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CHAPTER 6. COMMON CONTINUOUS DISTRIBUTIONS (AND HOW 
THEY ARISE) 

 

Refer to table for pdf, cdf, mean, variance etc. 

 

6.1 Uniform and uniform related 

6.1.1 Uniform distribution 

Distribution with constant PDF in a finite region . 
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Figure 6-1: the PDF (left) and the CDF (right) of the uniform distribution 

The PDF is:         
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The CDF is: 
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The mean and variance are:                                      
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It is easy to check that odd central moments are zero. For example: 3 0   

The standard uniform distribution has a = 0 and b = 1.  

Applications    

1) Simulation of r.v.s. 

2) For a r.v. when you know its range, but do not believe any interval is more likely than 
the other.  e.g. , wind direction . 

 

It can be shown that the Uniform distribution is the maximum entropy distribution given a 
set of lower and upper limits. 

Its characteristic function is: 
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6.1.2 Cauchy 

Consider a non-linear but monotonic transformation of the uniform random variable  
distributed between –/2 and /2: 
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 (6.5) 

This transformation can be imagined to physically occur as follows: A laser source 
located at a fixed point A is used to illuminate a point on the wall (see Figure 6-2).  The 
wall extends infinitely on the left and on the right.  The location of point B depends on  
the angle that the laser gun makes with the perpendicular.  Since  is random, so is x, 
and we denote them as  and X respectively. For simplicity, we take l = 1. We wish to 
determine the distribution of X.  
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Figure 6-2: setup for the Cauchy distribution. The angle  is uniformly distributed, and 
its tangent X is the Cauchy random variable. 

 

By definition, 

 1( ) [ ] [tan ] [ tan ]XF x P X x P x P x         (6.6) 

We can write the last expression on the right since the transformation between  and X is 
monotonic. Now using the fact that ~ ( / 2, / 2)U    , we obtain the CDF of X as: 
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which is the Cauchy distribution function.  The density function of X is obtained by 
differentiation: 
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 (6.8) 

What about the mean and variance of X? It turns out that moments of any order do not 
exist for the Cauchy distribution.  Recall the definition of the “improper integral” in 
calculus: 

 ( ) lim ( ) lim ( )
c l

l cl l
I g x dx g x dx g x dx



  
      (6.9) 

for the integral I to exist, each of the two limits on the right must exist separately. When 
2( ) / (1 )g x x x   it is easy to show that neither integral on the right is finite hence their 

sum does not exist. Figure 6-3 shows the distribution of the sample mean of samples 
chosen from the Cauchy distribution – for three different sample sizes 104, 105 and 106. 
Clearly, the law of large numbers does not work here and the estimate does not converge. 
Why? 
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Figure 6-3: The mean does not exist for the Cauchy distriubtion.  For three 
different sample sizes, the three panels show the distribution of the sample mean 

for IID samples drawn from a Cauchy distribution.  The estimated mean does 
not converge.  
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6.2 Poisson process related: Exponential and Gamma (Erlang) 

The Poisson process is discussed in detail in CHAPTER 11.  It encompasses three 
distributions: the Poisson distribution which counts the random number of occurrences in 
a finite time interval, the exponential distribution which describes the time between 
successive occurences and the Erlang distribution which describes the time to a given 
integer number of occurrences. The Gamma distribution can be thought of as the 
generalization of the Erlang distribution.  Of these, the Poisson random variable was 
discussed in CHAPTER 5. In the following subsections, we take up the continuous cases.  

6.2.1 Exponential 

The PDF and CDF of the exponential random variable are: 

 

( ) , 0

1 , 0

t
T

t
T

f t e t

F e t





 



 

    (6.10) 

 

       

             

                         

 

 

             0                                              t 
                                                            

              

      1 

           

 

 

 

         0                                        t 
 

Figure 6-4: the PDF (left) and the CDF (right) of the exponential distribution 

Its mean and variance are: 
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The exponential distribution has the “memoryless” property: 

 0 0[ | ] [ ]P T t t T t P T t           (6.11)        

which is easy to prove. 

The moment generating function is: 
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The shifted exponential distribution is useful for cases when there is a non-zero lower 
limit: 
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 (6.12) 
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Figure 6-5: the PDF (left) and the CDF (right) of the shifted exponential distribution 

 

6.2.1.1 Example: Exponential time to failure 

The time to failure of a certain kind of industrial bulb is Exponential with mean 5 yrs. 10 bulbs are 
installed at a site. What is the probability that more than one bulbs are working after 8 yrs ?  Bulb 
failures happen independently of one another. 

10 trials, each with probability p of success. 

8
5[ 8] 0.202tp P T e e       

[ 1] 1 [ 0] ( 1)P X P X P X       

              

10 91 (1 ) 10 (1 )

1 .105 0.265

0.63

p p P    
  
  
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6.2.1.2 Example: proof loading 

The theoretical strength of a beam is exponentially distributed with mean 10 kNm.  A moment 
of 12 kNm is applied on the beam (at the critical cross section) and it is found to survive without 
damage. What can you now say about the mean and standard deviation of the beam’s strength? 

6.2.2 Mean return period for continuous occurrence times 

Let  be the rate of a Poisson process. We are interested in the average time T between 

successive occurrences. As we will see in Section 11.2.1 that inter arrival times { iT } in a 

Poisson process are IID Exponentials with parameter  . Then T is simply the average of 

iT : 

  1 /T   (6.13) 

6.2.2.1 10% in 50 year Earthquake 

What is the mean return period of the earthquake that has a 10% probability of 
exceedance in 50 years? 

Solution: Earthquakes occur according to a Poisson process with rate  . We need to find 
  such that: 

 [ (50 ) 1] 0.10P N yr    (6.14) 

Hence, 

 
3

1 [ (50 ) 0] 0.10

,1 exp( 50 ) 0.10

, 2.1072 10 /
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

 
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 

 (6.15) 

Thus,  

 31/ 1/ 2.1072 10 / 474.6T yr yr      (6.16) 

Ans: approximately 475 years. 

6.2.3 Erlang distribution 

It has two parameters :  &k  

Interpretation :  RV describing time to kth arrival  in a homogeneous Poisson process with 
rate  . 

                     k = 1   Exponential  

1 2 .... , ~ ( ),and , indep for k k i i jT i j           
  

The CDF is given by the complementary CDF of the Poisson RV: 
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The PDF can be obtained by differentiating the CDF: 
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The first two moments are easily obtained since Tk is the sum of k iid RVs: 
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6.2.4 Gamma distribution 

Generalization of Erlang when k is non integer.  The density and distribution functions 
are: 
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  (6.20) 

We call k the shape parameter, and 1/ the scale parameter.  The first two moments of the 
gamma random variable have the same form as for Erlang: 
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An important property of the gamma distribution is that the sum of independent gamma 
RVs is also gamma distributed (if rate remains the same): 

 1 1 2 2

1 2 1 2

If   ~ ( , ) and ~ ( , )

then, is ( , )

X Gamma k X Gamma k

Y X X Gamma k k

 
  

 (6.22) 

6.2.5 Characteristic functions 

6.2.5.1 Exponential 
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6.2.5.2 Gamma 
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6.3 Normal and normal-related 

The normal distribution is the most important and the most widely used distribution in 
probability and statistics. The N. D. arises naturally in many  situations.  It is also 
supported by central limit theorem – one of the most powerful theorems in probability 
theory.  The normal density function is symmetrical about the mean: 

 
2

2

1 ( )
( ) exp ,

22
X

x
f x x




 
       

 
 (6.23) 

where mean, standard deviation   .  For the standard normal distribution, 

0, 1   .  The symbol Z is often used for the standard normal variable: Z~N(0,1). Its 
PDF is sketched in Figure 6-6.  Note the symmetry about 0.  The CDF of the standard 
normal variable, commonly denoted by ,  is extensively tabulated. 

Figure 6-6: The standard normal PDF.  Due to the symmetry about 0, the shaded area to the 
left of –z1 is equal to the shaded area to the right of +z1. 
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6.3.1 Central limit theorem.            

The sum of n independent random variables 
1

,
n

n k
k

S X


  when centralized and normalized 

to zero mean & unit s.d., tends to the standard normal variable as n regardless of the 

distributions of  the individual kX ’s, provided three conditions are met : 

1. [| |]kE X                   for all k . 

2. 2[| ( ) | ]k kE X E X                                         for 0   and all k.  

3. Lyapunov’s condition: 
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     where 2 2

1
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n

S X
k

  


   

For proof, refer to Lin  p  68. 

What is the implication of Lyapunov’s condition? 

Loosely speaking, CLT means: 

The sum of a large  no of RVs,   

(i) without a single dominant components among them  
(ii) without significant dependence among them  

approaches the Normal RV regardless of the individual distributions. 

If individuals are Normal, then sum is Normal regardless of (i) & (ii) above.  

6.3.1.1 Example: sum of IID exponentials 
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Figure 6-7: Illustration of CLT by summing n IID exponentials ( = 1). Four values of n are considered with 
10000 sequences each. Clearly,  it does not take too many members for the sum to approach normality.  

 

6.3.2 Linear transformation of Normal Variables   

         If ( , )X XX N   , then any linear transformation of X, 

 Y aX b   (6.24) 

is also normal with mean and s.d. given by, 

 ,Y X Y Xa b a       (6.25) 

Therefore, the transformation of any normal variable ( , )X XX N   that removes the 

mean and scales by the s.d. 
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  yields the standard normal variable  ( 0, 1)   . 

The CDF ( )ZF z of the standard normal variable is commonly denoted by ( )z and the 

standard normal PDF by ( )z : 
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6.3.3 Properties of the standard normal CDF 

The importance of the standard normal CDF is that the CDF of any normal variable X can 
be obtained in terms of  as: 

 ( ) [ ] , (0,1)X X
X

X X

x x
F x P Z Z N

 
 

  
     

 
  (6.28) 

Specifically,  

(i) ( ) 1 ( )u u      

(ii) If   ( )u p  then        
1 1( ) (1 )u p p       

(iii) ( ) 0, (0) 1/ 2, (1) .84, (2) .977, (3) .999 etc.            

6.3.4 Approximations to the standard normal CDF 

The normal CDF is not available in closed form. However, over the years numerous 
closed form approximations to the standard normal CDF have been, and continue to be, 
proposed.  Here we list a few well-known ones: 
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 (6.29) 

Figure 6-8 shows how these approximations perform related to the exact function. 
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Figure 6-8:  Approximations to the standard normal distribution function. Due to symmetry, 
only positive z values are shown. 

 

6.3.5 Examples: 

1. A batch of bearings of nominally identical diameter are tested for acceptance. It is 
known that the bearing diameter, D, is Normally distributed with mean 5 mm and s. d. 0.1 
mm. The acceptance criteria is that D has to be within the range 5 mm   d. What is the 
value of the tolerance, d, such that only 10% of the bearings are rejected?  

Ans: 1.65 .1mm 0.165mm.d     

2. A soft drink machine is regulated so that it dispenses an average of 7 ounces per cup. If 
the amount dispensed is Normally distributed with standard deviation 0.5 ounce, 

a) how many 8-ounce cups will likely overflow out of the next 1000 drinks ? 

b) what fraction of cups will have between 6.7 and 7.3 ounces?  

Solution:  

)a  X  amount dispensed.   

8 7
[ 8] [ ] [ 2]

.5
P X P U P U


     1 (2) 1 .977 .023        

This is a Binomial problem with n = 1000, p = 0.023. Hence, the expected no. of cups to 
overflow = 23, and the SD is 4.7.   

b)       
7.3 7 6.7 7

[6.7 7.3] (.6) ( .6) 2 (.6) 1 0.45
.5 .5

P X
                 

   
. 
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3. In a statistics course, the lowest ten percent scores were given the F grade. The mean 
score was 74 and the standard deviation was 7.9. Find the cutoff score for passing the 
course.  

Ans: 63.9     

4. The average life of a type of fan motor is 10 years with a standard deviation of 2 years. 
The manufacturer wants to come up with a warranty policy so that only 3% of the motors 
need to be replaced.  

(a) What should the warranty period be if the motor life follows the normal distribution.  

(b) What if the motor life follows the exponential distribution?                                             

(c) What if the motor life follows the uniform distribution? 

Ans:  

(a) [ ] .03P T t  , 110 2 (.97) 10 2 1.88t        6.24 yr. 

(b) Since the Exponential is a one-parameter distribution, ignore the higher order moment, 
and use the mean to obtain the parameter: 10 1/10yr yr                                                                          

*

[ *] 1 0.03 * 3yrtP T t e t       

 

 

 

(c)  

 

    h 

 

                             

                   a     t*                   b          

2 2( ) / 2 10, ( ) /12 2 4

6.5, 13.5, 1/ 7

a b b a

a b h

    
   

 

*

*

Required *  such that ( ) .03

6.7 yr

t t a h

t

 

 
 

6.3.6 Example: six sigma methodology 

In a production process, suppose the acceptance criteria is two-sided. This means there is 
a certain measurable property, X, of the product. The target value for X is , and there is a 
tolerance of   about such that the upper specification limit is , and the lower 
specification limit is . Due to various types of variations in the production process, 
the property X is generally described as a random variable – its mean is , standard 
deviation is  and X is commonly assumed to be normally distributed. An item will be 
“out of specification” and be rejected if it exceeds the tolerance: 

 {item is out of specification}={ - }F X X       (6.30) 

Quality control can ensure that the fraction of rejected products remains acceptably low.  
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In the short term, the mean of X is kept on target. The probability of rejection in the short 
term is therefore: 

 = { - } 1 2sp P X X 
  
                       

     
 (6.31) 

The variability in production is captured by the standard deviation , and a small enough 
 can ensure that  ps is acceptably small.   “Three sigma control” strives to limit  to /3, 
so that the short term probability of being out of specification is 2 ( 3) 0.0027   . In 
other words, there will be 2700 defects per million (DPM) under three sigma control. 

Although the mean of X can initially be set on the target, the distribution of X tends to 
drift away from the target in the long term.  Say, a drift by as much as 1.5 is allowed. 
Under three sigma control, the long term probability of rejection becomes: 

 

   

( 1.5 ) ( 1.5 )
= { - } 1

3 1.5 3 1.5

4.5 1.5

0.0668

lp P X X
      

 
   

 

                   
   

           
   

    



(6.32) 

That is, under three sigma control in the presence of long term drift, the DPM value is 
66800 which is very high even for a single item.  

With increasing complexity of manufactured systems, this long-term probability of being 
out of spec of a single item can lead to unacceptably high rejection of products with a 
large number of elements.  Six sigma control strives to ensure tighter quality control by 
limiting  to /6. This brings down pl to: 

    

6 1.5 6 1.5
=

7.5 4.5

3.340e 6

lp
   

 
          

   
    

 

 (6.33) 

that is, the DPM number comes down from 66800 to 3.34.  

6.3.7 The challenge of course is being able to limit  to /6. 

6.3.8 Characterstic function of the normal random variable 
2

1

2
( )

1

2

x
i x

XM e e dx


 
  

    
 



 
 

Consider the exponent of the integrand: 
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


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1
i

e
  


 

  



  

6.3.9 M.G.F. for normal distribution 

The moment generating function for the normal random variable with mean  and 
variance 2 is: 

   
2

2

2 2 2

2

1 ( )
exp( )exp

22

1 2 2
exp

22

SX x
G S E e sx dx

x x s x
dx




  










 
   

 
   

  
 




 

which can be simplified by rewriting the exponent as: 

 

 

2 2 2 2 2 4

2

2 2
2 2

2

1 2( ) ( ) (2 )
exp

22

1 ( )
exp / 2 exp

22

x s x s s s
G S dx

x s
s s dx

      


  










      
  

 
  

   
 




 

The integrand is the normal pdf and thus integrates to one, yielding: 

  2 2( ) exp / 2G s s s    (6.34) 

6.3.10 Higher moments 

The normal distribution is completely defined by its first two moments. Higher moments 
can be given by differenting the MGF (Eq etc) as: 

  ' 2 '( ) ( ) ( ) (0) 1G s s G s E X G         (6.35) 
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  2'' 2 2 2 '' 2 2( ) ( ) ( ) ( ) (0)G s G s s G s E X G            (6.36) 

 

     
 

3''' 2 2 2 2 2

32 4 2

3 ''' 3 2

( ) ( ) 2 ( ) ( )

3 3 ( )

( ) (0) 3

G s s G s s G s s G s

s s G s

E X G

       

   

 

     

      
   

 (6.37) 

 
     2 3'''' 4 2 2 2 4 2 2

4 '''' 4 2 2 4

( ) 3 3 ( ) 3 3 ( )

( ) (0) 3 6

G s s G s s s s G s

E X G

         

   

                
    

(6.38) 

and so on.  We see that for the standard normal variable (i.e.,  = 0 and 2 =1): 

 2 3 4( ) 0, ( ) 1, ( ) 0, ( ) 3, and so onE X E X E X E X     (6.39) 

6.3.11 Sum of Normals 

   Let Y be a linear combination of a vector of normal variables ( , )X XX N V : 

 0
1

n

i i
i

Y a a X


   (6.40) 

where ,X XV are respectively the mean vector and covariance matrix of X.  Then  Y is 

normally distributed and the mean and variance of Y are: 

  
0

T
Y X

T
Y X

a a

a V a

 



 


 (6.41) 

6.3.12 Exponentiated normal – the Lognormal distribution 

Like the normal random variable is for the sum, the lognormal is the limiting case of the 
product of a large number of independent RVs.   

Y  is a lognormal RV means  lnX Y  is normally distributed.  Conversely, if X is 
Normal, then its exponential, XY e is lognormal.  The first two moments of X and Y are 
related as follows:   

 2
ln ln

2
ln

, ~ ( , ) and ( , )

1
ln ln

2

ln(1 )

X
X X Y Y

X Y Y Y Y

X Y Y

Y e X N Y LN

m

V

   

   

 



   

  



 (6.42)           

where , and median ofY
Y Y

Y

V m Y



  .  Conversely,  
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 
2
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2 2

exp / 2

( 1)

exp( ) 1
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Y X X

Y Y

Y X

e

V



  

 



 

 
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 (6.43) 

 

Figure 6-9: Normal to log normal transformation. Note that the median follows same 
transformation: exp( )=exp( )Y X Xm m   

The CDF of Y is evaluated with the help of the corresponding normal parameters: 

 
ln

( ) [ ] [ln ln ] , 0X
Y

X

y
F y P Y y P Y y y




 
       

 
 (6.44) 

The PDF of the lognormal random variable can be derived from the normal CDF as show 
in Section . 

6.3.12.1 Example: 

      Y  Fatigue life of A 285 steel , Y   LN .   The mean and sd of Y are: 

430000Y   cycles and 215000Y   cycles under some loading . 

 Find the probability that life exceeds one million cycles.  

 VY = .5 ,                12.86, .472    
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6[ 10 ] 1 (2.03) .021P Y      

6.3.13 Product of Lognormals 

The lognormal family is closed under multiplication.  

1 2
0 1 2 ...

If ~

~

n
n

i

Y Y Y Y

Y LN

Y LN

 

  

6.3.14 Sum of squared iid Normals – Chi-squared  

If Z1, Z2, ...., Zn are independent standard normal rvs, then 2

1

n

i
i

V Z


  is Chi-squared 

distributed with n dofs.  The mean and variance are: 

 k  , 2 2k   (6.45) 

Chi-squared distribution also arises as the limiting distribution of the sum, 

2

1

( ) / ( )
k

i i i
i

X N np np


  , (how many dofs??? since there are two constraints: sum of Ni = 

n and sum of pi=1) where N1, N2,..., Nk have a joint multinomial distribution with 
parameters n, p1, p2, ..., pk.  The gamma distribution with shape parameter n/2 and scale 
parameter 2 is the same as the chi-squared dist with n dofs. 

6.3.15 Ratio of Normal and Chi-squared – the t-distribution 

If standard normal Z and chi-squared V with dof k are independent of each other, then  

 2, (0,1), ( )
/

Z
T Z N V k

V k
    (6.46) 

has the t distribution with k d.o.f. Its first two moments are: 

  2

0

2
2

k
k

k







 


 (6.47) 

The t distribution finds use in interval estimation of the mean when the population 
variance is unknown. 

6.3.16 Ratio of two independent Chi-squared variables - F distribution       

If W and Y are two independent Chi-squared random variables with dof’s u and v, then,     

 2 2, ~ ( ), ~ ( )
W u

F W u Y v
Y v

   (6.48) 



Design maintenanceand reliability of engineering systems: a probability based approach 

 page 86 

has the F distribution.  Its first two moments are: 

                    
2

2
2

2
2

2 ( 2)
4.

( 2) ( 4)

v
V

V

V u v
v

u v v





 


 
 

 

 

Where does it find use? 

6.3.17 Wald (Inverse Gaussian) 

In a Brownian motion with constant drift, v, and diffusion , the distance travelled in a 
given time t is X.  If the initial condition is non-random, it can be shown that X  is 
Gaussian.  If we flip the question, and ask for the time T  required to reach (for the first 
time) a fixed distance d, then what is the distribution of T? The distribution of T can be 
shown to be Wald.    

6.3.18 Maxwell Boltzmann distribution 

Distribution of the speed of a particle when each component of velocity is zero-mean 
normally distributed and the components are mutually independent.   

6.3.19 Normal as the limiting form 

6.3.19.1 Normal approximation to Poisson 

The Poisson CDF also approaches the normal CDF as long as 1  .  

Poisson ( ) ( , )N                                                           

The proof invokes CLT.  Since the Erlang random variable is the sum of k IID Geometric 
random variables, it approaches the normal as k grows large.  Since the Erlang CDF is 1 
minus the Poisson CDF. Alternately, one can also describe the Poisson count in a given 
interval as the sum of counts from a partition of that interval since occurences in disjoint 
intervals are mutually independent.  

Application of Stirling’s formula also gives the same result.  

6.3.19.2 Normal approximation to Binomial 

Let ~ ( , )X B n p  be binomially distributed.  Define the normalized random variable,

X np
Y

npq


 .  It can be shown that: as and min( , ) 1Y Z n np nq    where 

~ (0,1)Z N . 

This follows directly from the CLT as X is the sum of n independent IID Bernoulli RVs.  

6.3.19.3 Normal approximation to Gamma 

etc. 
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6.3.19.4 Normal approximation to Chisq 

etc. 

6.4 Logistic 

etc. 

6.5   Pareto  

The Pareto random variable has a density function that, like the Exponential, has its 
maximum at the left end point and drops monotonically with increasing x.  The important 
diference is that the drop is less steep than the exponential and is called “heavy tailed” in 
comparison. The PDF is of the form: 

 0( ) ,Xf x x x x     (6.49) 

with 0, 1   .  Since the area under the PDF must equal 1, x0 is related to and  

through 1
0 / ( 1)x     .  Its CDF is given by: 

 
( 1)

0( ) 1 ,
1XF x x x x


   


  (6.50) 

6.6 Models of extremes 

The family of extreme value distributions, discussed in CHAPTER 9, arise as the 
asymtotic distribution for extremes of sequences observed in a wide class of natural and 
engineering phenomena.  There are three asymptotic forms: the Gumbel (type 1), Frechet 
(type 2) and Weibull (type 3); each type lends itself to both minima and maxima of the 
sequence. Nevertheless, it is more common to talk about the Gumbel distribution for 
maxima, the Frechet distribution for maxima and the Weibull distribution for minima.  
The type of the extreme value distribution (for both maxima and minima) depends on the 
shape of the “parent” distribution, i.e., the distribution of the individual members of the 
IID sequence.  For example if the parent distribution is normal, then the maximum of that 
sequence must be asymptotically type 1.    

6.6.1 The Gumbel distribution for maxima 

The Gumbel is a two parameter distribution. Its CDF is: 

 
( )

( ) ,
x ue

XF x e x
         (6.51) 

The PDF is obtain by differentiating the CDF: 

 
( )( )( ) ( ) ,

x ux u e
X X

d
f x F x e e x

dx


           (6.52) 
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The parameter u is actually the mode of the distribution which can be verified from the 

stationarity condition ( ) 0X

d
f x

dx
  and the sign of the second derivative.  

The mean and SD are: 

 
X u




   where, .5772   (Euler’s const.) 

6
X




     

The median can be obtained by setting ( ) 0.5X mF x  : 

0.3665 /mx u    

6.6.1.1 Example 

Annual max wind speed is Gumbel distributed with mean 50 mph and cov 25 %.  Find the 
100  yr wind.  

Solution:  

Given,    50, .25 12.5V      we derive and u  : 

0.1026
6 12.5

.5772
50 44.4 mphu




 

 


    
 

Let x100 be the 100 year wind, i.e., 100[ ] 1/100P X x  .   Hence,  

100

100

( ) 0.99

1 4.600
ln( ln .99) 89.2 mph

XF x

x u u
 



      
 

6.6.2 Frechet Distribution for maxima 

The Frechet distribution for maxima is limited on the left: 

 
( )( ) , , 0,x

XF x e x
    

     (6.53) 

The logarithm of the two-parameter (=0) Frechet for maxima gives the Gumbel random 
variable.  In case the Frechet distribution is used to model minima, it should be 
remembered that the Frechet distribution for minima is limited on the right.  

6.6.3 Weibull Distribution for minima 

The Type 3 extreme value distribution for smallest values with two parameters is one of 
the most important in engineering.  The shape of its PDF depends on k: 
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 (6.54) 

The CDF is: 

 ( ) 1 exp , 0
k

Z

z
F z z

u

       
   

                 (6.55) 

The mean, variance and COV are given by: 

 

 
 

2 2 2

2

1
1

2 1
1 1

21
1

11

Z

Z

Z

u
k

u
k k

kV
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



    
 
                

 
  

 

 (6.56) 

Application : Modeling of the time to failure distribution.  In case the Weibull distribution 
is used to model maxima, it should be remembered that the Weibull distribution for 
maxima is limited on the right.  

6.6.3.1 Weibull approximation to Rayleigh, Exponential etc.  

k = 1    Exponential Distribution.  

The exponential random variable is a special case of the two parameter Weibull: k = 1. Its 
mean is equal to its mode, and its COV is 100%. 

k =  2    Rayleigh Distribution  

The Rayleigh random variable is a special case of the two parameter Weibull: k = 2.  Its 
mean is 88.62% of its scale parameter, and its COV is 52.27%. 

6.6.3.2 Examples: 

Example 1: 

Consider a structural steel cable for a bridge whose strength is Weibull distributed with 
mean = 300 kips and cov = 15%. The load is 208 kips. What is the probability of failure 
of the cable? 

Given: V= 15%   k = 8  

u = / (1 1/ 8) 300 0.94 318.6u        kips. 

Required, P[failure]=P[ capacity < load ] = ?  

Solution: 
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 
8

208
208 kips 1 exp ( 0.03

318
P X

        
   

 

Example 2: 

Suppose the life of emergency brake-sets in elevators is modeled as a Weibull random 
variable with mean 15 years and standard deviation 3 years.  In order to make the system 
redundant, there are two sets of brakes in an elevator, and the elevator is safe as long as at 
least one set is OK.   Failure of the brakes is independent of one another. 

A new elevator is installed (with two sets of new brakes).  You are asked to schedule the 
next maintenance time, t0 (in years), such that braking system failure probability does not 
exceed 0.001 at the time of maintenance.  Find t0. 


