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CHAPTER 20. RELIABILITY-BASED MAINTENANCE (OF NON 
REPAIRABLE SYSTEMS) 

 

20.1 Types of maintenance 

By definition, reliability is a non-increasing function of time. How to maintain reliability 
above target throughout design life?  Consider the reliability function shown in Figure 
20-1. If the target reliability (“acceptable limit”) is 0.9 and the remaining life (tL) is 10 
years, then this item becomes unacceptable in around ut = 8 years.  Four options are 

available: 

1) Make a stronger item, so that no repair becomes necessary. 
2) Restrict loads  
3) Replace item by new item at ut  

4) Repair item well before  ut  (preventive maintenance) 

 

Option 1 may be uneconomical or even impractical for many systems. Option 2 may be 
undesirable, and may render the system functionally compromised or useless. For non-
repairable systems, which is the subject of this chapter, option 3 is not possible.  This 
Chapter is about the fourth option.   

Maintenance is of two types: 

1. Preventive     - system is not repairable (depends on failure mode & consequence)  

2. Breakdown/ corrective / repair – assumes repairable system measured with 
availability  

For non-repairable systems, waiting for failure is not an option, preventive maintenance 
is must.  Hence breakdown maintenance is not relevant for non-repairable systems. 
Preventive maintenance can restore strength of an element to as-new or near-new 
condition. It also can detect hidden failures – i.e., failure of redundant elements. 

20.2 Preventive maintenance 

This chapter is about preventive maintenance.  Reliability-based Maintenance of non-
repairable systems is preventive in nature, as opposed to corrective maintenance in 
availability.  
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Figure 20-1 Time dependent reliability 

 

We ask the following questions: 

 how often to repair 
 go for perfect repair vs. partial repair 
 can repair harm the reliability fn? 

 

The questions can be placed in the context of minimizing the total expected cost (eq 
ref???) subject to constraints like budget and reliability.  Repair can be either perfect (in 
which the item is made as new), or partial (only a fraction of original strength is 
restored).  The question is, how is the reliability function altered due to periodic 
maintenance? In other words, we are looking to describe the conditional reliability 

0:Rel( | )tt M  given the maintenance plan, M, up to time t. Please note that we are still 

looking into the future when we are trying to predict 0:Rel( | )tt M , i.e., the analyst’s 

position on the time axis is t = 0.  Thus the conditional reliability function would still 
have the essential properties of the unconditional reliability, namely, it is a non-
increasing function that drops from 1 to 0 with time.   

Although not recommended, but as some authors do, one could also add the survival 
history up to time t and repeat the question.  The difference is subtle but important. This 
would happen if the analyst  were placed at some point in time in the future, say at t0, and 
asked how the reliability function would behave henceforth.  That is, one would estimate 
the conditional reliability 0: 0:Rel( | , )t tt M S  where S gives the survival information up to 
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time t. The plot of 0: 0:Rel( | , )t tt M S  would no longer behave monotonically, but would 

jump to 1 at each discontinous point t0 where the structure is known to have survived.  It 
is easy to show that this jump would happen even in the absence of any maintenance  
operation, but just due to the fact that the structure survived up to t0. 0: 0:Rel( | , )t tt M S  is 

not a reliability function in the strict sense, rather it is a piecewise juxtaposition of 
several reliability functions, and must be interpreted cautiously. 

 

20.2.1 Example 1: 

Let us start with an example of time dependent reliability where no preventive 
maintenance is performed. In this example, the load is time invariant and normally 
distributed: 0( ) (10,30%), 0D t D N t  . The capacity degrades deterministically with 

time as: 0( ) exp( 150)C t C t  . The initial capacity is normally distributed:

(20,10%)oC N . The time dependent capacity therefore is normally distributed as 

well: 150( ) (20 ,10%), 0tC t N e t  . The design life is 100 years.Lt   

Because the load is time-invariant and the capacity degrades monotonically with time, 
the time dependent reliability function, 

  Reliability: ( ) ( ), (0, ]LR t P C D t          (20.1) 

simplifies to: 

    0 0( ) min ( ) ,0 ( )R t P C D t P C t D         (20.2) 

which can be estimated with the help of the normal distribution function: 

   ( )
( ) ( ) 0 1

( )
M

M

t
R t P M t

t




 
     

 
  (20.3) 

since the safety margin, ( ) ( ) ( )M t C t D t  , is normally distributed with mean 

( ) 20exp( 150) 10M t t    and variance 2 2 2( ) [0.1 ( )] 3 .M t t    
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Table 20-1: Reliability computation for no degradation 

t muD sigmaD muC sigmaC muM sigmaM R(t)=P[M(t)>0] 

10        8.71
1 1 2.46 .992

3.54

      
 

 

20        2.16 .984   

30       (1.86)=.969 

40       (1.58)    .943 

50       (1.30)     .903 

60        

70        

80        

90        

100        

 

20.2.2 Example 2: 

Consider a cable (8 inch diameter, deterministic) in a suspension bridge made of A36 steel with 
random yield strength Y (time invariant). Y is normally distributed with mean Y  38 ksi and 

COV YV   15%. The axial load, Q0, is invariant and sustained in time, and is now considered a 

normal random variable. Its mean is Q 1000 kip and the COV is QV 20%. 

The cable is subject to uniform corrosion causing its radius, whose initial value r0 = 4 in, to 
deteriorate as: 2

1( ) br t b t   where 2
1 20.1in / yr , 0.9bb b   are the corrosion law constants. The 

cross-sectional area thus deteriorates according to: 2
0( ) ( )a t r r   .  

Let cable failure be defined as yield of the gross section. The load and capacity are independent.  
Find the time dependent reliability of the cable. 

 

The reliability function for this problem can be written as (cf. Eq.(18.15)): 
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 (20.4) 

Note that due to the monotonically decreasing nature of ( )d  , the limit state is evaluated 
only at the right end point of the interval (0,t].  In any other situation this simplification 
would be wrong and would lead to dangerous overprediction of reliability.  

The margin process M is normally distributed being a linear combination of normals.  Its 
mean and variance at time t are: 

 
2 2 2 2

( ) ( )

( ) ( )

M Y Q

M Y Q

t a t

t a t
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  

 

 
 (20.5) 

The reliability function therefore can be expressed as the normal CDF: 
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 (20.6) 

Differentiating the reliability function leads to the hazard function: 
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 (20.7) 

These two functions are plotted in Figure 20-2.  The choice of normal distribution for 
both random variables in the problem led to the closed form expressions for reliability 
and hazard functions above. For other distributions, FORM or Monte Carlo simulations 
may be adopted.  
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Figure 20-2: Reliability and hazard functions of corroding cable 

 

20.3 Perfect vs. imperfect maintenance 

Now let us consider repair. Say, only one maintenance operation is performed, which 
occurs at time tR. It is convenient to start with the hazard function.  It is altered due to the 
maintenance operation: 

 0
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( ),
( )

( ),
R

R
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h t t t


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  (20.8) 

The reliability function (Eq. (17.11)) becomes: 
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R t t t
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R t h d t t 


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  (20.9) 

The idea behind preventive repair is to maintain the reliability above the acceptable limit 
throughout the design life.  

 

20.3.1 Perfect repair 

If perfect repair is undertaken at tR, then the hazard function undergoes a time shift: 
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Figure 20-3: Various repair options 

 1 0Perfect repair at : ( ) ( ),R R Rt h t h t t t t    (20.10) 

and the reliability function is repeated as a scaled version of itself: 

 100% ( ),
Perfect repair at : ( | )

( ) ( ) ,R

R
R t

R R R

R t t t
t R t M

R t R t t t t


    

 (20.11) 

The event 100%

Rt
M  signifies 100% repair at time tR.  We repeat example 3 above with 

100% repair performed at 5 years (the red lines in Figure 20-7).   It is clear that due to 
the repair, the reliability function stays above 0.9 at the end of the 10 year life as 
required.  

 

 

Figure 20-4: Reliability under repeated perfect maintenance 
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20.3.1.1 Example: perfect repair and the reliability function  

• Capacity degrades with time
– C = C0 exp(-t/150)  t in years
– C0 is Normal, mean=20, s.d. =2

• Load is time invariant
– Q is Normal, mean =10, s.d.=3

• C0 and Q are mutually independent 
• tL= 100 years
• Safety limit: R(t)>0.95, h(t)<0.002/yr
• Repair Options 

– Option 1: no repair
– Option 2: repair to full strength every 20 years
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40

 

Figure 20-5: Reliability and hazard under repeated perfect maintenance 

 

20.3.1.2 Example: perfect repair and the reliability function  

 

 

Figure 20-6: Reliability under repeated perfect maintenance 
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Say   0(0)newC C      (repaired to original strength) 

( ) ( )new rC t t C t   

 

Table 20-2: Reliability improvement by perfect repair at 40 years of age 

t .40 ( )rep rR t t  ( )rR t  '( )R t  

40 1 .943 .943 

50 .992 .943 .935 

60 .984 .943 .928 

70 .969 .943 .914 

80 .943 .943 .889 

 

20.3.2 Imperfect repair 

Generalizing, if the repair is imperfect, we start with the second factor in Eq. (20.9)  for

Rt t  and rewrite it as: 
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where '
1h  is a legitimate hazard function (generally different from h0 due to the imperfect 

nature of the repair) and Rel’(t) is the corresponding reliability function which is 
generally different from (and less benign than) Rel(t).  The reliability function due to 
imperfect repair can then be written as: 
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 (20.13) 

%

Rt
M represents imperfect repair at time tR in which the strength is restored to α% of the 

initial value.  The green lines in Figure 20-7 correspond to α = 90.  The effect is not as 
good as perfect repair, as can be expected. 
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Ex.   T~weibull                                             (u=7.5y, k=2.5) 
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Figure 20-7: Effect of perfect and partial repair on reliability and hazard functions 

 

20.4 The point of view issue 

 If in addition, the condition is imposed that the structure is found to survive at tR, then 
the conditional reliability starts from 1 at tR as stated before, and all past information is 
erased: 
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