
CHAPTER 7. JOINTLY DISTRIBUTED RANDOM VARIABLES 

 

7.1 Introduction 

We have so far focused on the description of one random variable at a time.  Even when 
we had several random variables to work with, they were implicity taken to be 
independent of each other.  In many situations of interest, a group of random variables 
may vary together, that is, they may exhibit dependence – whether associative or causal.  
The joint probabilistic behaviour need to be described in such cases. We will also 
formally look at the concept of independence among random variables.  

7.2 Joint probability description 

We start with the joint cumulative distribution function (JCDF) of two random variables X 
and Y.  It is given by the probability: 

 
, ( , ) [ , ]X YF x y P X x Y y     (7.1) 

It must be a monotone function taking values between 0 and 1. In the discrete case, it is 
given by the sum of the joint probabiliy mass function (JPMF): 
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while in the continuous case, it is given by the integration of the joint probability density 
function (JPDF),  
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The JPMF is a non-negative function and sums to one. Its interpretation of the JPMF is as 
in the one variable case: 

 , ( , ) [ , ]X Y i j i jp x y P X x Y y     (7.4) 

Likewise, the joint probability density function of two continuous random variables non-
negative, contains a volume of unity under it, and is interpreted as: 
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The probability content of a region A can be given by: 
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where 
A

1, if ( , )
I  

0,  otherwise

x y A
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  

Since the treatments are similar,  we focus on joint continuous random variables in this 
chapter, rather than the discrete case. 

Recall,    ( )( ) X x
X

dF
f x

dx
 . Similarly, the JPDF is the mixed partial derivative, 
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    When sevaral random variable are present, the word “marginal” is often used to denote 
the distribution (or density or mass function) of any one of them. The marginal 
distribution of X is thus the same as the distribution of X.  

7.3 Characteristic fn of jointly distributed random variables 

The characteristic function of jointly distributed RVs (or order n) is the function: 

    
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If 1 2, ,......, nX X X  are independent, then the joint CF becomes the product of marginal 

CFs: 
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Consider the sum of 2 independent random variables: 

 1 2 1 2,Z X X X X    (7.10) 

The CF of Z is:  
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Example, if X1 and X2 are each Normal with mean and variance 2
1 1,   and 2

2 2,   

respectively, then it can be easily shown through the CF that Z too is Normal with mean 
and variance 2 2

1 2 1 2,     . 

In case of jointly distributed random variables, the covariance function can be obtained 
from: 
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or equivalently in log space as: 
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 (7.13)                       

7.4 Joint moments 

Define joint moments 

7.4.1 MGF for joint RVs 

The moment generating function of the jointly distributed random variables X and Y is 
given by: 
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so that the joint moments are recovered as: 
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Show that the covariance between X and Y can be given by: 
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Show that if X and Y are independent: 

, 1 2 1 2( ) ( ) ( )X Y X Yg s s g s g s
 

Show that if X and Y are independent and Z = X + Y, 

( ) ( ) ( )Z X Yg s g s g s . 

7.5 Marginal probability description 

The marginal PDF of X can be recovered from the JPDF using the theorem of total 
probability: 
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There is no difference between marginal pdf & individual or ordinary pdf.  The marginal 
CDF of X is the joint CDF evaluated at the right end point of Y: 

 ,( ) ( , )X X YF x F x    (7.17) 

7.6 Conditional probability descriptions 

7.6.1.1 Conditional pmf 

The conditional PMF of X given Y has taken a particular value is: 
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The JPMF can be written in terms of the conditional and marginal PMFs as: 
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7.6.1.2 Conditional pdf 

The conditional PDF of X given a particular realization of Y is, 
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The explanation can be given as: 
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The joint PDF can be given as the product of the conditonal and the corresponding 
marginal: 

 , | |( , ) ( , ) ( ) ( , ) ( )X Y X Y y Y Y X x Xf x y f x y f y f y x f x     (7.21)                      

7.6.1.3 Conditional cdf 
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In the continuous case, the conditional CDF becomes 
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7.7 Independence  

If X and Y are independent, the conditional distribution (or density or mass) of one is 
identical to its marginal. Equivalently, the joint distribution (or density or mass) is the 
product of the marginals. Each of these is both a necessary and sufficient condition for 
independence of X and Y.  
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 (7.22) 

If  X  and Y are independent, so are g(X)  and  h(Y)  

More from Papoulis p. 184. 

7.7.1.1 Generalization to n dimensions 

A vector {Xt ,tϵT}of random variables is mutually independent iff for all subsets J of T, 
the joint CDF is the product of the marginal CDFs: 
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7.8 Conditional moments 

7.8.1 Conditional mean  

The expection of X  given  Y=y is: 
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This can be generalized to conditioning by any event A: 
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Example: Find the conditional mean of the random variable X given that it is less than the 
number a: 
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The unconditional mean of X can be recovered from the conditional mean provided 
sufficient information is available:           
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If   X and Y  are independent,  then   |X Y X  . 

7.8.2 Conditional variance 

The conditional variance of X given  Y = y is : 
2 2

| |[( ) | ]X Y y X Y yE X Y y    
 

When X is continuous: 
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When X is discrete : 
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Unconditional variance in terms of conditional variance and conditional mean  (Ross p 
118) 

 var( ) (var( | )) var( ( | ))X E X Y E X Y   (7.28) 

Proof: 
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We can write        X XX Y y X Y yx x          

Thus   var X  can be expressed as the sum of three integrals.  
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2nd integral  
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3rd integral  
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By definition of “variance” the 3rd integral is the variance of X Y y  which we denote as 

  var E X Y .  

Thus: 
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7.8.2.1 Example: sum of random variables  

Find the mean and variance of the sum, S, of a random number (N) of iid RVs (Xi). N is 
independent of each Xi. 
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7.8.2.2 Example: joint CDF 

1 2
1 2 1 2 1 2( , ) 1 ( )x x

XF x x e e e x x x x         

Find conditional density and conditional moments of X1.  

7.8.2.3 Example: proof loading 

The theoretical strength of a beam is exponentially distributed with mean 10 kNm.  A moment 
of 12 kNm is applied on the beam (at the critical cross section) and it is found to survive without 
damage. What can you now say about the mean and standard deviation of the beam’s strength? 

7.8.2.4 Example: flaws in a weld 

Flaws of  random size and number exist in a weld of length 1 m.  Assume that the size of each 
flaw is Exponentially distributed with mean 2 mm, and the flaw sizes are independent of one 
another.  The number of flaws in the weld is Poisson distributed with rate one every 15 cm.   

(a) What is the probability that there are exactly 10 flaws in the weld? 

(b) An ultrasonic test is used to detect flaws in the weld.  The instrument has a resolution of 3 
mm (i.e., it can detect weld flaws if they are 3mm or larger).   

(i) What is the probability that no flaw will be detected?   

(ii) If no flaw is detected, what is the probability that the weld is flawless? 

7.9 Measure of dependence  

The variance of a random variable can be expressed as [( )( )]X XE X X   . In the same 

vein, the covariance between two random variables is defined as: 
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The correlation  coefficient is:  
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7.9.1 Properties of correlation coefficient 

7.9.1.1 Linearity and independence 

a) | | 1XY     high linear dependence   between   X and Y 

b) | | 0XY    no linear dependence between X and Y 

c) If  X,Y  are independent, ( ) ( ) ( )E XY E X E Y    and 0XY   i.e., 0.XY   The 

converse is not necessarily true.  

Example: 

EX: 

            Let ~ (0,1)Z U . Define:  sin 2 , cos 2X z Y z   .  The means of X and Y are 
both zero: 
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Further,  
1 1

0 0

1
( ) sin 2 cos 2 (1) (sin 0 sin 4 ) 0

2
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Thus the correlation coefficient between X and Y 
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But, it is also true that,  X2 + Y2 = 1 implying a definite dependence which the correlation 
coefficient is unable to capture.  

7.9.1.2 Linear transformation 

  is not affected by a linear transformation.  

Proof: 

                             Let UV   
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7.9.1.3 Bounds on correlation coefficient 

The absolute value of the correlation coefficient is less than or equal to one.  

 | | 1XY    (7.29) 

Proof: 

Define two normalized random variables, 0 0,X Y
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The variance of their sum,  

 
0 0 0 00 0 0 0var( ) var( ) var( ) 2 1 1 2 2(1 )X Y X Y XY XYX Y X Y               must be non-

negative. Therefore:  

 1 0XY    (7.30) 

Similarly, the variance of their difference, 

0 0 0 0var( ) 1 1 2cov( , ) 2 2 2(1 )XY XYX Y X Y           must be non-negative as well, 

giving us: 

 1 0 1XY XY        (7.31) 

7.9.2 Limitations of the correlation coefficient 

           1 21) ,      must be finite  

           2)  is not invariant under monotone transform  

           3) 0    independence  



7.9.3 Desirable features of a correlation measure                 

Universal existence  

invariance under monotone transformation 

Zero   independence  

The following measures satisfy all three requirements  

7.9.3.1 The sup correlation (or maximal correlation)  

1 2 1 1 2 2( , ) sup ( ( ), ( ))X X g X g X   

Where sup is taken over all Borel  measureable functions 1 1 2 2( ), ( )g X g X  such that 1 2,g g  

have finite positive variance, and   is the ordinary corr. coeff.   

7.9.3.2 The monotone correlation   

 Same as   but sup is taken over all monotone functions 1, 2g g  only . 

 Relationship   

      | | 1      

All 3 are equal for multivariate Normal rv’s. 

 

7.9.4 Examples: jointly distributed random variables 

7.9.4.1 Example: Joint PMF 

You and your friend go into a sports bar where a dart throwing competition is going on.  
You buy m darts at 1 rupee each.  You throw these m darts at the board.  Of these, N darts 
hit within the inner circle.  Your friend picks up these N darts, and throws them at the 
board.  X of them hit the inner circle.  You and your friend earn 10 rupees for each of the 
X hits.  Of course, N and X are random numbers.  Assume that your throws are 
independent and each has a probability p1 of hitting the inner circle.  Your friend’s throws 
are also independent, and each has a probability p2 of hitting the inner circle. 

a) What is the distribution of N? 

b) What is the distribution of X? 

c) How much do you expect to earn from this game?   

d) Say, p1 > p2.  Does it matter who goes first? 

Answer: 

Clearly, N is a binomial random variable with parameters m and p1. Given N = n, X too is 
Binomial: 

  | 2 2( ; ) | ( ) (1 )n x n x
X N n xp x n P X x N n p p 

        (7.32) 

The unconditional PMF of X can be found by theorem of total probability: 



| 2 2 1 1
all 0

( ) ( ; ) ( ) ( ) (1 ) ( ) (1 ) ( )
m

n x n x m n m n
X X N n N x n

n n

p x p x n p n p p p p I x n 




       

where the indicator function ensures that your friend can never have more successes than 
the darts you win. The PMF of X can be written as: 

. 
2 2 1 1

2 2 1 1

! !
( ) (1 ) (1 )

!( )! !( )!

! (1 ) (1 )

! ( )! ( )!

m
x n x n m n

X
n x

x n x n m nm

n x

n m
p x p p p p

x n x n m n

m p p p p

x n x m n

 



 



  
 

 


 




 

Substituting so that 0,and v n x n x v n m v m x         allows us to rewrite the 
above summation as: 

2 1 1
2

0

(1 ) (1 )!
( )

! !( )!

v v x m v xm x
x

X
v

p p pm
p x p

x v m x v

  



 


   

Rerranging the terms, 

2 1 2 1 1
0

! 1 ( )!
( ) (1 ) (1 )

! ( )! !( )!

m x
x x v v m x v

X
v

m m x
p x p p p p p

x m x v m x v


 




  

       

and substituting 'm m x  , we obtain 

  

'
'

1 2 1 1 2 1
0

''
' 1 1 2 1

1 2 1 2 '
0 1 2 1 2

'
1 1 2

1 2 1 2
0 1 2

'!
( ) ( ) [ ] [1 ]

!( )!

' [ ] [1 ]
( ) (1 )

[1 ] [1 ]

'
( ) (1 )

1

m
x v m v

X
v

v m vm
x m

v m v
v

m
x m x

v

mm
p x p p p p p p

vx m x

m m p p p p
p p p p

x v p p p p

m m p p p
p p p p

x v p p














 
     

     
         

     
           






'

1

1 2

1

1

v m v
p

p p


 

   

 

Using the binomial identity, we replace the sum and obtain: 
'

1 1 2 1
1 2 1 2

1 2 1 2

1
( ) ( ) (1 )

1 1

m

x m x
X

m p p p p
p x p p p p

x p p p p
     

         
 

Since the two terms in the square brackets sum to one, the unconditional PMF of X 
simplifies to: 

1 2 1 2( ) ( ) (1 )x m x
X

m
p x p p p p

x
 

  
 

 

Thus, X is Binomial with parameters 1 1 2( )m p p . 

The expected earning is: 

   1 2 1 2[earning] 1 10 10 (10 1)E m E X m mp p p p m            (7.33) 



Since the solution is symmetric in p1 and p2, it does not matter who goes first.  

7.9.4.2 Example: marginal densities from joint PDF 

Given the joint density function, 

,

( ) / 3, 0 1, 0 2
( , )

0, elsewhereX Y

x y x y
f x y

    
 


 

find the marginal density functions of X and Y. 

Answer: 
2

,

0

2 2
2
0

1
( ) ( , ) ( ) , 0 1

3

1 1 2 2
( ) (2 0 0) ( 1), 0 1

3 2 3 2 3

X X Yf x f x y dy x y dy x

y
xy x x x





    

         

 
   

Check 
2

1 1
00

2 2 2 1
( ) ( 1) ( ) ( 1 0 0) 1

3 3 2 3 2X

x
f x dx x dx x




          . OK. 

1

,

0

2 1
0

1
( ) ( , ) ( ) , 0 2

3

1 1 1
( / 2 ) ( ), 0 2

3 3 2

Y X Yf y f x y dx x y dx y

x xy y y





    

     

 
 

Check 
2

2 2
0

0

1 1 1 1
( ) ( ) ( / 2 / 2) [4 2 0 0] 1

3 2 3 6Yf y dy y dy y y



          . OK. 

We can show that X and Y are not independent as , ( , ) ( ) ( )X Y X Yf x y f x f y  for 

0 1,0 2x y    . We can further show that 

[ ] 2 / 3 (5 / 9)(11/ 9) 0.0123XY X YE XY        . 

7.9.4.3 Example: correlation coefficient from joint PDF  

Given the joint density function of X and Y, 

8 , 0 1,0
( , )

0, otherwiseXY

xy x y x
f x y

   
 


        

find the marginal densities and the correlation coefficient. 

Answer: 

      
2

3

0 0

( ) ( , ) 8 , 0 1 8 4 , 0 1
2

xx

X XY

y
f x f x y dy xy dy x x x x





 
        

 
   

Cheek if 0 and 1.X Xf f dx   Checked.  



1

0

( ) ( , ) 8Y XY

y x

f y f x y dx xy dx





    

The variable upper limit on y can be taken care of by the Indicator function: 
1

0

( ) 8 (0 )Yf y xy I y x dx    

The integral can now be split as: 

1

0

1
2 1 2

( ) 8 (0 ) 8 (0 )

0 8 (1) 8 [ / 2] 4 (1 ), 0 1

y

Y

y

y

y

f y xyI y x dx xyI y x dx

xy dx y x y y y

     

      

 


 

Thus we find ( , ) ( ) ( )XY X Yf x y f x f y for some x,y. 

So    X and Y  are not independent. Hence we find the correlation coefficient.  

First, we determine the means of X and Y: 

1 3

0
44 ,5X x x dx    

1 2

0

1 1 84 (1 ) 4( ) 153 5Y y y y      . 

The variances are: 

2

12 2 3 2 6 1 2
00

1
2 2 2 4 1 6 1 2

0 0

0

4 4 4
4 ( ) | ( ) 2 / 75

5 6 5

8 4 4 8
4 (1 ) ( ) ( ) | | ( ) 11/ 225

15 4 6 15

X

Y

x x dx x

y y y dy y y





    

      




 

Finally, the expectation of the product, 
1 1

0

1 1 3 6
1 12 2 2 3 1 2 3 1

00
0 0

( ) 8

8 8 8
8 [ ] (1 ) [ ] 4 9

3 3 3 3 6

y x y

yy

E XY xy xy dx dy

y y
y x dx dy y x dy y y dy

 



      

 

   
 

yielding the covariance 
4 4 8

. 4 / 225
9 5 15XY                            

 

4 / 225
0.4924

2 / 75 11/ 225
XY    

 



7.9.4.4 Example: effect of correlation coefficient under nonlinear monotonic 
transformation 

Let us define two new random variables U and V by squaring X and Y respectively in 
Example 7.9.4.3. Since X and Y have non-zero probabilities only for positive values, this 
transformation is non-linear but monotonic. Does the correlation coefficient stay 
unchanged? 

Answer: 

We have, 2 2, .U X V Y   Their means can be found from the first two moments of X and 
Y: 

  

2 2

2 2

2 16 2
( ) var( )

75 25 3
11 64 1

( ) var( )
225 225 3

X

Y

E X X

E Y Y





    

    
  

The variance of U and V are: 
1

2 4 2 2 4 3 2

0

var( ) var( ) ( ) ( ( )) 4 (2 / 3) 1/18U X E X E X x x dx       

1
4 2 2 4 2 2

0

1 1
var( ) ( ) ( ( )) 4 (1 ) (1/ 3) 4[ ] 1/ 9 1/18

6 8
V E Y E Y y y y dy          

Finally, the mean of their product, 
1 1

2 2 2 2

0 0

( ) ( ) 8E UV E X Y x y xy dx dy   
1 1 4 8

3 4 1 3 4 1
0

0 0

8 1
[ ] 2 (1 ) 2[ ] .

4 4 8 4y

y y
y x dy y y dy                      

 The correlation coefficient between U and V is then, 

( ) ( ) ( ) 1/ 4 (2 / 3) (1/ 3) 1

21/18 1/18
UV

U V

E UV E U E U
 
  

    

Thus, we find a slight change in the correlation coefficient between X and Y when they 
are squared. This is because  measures linear dependence between two random 
variables.           

7.9.4.5 Example: conditional mean from joint PDF 

Find the conditional mean of X and the conditional CDF of X given Y= YY   in Example 

7.9.4.3. 

Answer: 

We need to find the conditional density:  

   ,
|

( , )
( )

( )Y

X Y Y
X Y

Y Y

f x
f x

f


   

for which we need the marginal density of Y evaluated at its mean: 



2( ) 4( )(1 ) 1.527Y Y Y Yf       

which gives, 

,
|

( , ) 8 8
( ) 2.795 , 1

( ) 1.527 15Y

X Y Y Y
X Y

Y Y

f x x
f x x x

f

 
       

Check that the conditional density integrates to one: 
1

|

8 15

( ) 1X Y Yf x dx  . 

The conditional mean of X is: 
1

3 1
| | 8 15

8 15

( ) 2.795 2.795 | 0.79
Y YX Y X Yxf x dx x x dx x 



 
       

The conditional CDF is obtained by integrating the conditional density: 

| |( ) ( )
Y Y

x

X Y X YF x f u du  


   

which needs to be described in three different regions: 

2
|

8
15

0, 8 /15

( ) 2.795 1.3975( .2844), 8 /15 1

1, 1

Y

x

X Y

x

F x u du x x

x



 


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



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7.9.4.6 Example: verifying independence from joint PDF 

 The joint density function of X and Y is: 

          
2

,

(1 3 ) / 4, 0 2, 0 1
( , )

0, elsewhere
X Y

x y x y
f x y

     
 


           

a) Verify that the PDF integrates to one. 

b) Find the probability that X is between 0 and 1 and Y is between 1/4 and 1/2. 

c) Are X and Y independent? 

Answer: 
21 2 12 2 2

0 0 0 0

1
2 3 1

0

0

(1 3 ) (1 3 )
( , )

4 2 4

1 1 1
(1 3 ) ( ) (1 1 0 0) 1

2 2 2

XY

x y x y
f x y dydx dxdy dy

y dy y y





  
   

 

        
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
                             

Verified. 
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In order to determine the independence between X and Y, we need their marginal density 
functions. 

1 2

,

0

(1 3 )
( ) ( , ) / 2, 0 2

4X X Y

x y
f x f x y dy dy x x






                                                         

22 2 2
2

,

0 0

2

(1 3 ) 1
( ) ( , ) (1 3 )

4 4 2

1
(1 3 ), 0 1

2

Y X Y

x y x
f y f x y dx dx y

y y






   

   

 
                 0 1y   

We see that , ( , ) ( ) ( )X Y x y X Yf f x f y  everywhere. Hence, in this example X and Y are 

independent.                         

7.10 Bayesian updating of distribution parameters 

Let X be a continuous random variable with pdf fX and cdf FX.  Let   be the parameters of 
the distribution.  The type of this distribution may have been decided from analytical 
considerations or expert judgment. 

Now, suppose the true value of  is unknown, and there is uncertainty about these 
parameters.  It may then be useful to describe these parameters as random variables, i.e., 
as using our convention of upppercase letters for random variables.  The earlier 
expressions, fX and FX, of the pdf and cdf of X, which had as their parameters, now 
should be acknowledged as conditional on particular values of   
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|
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[ | ] ( ; )

( ; )
( ; )

X

X
X

P X x F x

dF x
f x
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



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

   


 (7.34) 

Let the pdf of be fIt should be emphasized that f depends on our current state of 
knowledge. We can do two things here.  We can be happy about the state of affairs and get 
the unconditional distribution of X by the application of total probability.  We can also try 
to improve our knowledge on by collecting more data.  The second route takes us on a 
Bayesian updating of the distributions of X and 

Suppose we make random samples on X, and end up with a set of observations x .  Can 
these observations help us improve our knowledge about f and hence of fX itself?  



Based on the observations on X, the updated distribution of  is: 

 | |'
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 (7.35) 

 The superscript prime indicates the updated pdf of the parameters, .  For notational 
simplicity, let us rewrite Eq (7.35) as: 
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 (7.36) 

where all subscripts have been removed for improved readibility.  It is clear that the 
updated density f’ depends on the prior density f and the likelihood function, 

( , ) ( | )x f x L . The normalizing constant is ( ) ( )x f xC . 

More generally, instead of observing x directly, we may be able to observe some function 
of x or some constraint on some function, i.e., h(x) < 0.  The conditioning in Eq (7.35) 
will then be h(X) < 0. 

Sequential updating is also possible.  Suppose data are coming in batches, or periodically 
in time.  We would like to keep current with the updating process.  Let x(1) be the first set 
of data, x(2) be the second and so on.  After the first data set arrives, the updated pdf of , 
following Eq (7.36), is: 
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 (7.37) 

After the second data set arrives, the updated pdf becomes: 
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 (7.38) 

The recursive nature of this relation is obvious.  When estimating f’’, f’ becomes the prior 
density function.  For a time series, there may be dependence in the sequential 
observations (i.e., between x(1) and x(2)).  If however, the two observation sets are 
independent, the updating relation simplifies to: 
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 (7.39) 

Likewise, the updated distribution of X can be given by: 
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 (7.40) 

7.10.1 Example: Bayesian updating of an Exponential distribution 

Let X be a random variable.  Its distribution is exponential only if the parameter theta of 
the distribution can be known accurately.  It so happens, that the  parameter theta is 
uncertain, and it can be described as an exponential random variable with parameter λ.  
The parameter λ is known.   

Therefore, ( | ) exp( ), ( ) exp( )f x x f         .  Now suppose n random samples 
of X are obtained.  Then the samples are iid with the same distribution as X.  Their joint 
conditional density, which is also the likelihood function, is, 
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The unconditional joint density of X, which is also the normalizing constant, is  
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where ' ix   .  Thus, the updated density of theta is, 
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which is clearly the gamma density function with parameters ' and n+1.  The updated 
density function of X can likewise be obtained as: 
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