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CHAPTER 4. RANDOM VARIABLES  

When the possible outcomes of an experiment (or trial) can be given in numerical terms, 
then we have a random variable in hand.  When an experiment is performed, the outcome 
of the random variable is called a “realization.”  A random variable can be either discreet, 
or continuous.  A random variable is governed by its probability laws. 

If a quantity varies randomly with time, we model it as a stochastic process.  A stochastic 
process can be viewed as a family of random variables. 

If a quantity varies randomly in space, we model it as a random field, which is the 
generalization of a stochastic process in two or more dimensions. 

Formally, a measurable function5 defined on a sample space is called a random variable 
(Feller, vol 1, p. 212). That is, X is a random variable if ( )X X   is a function defined 
on the sample space  , and for every real x, the set  

  : ( )X x  
 

is an event in  . Thus we confine ourselves to  -algebra of events of the type X x . 
Unless explicitly required, we suppress the argument   when referring to a random 
variable in the rest of this text.  

 

 

Random variables (RVs) are classified as discrete or continuous depending on whether 
their sample space is countable or uncountable, respectively.  Discrete random variables 
typically arise from counting processes such that their range is the set of natural 
numbers, although a discrete RV can assume any set of discrete values on the real line, 
not necessarily integers.  Continuous RVs on the other hand typically arise from 
measurement processes and their range is continous intervals (possibly infinite) on the 
real line.  It may be useful to define “mixed” random variables if they exhibit properties 
of discrete and continuous RVs in different ranges.  

4.1 Probability laws for RVs 

A random variable is governed by its probability laws.  The probability law of a RV can 
be described by any of the four equivalent ways: 

                                                 
5 Measurable functions have been defined in Section 2.6 

x-∞  : ( )X x    





Real line 
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1. CDF (cumulative distribution function) 

2. PDF/PMF (probability density function for continuous rv’s, probability mass 
function for discrete rv’s) 

3. CF (characteristic function) 

4. MGF (moment generating function) 

 

CF and MGF are introduced after the disucssion on moments of random variables in 
Section 4.2. 

4.1.1 CDF – cumulative distribution function 

The cumulative distribution function of the random variable X is defined as: 

 ( ) [ ]XF x P X x   (4.1) 

It starts from 0, ends at 1, and is a non-decreasing function of x. It is piecewise 
continuous for discrete RVs, and continuous for continuous RVs.  

Properties of CDF: 

 

( ) 0

( ) 1

( ) is a non-decreasing function of 

X

X

X

F

F

F x x

 
   (4.2) 

Thus, the probability of finding the random variable X in the semi-open interval (a,b] is: 

 [ ] ( ) ( )X XP a X b F b F a      (4.3) 

4.1.2 Probability density and mass functions 

4.1.2.1 PDF 

The probability density function (of continuous random variables) is defined as the 
derivative of the CDF: 

   ( )
  X

X

dF x
f x

dx
  (4.4) 

so that: 

 ( ) ( )
x

X XF x f t dt


   (4.5) 

and, 
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 ( ) ( ) ( )
b

X X X

a

f x dx F b F a   (4.6) 

PDF may also be interpreted as giving rise to the small probability of observing the 
random variable X around the point x: 

     Xf x dx P x dx X x     (4.7) 

 

4.1.2.2 PMF 

The probability mass function (of discrete random variables) is defined as the probability 
that the random variable assumes a particular value: 

 

Probability mass function (pmf):

                                 ( ) [ ]

Cumulative distribution function (cdf): 

                                ( ) [ ]

X i i

X i i

p x P X x

F x P X x

 

 

 

so that the PMF can be derived from the CDF as: 

 ( ) ( ) ( ) where min(| |),X i X i X i i jp x F x F x x x i j        (4.8) 

If the sample space of the discrete rv X is 1 2{ , ,...}x x  so that 1i ix x  , then the PMF may 

be given as the height of the step in the CDF curve: 

 1( ) ( ) ( )X i X i X ip x F x F x    (4.9) 

4.1.2.3 Use of delta functions to describe pmfs as pdfs 

The delta function is defined as 

 ( ) ( ) /x dU x dx    (4.10) 

where U is the unit step function:  

 
0if 0

1 if 0

x
U

x


  

  (4.11) 

The delta function is symmetric: ( ) ( )x x   .  Integrating the delta function from a to 
b, if 0a b  , gives unity. More generally: 
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 (0) ( ) ( )
b

a

g x g x dx    (4.12) 

If X is a discrete RV, and ( )i X ip p x , we can write an equivalent pdf as 

 ( ) ( )X i i
i

f x p x x   (4.13) 

But, in the following, we will still write formulas and expressions separately for discrete 
and continuous RVs. 

 

4.2 Expectation 

The expectation of any function ( )g X  of the random variable X is defined as: 

 

[ ( )] ( ) ( ) if X continuous

( ) ( ) if X discrete
i

X

i X i
all x

E g X g x f x dx

g x p x












 (4.14) 

The expectation of a constant is the identity operator: 

   where  is a constantE c c c  (4.15) 

Expectation is a linear operator: 

        E aX b a E X b    (4.16) 

  and if    1 2      Y g X g X   , then  

       1 2( )   E Y E g X E g X     (4.17) 

Thus the mean of X  is its expectation: 

 

( ) , continuous RV

( )

( ) , discrete RV
i

X

i X i
all x

x f x dx

E X

x p x









  






 (9.18) 

and its variance is the expecation of its squared deviation from the mean: 
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2

2 2

2

( ) ( ) , continuous RV

( )

( ) ( ) , discrete RV
i

X

i X i
all x

x f x dx

E X

x p x


 










     
 




 (9.19) 

Higher order raw or central moments can be defined by choosing ( ) or ( )n ng X X X  
above as appropriate. The characteristic function and the moment generating function 
can both be described as expectations of appropriate functions of X.  

4.3 Moments 

The kth central moment of X:   

 , ( )k
c k E X      (4.20) 

Hence, by definition, ,0 ,11 and 0c c   . The variance of X is the second central 

moment: 

 

2

2 1
,2

2

( ) for discrete RV
Variance, 

( ) ( ) for continuous RV

n

i i
i

c

X

p x

x f x dx


 









 
  

 




 (4.21) 

The kth raw moment of X:  0, ( )k
k E X     .  Hence, the mean of X is simply the first 

raw moment: 

1
0,1

for discrete RV

( ) for continuous RV

n

i i
i

X

p x

x f x dx

  








  






 

General formula for central moments (by simply expanding the binomial series6):  

 , 0,
0

( )
n

n k
c n k

k

n

k
   



 
  

 
  (4.22) 

 Similarly, the general formula for raw moments: 

 0, ,
0

( )
n

n k
n c k X

k

n

k
   



 
  

 
  (4.23) 

                                                 

6 If n is an integer, the binomial series is given by: 
0 0

( )
n nn n k k k n k

k k

n n
x y x y x y

k k
 

 

   
     

   
   
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In particular, 
3

,3 0,3 0,2

3 2
0,3 ,3

3 2

3

c

c

    

   

  

  
, etc. 

4.4 Characteristic function 

PDF/PMF and the Characteristic Function, MX form a Fourier Transform (FT) 
pair. In the continuous case, the characteristic function is the Fourier transform of the 
pdf: 

 ( ) [exp( ] ( )i x
X XM E i X e f x dx 





    (4.24) 

such that the inverse transform is: 

 
1

( ) ( )
2

i x
X Xf x M e d 








   (4.25) 

If 1 1 1

1
is discontinous at some , this equals [ ( ) ( )]

2X X Xf x f x f x   . In Eq (4.24) E is the 

expectation operator discussed in Section 4.2.  The requirement is that fX is absolutely 

integrable, i.e., | ( ) |Xf x dx




  , which is no problem since fX is a pdf to begin with. 

In the discrete case, the FT pair is given by: 

 
all

( ) ( )

1
( ) ( )

2

j

j

i x

X X j
x

i x
X X

M p x e

p x M e d







 














 (4.26) 

Proof: 

 

all

( )

all

all

1
( )

2

1
( )

2

1
( )

2

1
( )2 ( )

2

( )

j

j

j

j

j

i x
X

i x i x
X j

x

i x x

X j
x

X j j
x

X

M e d

p x e e d

p x e d

p x x x

p x



 



 






























 







 



 (4.27) 
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The characteristic function of a RV uniquely determines its probability distribution.  

4.5 Moment generating function 

The moment generating function (MGF) of a distribution is the expectation: 

   ( )sX sX
X XG s E e e f x dx





      (4.28) 

It exists if the integral is finite for all s in some interval I that contains 0 in its interior 
(Resnick, p. 294).  If it exists, the MGF uniquely determines the distribution of X. In 
comparison, the CF of a RV always exists.  

MGF is infinitely differentiable and the nth derivative,  

 ( ) ( )
n

n sx
X Xn

d
G s x e f x dx

ds





   (4.29) 

evaluated at s = 0, gives the nth raw moment of X: 

   0|
n

n
X sn

d
G s E X

ds       (4.30) 

If instead we perform successive derivatives on ln ( )XG s  and evaluate them at s = 0, we 

get the central moments of X: 

 

2
2

2

3
3

3

ln ( ) at 0

ln ( ) at 0

ln ( )

.

X X

X X

X X

d
G s s

ds

d
G s s

ds

d
G s E X at s o

ds
etc







 

 

    

 

where the identity (0) 1XG   has been used. 

4.5.1.1 MGF and density function 

Prove that if one did not know the functional form of a given distribution, one would 
need moments of all orders to completely specify the distribution. 

Proof: Expand the MGF in its Taylor series around the origin: 

     0
0 0

|
! !

n n n
n

X X sn
n n

s d s
G s G s E X

n ds n

 


 

       (4.31) 

where Eq 4.20 has been used. This is valid if all moments are finite and the series 
converges absolutely near s = 0. Since fX can be determined in terms of GX, Eq 4.21 
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shows that all moments of X are required for the complete specification of fX under the 
conditions stated above.  

4.5.1.2 Cramer’s Theorem: 

1 2

1 2

1 2

1 2

1 2Let and be r.v.s with PDFs and  

and MGFs and

If

then

X X

X X

X X

X X

X X f f

G G

G G

f f





 

4.5.2 Moments from Characteristic function 

The mean can be obtained as: 

 
0

1
( ) X

X

dM
E X

i d 


 

    
 

 (4.32) 

which can also be obtained using log transformation: 

   0

1
( ) ln ( )X

d
E X M

i d 


 
  (4.33) 

Higher moments are given by: 

  
0

1 n
n X

n n

d M
E X

i d 


 
  

 
 (4.34) 

and in particular, the variance can be expressed through the log transformation as: 

  
2

2 2

1
var( ) ln (0)X

d
X M

i d
  (4.35) 

4.6 Basic properties of random variables 

4.6.1 Markov’s inequality 

If ( ) 0for 0Xf x x  , 

   1
, 0P X  


    (4.36) 

4.6.2 Chebyshev’s inequality 

 
2

1
, 0P X   


        (4.37) 
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4.6.2.1 Example involving a discrete RV 

Take the Bernoulli RV  X p for which    0 1 , 1P X p P X p      so that its mean 

is p and variance is pq. Chebyshev’s inequality states: 

 
2

1
| |P X p pq


     for any  0   (4.38) 

We prove it by considering three different ranges for X.  
 
Case (1): X p   

The LHS of (4.38) = 

if 1 Case 1a

0 if 1 Case 1b

p p pq
P X p pq

p pq






         
  

Case (1a) 
 

2

2

2

2

1
LHS and we need to prove 

It is given that, 1

1

1
Since 1, we have ... proved

p p

p pq

p q q

ppq pq

q

p

q
p

q p












 

 


   

 

 

 

 

 
Case (1b) 
     

2

2

2
2

1
LHS 0 and we need to prove 0

It is given that, 1

1

1
Since is a positive quantity, we have 0 ... proved

p pq

p q q

ppq pq

q

p











 

 


   

 


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Case (2): 0 X p     

 
LHS = 

               0 if Case 2

if Case 2

P p X pq P X p pq

p pq a

q p pq b

 





          
  



 

  
Case (2a) 

2

2

2
2

1
LHS 0 and we need to prove 0

It is given that 

1
Since is a positive quantity, we have 0 ... proved

p pq

p

q









 



 



 

Case (2b) 

2

2
2

2

1
LHS and we need to prove 

It is given that 

1
Since 1, we have ... proved

q q

p pq

p p
q

q

p q









 



   

 

 

 
Case (3) 

2

2

2
2

0

1
0

1
. . 0

X

LHS P X p pq

p pq

p

q

pi e if q













      

 

 

 

 

 
Proved. 

4.6.3 Bienyame Inequality 

 
[ ]

, 0
n

n n
n

E X a
P X a  


       (4.39) 
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n=2 reduces to Chebyshev’s inequality. 

4.6.4  Lyapunov Inequality 

Let [ ]
k

k E X     where k => 1 is any integer, then  

 1/( 1) 1/
1
k k

k k 
   (4.40) 

Proof 

 

1 1

2 2

1 12 2

2 2
1 1

Let 

2

2 0

k k

k k k

k k k

T a X X

T a X a X X

E T a a  

 

 

 

 

  

   

 

Dividing by 1k   we get, 

2 2
2 1

2 2
1 1 1 1

2 0k k k k

k k k k

a a
   
   



   

      

Now choose, 
1

k

k

a

 

   which yields 

 
2

21
1 12

1 1

0k k
k k k

k k

    
 


 

 

      (4.41) 

 Set k=1,2,3 etc.: 
12 2

0 2 1 0 1 2

3 11 12 2 32 2 2
1 3 2 2 3 2 2 3 2 3

2 4 1 12 23 3 3 4
2 4 3 3 4 3 3 4 3 4

1 , 1

2

3

k

k

k

     

         

         

    

        

        

 

We see that proposition 4.40 is true for k = 1,2,3. Let us claim it is true for some k - 1: 
i.e.,  

 
1 1

2 1
2 1

k k
k k  
    (4.42) 

 is true.  We can rewrite 4.41 for k – 1 as:  
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 

2
2 1

2 21
1 1

2 2 22
2 1 11

1 1 1

1 1
1

1

or, 

or, 

k k k

k
k

k k k

k kk k
k kk

k k k k

k k
k k

  

  

   

 

 




 

         








  

 

  (4.43) 

Thus we prove (4.40) by induction: if  (4.40) is true for k – 1, then it must be true for k. 

Since we have proved (4.40) is true for k =3, it must be true for 4, 5, …. 

Proved. 

Since
1 1 1 1 1 1

1 2 3 2
1 2 3 2 1... 1n n n m

n n n m       
         and for ,n m  an equivalent 

way of writing Lyapunov inequality is: 

 

 

1 1 m nn m
n m n m     

 (4.44) 

 

 


