
CHAPTER 18. COMPONENT RELIABILITY: CAPACITY – DEMAND 
TYPE 

 

In this chapter we consider various definitions of failure, limit states, basic variables and 
computation of failure probability for “capacity demand” type compoents.  Capacity 
demand type formulation occurs naturally where physics based approach to failure is 
needed. It is common for mechanical and structural components. We focus on 
components in this chapter.  System reliability is taken up in CHAPTER 19.  

18.1 Time to failure 

Recall that the definition of failure given in Eq. (16.1) simplifies to Eq. (17.2)) for 
component reliabilty formulation where only one critical location and one failure mode 
of the structure is considered.  

Refer to the definition of the safe set in Eq (17.2).  For a component with time dependent 
capacity C(τ) and load Q(τ), the “safety margin” is described as the stochastic process: 

 ( ) ( ) ( ), 0M C Q t         (18.1) 

In general the safety margin can be a more involved function of several time dependent 
quantities.  The random time to failure is the instant that the safety margin exceeds a 
suitably defined safe set, , for the first time: 

 First passage time: inf[ : ( ) , 0]fT t M t t     (18.2) 

The first passage time (also called the first excursion time) defined this way is identical 
to the time to failure (TTF) discussed in CHAPTER 17.  

18.2 Formulation of capacity-demand reliablity problems 

In capacity demand type reliability, two broad classes of problems are found to occur. 

a) Cumulative damage/ fatigue failure. Here the safety margin is a monotonic 
function of time.  The safety margin is ( ) ( )aM t D D t   where Da is the 

maximum allowable damage, and D(t) is the cumulative damage.  No healing is 
considered. Since the safety margin is a monotonic (decreasing) function of time, 
the time to failure is simply the point where the cumulative damge equals the 
critical value: 1( )f aT D D . 

b) verload failure.  Here the safety margin is not a monotonic function of time. 
The failure event is defined as: 

   { ( ) ( )Failure    ,  for any 0 }C t Q t t     (18.3) 
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We look at the first passage problem in increasing levels of complexity. We start with the 
case when the variables are time-invariant.  

18.3 Case 1: Both C and Q are time invariant 

R()=R0 (no time dependence), Q()=Q0 (sustained load) 
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This boils down to the random variable based treatment of reliability. The function has 
no explicit time dependence.  

The reliability can be given in terms of the joint PDF of C and Q: 
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If C and Q are independent, the reliability function simplifies to: 
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18.3.1.1 Example: proof loading 

 A structure has exponentially distributed capacity with mean C.  The load, independent of the 
capacity, also is exponential with mean D.   

a. Find the reliability of the structure. 

b. A proof load test is performed on the structure as follows.  A known load, c0, is placed on 
the structure, and the structure survives without any damage. With this new information, find 
the updated reliability of the structure.  



18.3.1.2 Example: A small structural design problem 

 

Consider a cable in a suspension bridge made of A36 steel 
with random yield strength Y (time invariant). It is a one RV 
problem. The axial load q = 1600 kip and the cross sectional 
area a = 50.3 in2  are deterministic. Let cable failure be defined 
as yield of the gross section. Find the failure probability of the 
cable. The target failure probability is 0.001. Redesign if 
necessary. 

 

Let Y be Weibull distributed with COV is 15%. The mean yield strength of A36 steel is 
38 ksi. The shape and location parameters of Y are therefore, 15% 8YV k    and ,          
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The probability of failure, 

 
8

2

31.8

40.4

1600 kip
[failure]

50.3in

[ 31.8] 1 0.14

fP P P Y

P Y e
  
 

 
   

 

    

 (18.8) 

is solved using the Weibull CDF.  

Since it is required that [failure] .001P  , the cable is inadequate. Reliability can be 
increased in four ways for this problem: increasing the area, reducing the load, increasing 
the mean strength, and decreasing the variability of strength. Of these, the second is not 
possible without restricting traffic, and the third and fourth would require a different 
material and possibly be very expensive. Thus, we decide to first try to increase the 
cross-sectional area.  

The revised cross-sectional area can be found by finding the inverse of the CDF at the 
target Pf: 
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which yields, 
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 (18.10) 

Suppose the resultant diameter, about 11 inches, proves to be impractical. The next 
option is to try a different grade of steel without changing the diameter.  Assume the 
distribution of Ynew remains Weibull and its COV remains 15%.  The approach now is to 
select a new mean.  The target probability of failure remains 0.001: 

 .001new

q
P Y

a
    

 (18.11) 

 which yields: 

 

 

8
31.8

exp .999

75.4

75.4 1 1/ 8 70.9 ksi

new

new

new

u

u



  
   
   

 

    

 (18.12) 

The new mean strength is acceptable provided this new grade of steel has sufficient 
ductility, corrosion resistance and other desirable properties. Otherwise, a totally new 
design may need to be adopted. 

18.3.1.3 Example: A power distribution problem involving two variables: 

On a certain day the power supply system for a large city has a capacity, C, which is a 
Normal random variable with mean 8 GW and coefficient of variation (c.o.v.) 20%. 
Demand on the system arises from two sources: residential (R) and Industrial (I). The 
residential power demand, R, is a Normal variable with mean 2 GW and c.o.v. 20%. The 
industrial power demand, I, is also a Normal variable with mean 3 GW and c.o.v. 30%. 
There is a slight dependence between the two demands: the correlation coefficient 
between R and I is 0.2. The system loses some power in transmission: the loss is constant 
and equal to 0.2 GW. For simplicity assume that C, R and I are time-invariant, and that 
the capacity of the power system is independent of the demands. 

A “brownout” is said to occur if the total demand (plus transmission loss) exceeds C.  
Find the probability of a brownout in the city on the given day. 
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D is Normal since it is a linear combination of Normal RVs. The performance margin is 
Z C D                



Z is normal since it is the difference of two normals. Its moments are: 
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18.3.1.4 Example: A cantilevered beam 

A cantilevered beam is loaded by a uniformly distributed load, W, and a point load, P, as shown 
below. The beam length is 10 ft. 

P and W are both normal 
random variables. Their means 
are 3 kip and  0.5 kip/ft, 
respectively, and their 
coefficients of variation (c.o.v.) 
are 15% and 20%, respectively. 
The correlation coefficient 
between them is PW  = 0.2. 

The yield strength, Y, is deterministic and equal to 36ksi.  The section modulus, S, is random 
and independent of the loads. S is known to have a normal distribution with a c.o.v. of 7%.   

Consider bending failure only.  Choose the mean section modulus such that the beam has a 
reliability of 0.999. 

 

18.4 Case 2: either C or Q or both vary non-randomly in time 

At a given location and for a given failure mode, let the capacity and demand vary 
deterministically in time: 
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C0 and D0 are random variables, and d, h are non-random functions of time,  0, 0d h  . 
That is, if the process ( )C   is known at any instant t1, its value can be known precisely 
at all other instants of time; likewise for ( )Q  .  Due to the non-random nature of d and h, 
the reliability function, 

 0 0( ) [ ( ) ( ) 0, for all (0, ]]R t P C d Q h t       (18.14) 
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In particular, d is the “aging” function. Its form can be derived from the mechanics of 
damage growth (e.g., corrosion loss74, fatigue crack growth etc.) and the loading history. 
d=1 implies the capacity does not degrade with time, and h=1 implies the load is 
sustained in time. The above approach will be still valid for several simultaneously 
occurring loads (cf. Eq.(18.4)) if : 

 (1) (2) (3)
0 0 1 0 2 0 3( ) ( ) ( ) ( ) ...Q h Q h Q h Q h           (18.16) 

in which the h’s are non-random functions of time and the individual loads ( )
0

iQ are 

random variables. 

18.4.1 Monotonically decreasing strength and time-invariant load 

This special case simplifies to: 

 0 0( ) [ ( ) 0], ( ) / 0R t P C d t Q dd d      (18.17) 

where d(t) is the monotonically decreasing aging function. 

18.5 Case 3: Load occurs as a pulsed sequence with random magnitudes 

18.5.1 Known number of load pulses and no aging 

We first consider the case when C is time invariant (i.e., 1d   in Eq.(18.13)) but the load 
occurs as pulses of random magnitude 1 2 ( ), ,..., n tQ Q Q  with the number of load pulses n in 

time t being known.  We assume that the loads are IID, that is iQ ’s are mutually 

independent and each  iQ  has the same distribution QF .  Further, the loads are 

indepedent of the capacity. The reliability function, 

 1 0 2 0 3 0 ( ) 0( ) [ , , ,..., ]n tR t P Q C Q C Q C Q C      (18.18) 

can be simplified by first conditioning it on an aribtrary value of C0, and using the IID 
property of the iQ ’s: 

 ( )
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The total probability theorem is then applied to yield: 
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18.5.2 Q is a Poisson pulse process and no aging 

We generalize the above situation of a known number of IID loads (and independent of 
capacity) and consider the loads to occur according to a Poisson pulse process (with rate 
. The magnitude of the pulses are IID as before.  No aging is considered as before.  
Since the number of pulses in time interval (0,t] is random, the  
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By using the form of the Poisson PMF, the reliability function simplifies to: 
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18.5.3 Q is a Poisson pulse process and strength changes deterministically 

We now introduce aging, as in Eq. (18.13). Since the loads occur as a Poisson pulse, the 
occurrence times, Ti,  are random in nature, and the individual limit states are evaluated 
at these random instants of time: 
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Since these random occurrence times are ordered, 1 2 1... ...i iT T T T      , their 

conditional joint PDF given that n pulses occured in (0,t] is 1 / nt  (cf. Eq (12.6)). The 
reliability function, conditioned on a fixed value of C0, then can be written as: 
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By using the form of the Poisson PMF, and removing the conditioning on C0, the 
reliability function simplifies to: 
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Note that Eq (18.25) reduces to Eq (18.22) when d is identically equal to 1. 

18.6 Case 4: both C and Q are random and time variant, but stationary 

We now come to the more general case when ( )d   in Eq (18.13) is a stochastic process. 
The rate at which the margin process ( ) ( ) ( )M C Q     crosses the zero barrier (i.e., 
enters or leaves the “safe” domain) at an arbitrary time t is given by the joint PDF of the 
process and its derivative, M : 
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If the margin process is stationary, the passages into the unsafe domain becomes 
asymptotically Poisson, so that the reliability function represents the probability of the 
first passage into the unsafe domain beyond time t: 

   0R( ) 1 (0) t
Tt F e     (18.27) 

(0)TF  is the probability that the margin is negative at t = 0 and is assumed to be small. In 

this case, the constant rate of downcrossing (into the unsafe domain) is: 

 0

0

(0, )
MM

mf m dm


       (18.28) 

Further, if the margin is stationary Gaussian, it is independent of its derivative at the 
same instant, and the downcrossing rate becomes: 
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The derivation is given below.  

 


