 
the horizontal at the time of throw.   

a) Variabilities in the thrower’s performance makes V0  a random variable, with mean m0 
and standard deviation s0.  Find the approximate mean and standard deviation of R in 
terms of m0, s0,  and g. 

b) Now assume that V0 is Logormally distributed, with m0 = 20 m/sec and  s0 = 2m/sec.  
For a throwing angle  = 45 degrees, what is the probability that the thrower’s range will 
be more than 52 meters? 

Example:   wind induced wave ht, Z = 2

14000

f
V      

where f= fetch, d = depth of lake, V = wind speed . 

 Since V = random, so is Z .   

Example: 

Wave force on cylinder:  

F = Fdrag + Finertia = | |
2d mC aU U C vU

g g

 
   

Cd=drag coeff  

Cm=inertia coeff 

a=area of cylinder/length 

v= volume of cylinder / length 
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 U= water velocity 

U(dot)=water acceleration  

7.12.3 X is continuous but Y is discrete 

Continuous to discrete transforms are also possible.  

say X is measurement of damage (continuous) and Y is damage class (discrete). 

So, X  A1   Y = 1y , then: 

[ ] [ ]i iP Y y P X A    ( )
bi

Xai
f x dx   

7.13 Function of several random variables 

 1 2( , ,... )nY g X X X  (7.57) 

Special case when g is a linear combination is discussed in Section 7.15. 

PDF of Y? 

7.13.1 Example: convolution of two random variables 

Wave height (H) and wave period (T) at a location off Hawaii during a storm are jointly 
distributed random variables.  The joint probability density function is given by: 
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where h is in feet and t is in seconds.   

a) Find k. 

b) It has been found that a certain offshore installation will be safe as long as H + T <10.  What is 
the probability that the installation will be safe? 

Answer: 

(a) By equating the volume under the joint PDF to one, we obtain k = 1/5250 

(b) The probability that the installation is safe is given by: 
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7.13.2 Example: difference of two exponential random variables 

A structure has exponentially distributed capacity with mean C.  The load, independent of the 
capacity, is also exponential with mean D.   

(a) Find the reliability of the structure. 

(b) A proof load test is performed on the structure as follows.  A known load, c0, is placed on the 
structure, and the structure survives without any damage. With this new information, find the 
updated reliability of the structure.  

Answer: 

(a) Taking advantage of the indepdence between C and D we can write the reliability = 

P[D < C]  as: ,all , all
( ) ( , ) ( ) ( )C D D Cc d c

I d c f c d dcdd F c f c dc   , which upon solving the 

integration yields P[D < C]  = / ( ).C C D    

7.14  Expected value of a function of random variable(s) 

7.14.1 Function of one random variable 

Regardless of whether g is one to one or not, the expectation is defined as: 
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 (7.58) 

To obtain an approximate mean of Y, expand g(X) in Taylor series around X.   

21
( ) ( ) ''( )

2X X XE Y g g   
 

7.14.2 Function of several random variables 

The expected value of 1 2( , ,... )nY g X X X is:  
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 (7.59) 

To obtain an approximate mean of Y  expand g(X) in Taylor series around X.   
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      where  is the mean vector and ij is the covariance.
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7.15 Sum of several RVs 

1 2[ , ,..., ]T
nX X X X  is a vector of n jointly distributed random variables with mean 

vector: 
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 (7.60) 

covariance matrix: 

 

11 12 1
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... n
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n nn

V

  
 

 

 
 
 
 
 
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
  

 

 (7.61) 

and joint density function ( ).Xf x  

Let the random variable Y be a linear combination of X. 

 0Y a aX   (7.62)sum7aaa 

where a0 is a scalar and  1 2{ , ,..., }na a a a  is a row vector multiplying the column X.  We 

wish to find the statistics of Y. 

7.15.1 Mean and variance of the sum 

Regardless of the distribution of X, the mean of Y is,  

 0Y Xa a    (7.63) 

and the variance of Y is: 

 2 T
Y XaV a   (7.64) 

As we shall see in Section 7.17 below, if X  is jointly normal , then the linear combination 
Y too is Normal.  

7.15.2 Example: sum of two IID geometric RVs 

The PMF of the Pascal RV can be derived by convolution using Eq (5.10). For r = 2, we 
have: 
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7.15.3 Example: sum of two IID uniforms 

   1 2 1 2

1 2

~ 0,1 , ~ 0,1 and , are independent of each other.

Find the distribution of their sum, 

X U X U X X

Y X X 
 

 

 

 

 

 

 

 

 

     

  

 

Figure 7-3: sum of two uniforms 

The distribution of the sum can be conveniently written with the help of the indicator 
function as, 

 
1 2

1 2

1 2 1 2 1 2

all ,

( ) ( ) ( )Y X X

x x

F y I x x y f x f x dx dx    

where the independence of X1 and X2 has been utilized. Differentiating, we obtain the 
PDF of Y which involves the delta function as follows: 

2x  
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0 1 2 
1x

1x  2x  
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Recognizing that the PDFs of X1 and X2 are non-zero only in the interval [0,1] we 
simplify the PDF of Y as: 
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For 0 < y < 1, we need to restrict 0< x1 < y, yielding, 
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which is the triangular density function.  

7.16 Several functions of several random variables 

Papoulis p. 143, 183. 

Let 1{ ......... }nX X X .  Let k functions be defined on X:          

 

1 1 ( )

 ( )k k

Y g X

Y g X






  (7.65) 

7.16.1 The joint density 

If   k = n, the joint density function of Y is: 
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Yf  
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 where the Jacobian of the transformation is: 
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If      .k n  

              Express             1.........n kY Y        in term of   1Y ……… nY  

If  there are several solutions to the problem, i.e., several x vectors (1) (2){ , ,...}x x   give rise 
to the same y vector: 

Use the sum over all such solutions:         
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7.16.2 Linear combination 

We genralize Eq sum7aaa to obtain m linear combinations 1 2[ , ,..., ]T
mY Y Y Y  of X: 
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     (7.68) 

where 0A is an m-dimensional column vector  and A is an m × n coefficient matrix. The 

mean and covariance matrix of Y are respectively, 

 0Y XA A    (7.69) 

 T
Y XV AV A  (7.70) 

We shall see next in Section 7.17 that if  X  is jointly normal , then Y too is jointly normal.  
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Consider the special case , {0}, [ ]X Xm n V I   , that is, X is an IID standard normal n-

vector. Then Y is an n-dimensional normal with 0 , T
Y YA V AA   .  This property is used 

for simulating correlated normals (Section 8.6.2). 

7.17 Joint Normal distribution 

7.17.1 Bivariate normal 

Recall that X is said to have a normal distribution with mean   and variance 2 0   if its 
density function is of the form: 

 2 2
11/2

1 1
( ; , ) exp[ ( ; , )]

22
N x Q x   


    (7.71) 

where,   2 2 2
1 2

1
( ; , ) ( ) ( ) ( )Q x x x x     


     .  It is related to the standard 

normal form  through: 2 1
( ; , )

x
N x

  
 

   
 

. 

In a parallel manner, a two dimensional RV X
1 2( , )TX X is said to have a non-singular 

bivariate normal distribution if its density function is of the form: 

 2 21/2

1 1
( ; , ) exp[ ( ; , )]

22
N x V Q x V

V
 


    (7.72) 

where, 

  

1
2

2 2
1 1 12 1 1 2

2 2
2 12 2 1 2 2

( ; , ) ( ) ( )TQ x V x V x

V

  

     


     

  

    
      
       

The correlation coefficient is 12

1 2

, 1
 
 

   since 12 1 2   . The bivariate N.D. is 

also denoted as  2 ,N V . Eq (7.72) can be expanded to: 

 

2 1 2 1 2 1 2 2
1 2

2 2

1 1 1 1 2 2 2 2
2

1 1 2 2

1
( , ; , ; , ; )

2 1

1
exp 2

2(1 )

N x x

x x x x

    
  

   
    

 


                                 

  (7.73) 

Its standard form  (zero means, unit variances) is: 


