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CHAPTER 11. POINT PROCESSES 

11.1.1 Basic descriptors of a point process 

Suppose these are m points at random locations X1, X2, …Xm      in some region E of the 
Euclidean space Rd (e. g., location of diseased trees in an orchard, location of bugs in a 
computer code, arrival times of tracks on a bridge etc). Then the number of points in a 
set  A⊂E is :  

  
1

 ( )
m

k
k

N A I X A


    (11.1) 

where I is the indicator fn: 

                                      I( ) =1 if  is true  

                                              = 0 otherwise  

This N is a point process on E with points  1.... .mX X  

Requirements on a point process : bounded regions must always contain a finite number 
of points with probability 1, i. e. for any bounded set A, [ ( ) ] 1P N A     

Property of point process : For disjoint sets B1, B2 ,... in E :     ( )i iN B N B  

A Point Process is a random counting measure. 

A stationary point process: 

A point process N is stationary if the joint distribution of N(B1+ x ), N(B1+ x ) , … 
N( )nB x is independent of x  for each x E , and 1 2,B B  in B ( the class of bounded 

Borel sets in E) 

A memoryless  point process is a point process with independent increments.  

A point process is simple if the occurrence times are disjoint almost surely.  

Point process on + = [0, )  

When we talk about a point process on the real line, the points can simply be designated 
as “arrival times” ( or “occurrence times” or “epochs”)  : t1,t2, ...,  ti 0.  

The inter arrival times are  1 1 0 1 2 2 1, ,....t t t t t        

so that nt = 1 2 n      

(Kovalenko et at 1996)           

Point process can be  equivalently defined by the joint distribution of : 

1) The counting process N(t), or           

2) The increments N(ti) – N(ti-1) , or          

3) The sequence of arrival times , 1nt n  , or 
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4) The sequence of inter arrival times  , 1n n   

 

   1                             2                           3                                                       
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If  'i s  are independent and identity distributed then the point process is a renewal 

process (also called recurrent point process , recurrent flow).   Does a renewal process 
necessarily have independent increments, i.e., does a renewal process have to be 
memoryless?. No. 

Let   F  be the cdf of each i   i 2  and 
1

F  be the cdf of 1 . 

If  F   1F , then the process is called “delayed”. Otherwise it is pure. 

The renewal process is ordinary if 
1
(0) 0, (0) 0F F    i.e. no possibility of simultaneous 

occurrence of more than one events.  

If    
( )

1

F

nP






  


   then the renewal process consists of a finite random no. of points , 

and the process is called a generalized/ broken/ terminating / defective renewal process, 
and the occurrence time max{ : }n nt t t     is called the break  point.  

The renewal function W is the mean of the counting process: 

 ( ) [ ( )]W t E N t  (11.2) 

and the renewal density is, 

 ( )
dW

w t
dt

  (11.3) 

such that the mean number of occurrences in time interval (a,b] is: 

 ( ) [ ( , ]] ( )
b

a
W t E N a b w t dt    (11.4) 

11.1.2 Poisson Process 

Poisson process is a special renewal process.  The “pure” or “uniform” or 
“homogeneous” Poisson model is a stationary renewal process with exponential inter-
arrival times or, equivalently, a process with independent increments and a constant rate 
of occurrence. It is used to model a wide array of occurrence processes in various 
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branches of science and engineering. In places where its assumptions are too restrictive, 
the pure Poisson process can be used as the building block for a large variety of 
processes showing clustering, dependence, non-stationarity etc.    

Clustering phenomena can be accounted for by the Neymann-Scott and the Bartlett-
Lewis processes (Cox and Isham 2000).  In the former, the points of a pure Poisson 
process act as cluster centers so that a random number of cluster points are distributed 
independently and identically around each cluster center. In the Bartlett-Lewis process, 
on the other hand, the cluster points are generated according to a finite renewal process 
around the original Poisson process.  A Polya process, which is a non-stationary version 
of the pure birth process, can also be used to model clustering (Wen 1990).   

A point process is Poisson if: 

1) No. of occurrences in a given time interval is independent of that in any other 
disjoint interval.  

2) Probability of occurrence in a small interval t  is proportional to t  , i.e. 
[ ( , ) 1] ( )P N t t t t t                0t   

3) Prob. of two or more occurrence in ,t t t   is  0  as  0t   

The no. of occurrences, Nt, in the interval (0, t]  is then a Poisson  R.V.  Its mean is the 
area under the rate curve: 

 
0

( )
t

tm d     (11.5) 

Recall that a Levy process is a stochastic process with stationary independent 
increments. If the intervals are of equal length, the increments are iid. A Poission Process 
is thus a type of Levy process. It is also a pure birth process with a constant rate and thus 
comes under the general family of continous time Markov chains.  

11.1.2.1 The homogeneous Poisson Process 

A Poisson process with constant rate is called a homogeneous Poisson process. 

Note “interval” is a general term: it does not necessarily signify time.  It could equally 
well be distance along a line. 

( )
( , ) [ (0, ] ] [ ] , mean.

! !

t n n

N t

e t e
P n t P N t n P N n

n n
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                                         has units of 1/time. 

For the random variable Nt, 
2, .t t      

The basic properties of the Poisson process are given below: 

1) Given n points in (0,t],  ti  is U(0,t) 

2) Distribution of T1, T2 , …,Tn  given N(t) = n is 
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  (11.6) 
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Kingman p. 21:  Every 1 – D Poisson Process can be transformed into one of constant 
rate, by means of a continuous monotonic transformation. This means in I-D only the 
uniform P.P. is of fundamental  importance. and the properties of the most general locally 
finite process can be inferred from it.  

11.1.2.2 Derivation of the Poisson Distribution  

The Poisson Random Variable describes the no. of occurrences of a point process in a 
time interval occurring according to a Poisson experiment.  

Proof :              

 
     

   
(0, ] (0, ] ( , ] 0 (0, ] 1 ( , ] 1

(0, ] (1 ) (0, ] 1

P N t dt n P N t n N t t dt P N t n N t t dt

P N t n dt P N t n dt 

          

     

 
 

Define  ( , ) (0, ]p n t P N t n   and rewrite as: 

( , ) ( , )(1 ) ( 1, )p n t dt p n t dt p n t dt       

Rearranging, 

( , ) ( , )
( , ) ( 1, )

p n t dt p n t
p n t p n t

dt
  

     

That is, 

( , )
( , ) ( 1, )

dp n t
p n t p n t

dt
      

or 
( , )

( , ) ( 1, )
dp n t

p n t p n t
dt

     

Multiply both sides by the integrating factor te  and write: 

 ( , ) ( 1, )t td p n t e p n t e    

The solution is : 

( , ) ( 1, )t t
np n t e p n t e dt c     

First set n = 0, and obtain:  

0

0

0
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t t

t

p t e p t e dt c

p t c e

 
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 
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Since there can be no occurrence before counting starts, we must have: 

 
(0,0) 1

( ,0) 0 for 1

p

p n n


 

   (11.7) 
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Now set n = 1: 

1 1

1

(1, ) (0, )t t t tp t e p t e dt c e e dt c

t c

    
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 
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Since (1,0) 0p  , we have 1 0c   

Thus, (1, ) tp t e t   

Set n=2: 

2 2

2
2
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t c

     


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 
   

Since (2,0) 0p  , we have 2 0c  , giving us: 

 
2( )

(2, )
2!

t t
p t e      etc.  

Use induction to come up with: 
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11.1.2.3 Erlang Distribution 

Let  Tk = time to the kth  arrival ( in a Poisson process ) 

[ ] [ ( ) ]kP T t P N t k    
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Mean of Erlang distribution: 

1 2

1/ 1/ ... 1/ /
k

k k

T

T

k
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    
   
    


 

Variance of Erlang distribution:       
2

1 2var( ) var( )Tk      

       
2 2 2

1 1 k

  
     

Erlang generalizes to gamma when k is not an integer. 

11.1.2.4 Non-homogeneous Poisson processes 

If the rate  is not constant (but varies deterministically with time), the Poisson process 
is termed as non-homogeneous.  The number of occurrences, Nt, in time (0,t] is still 
Poisson distributed: 

 
( ) ( ( ))

[ ]
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m t n

t

e m t
P N n

n



   (11.8) 

 with mean  

 
0

( ) ( )
t

m t d     (11.9) 

Every non-homogeneous Poisson Process can be transformed into one of constant rate, 
by means of a continuous monotonic transformation and the properties of the locally 
finite process can be inferred from it(Kingman 2002). 

The random occurrence times of a homogeneous Poisson process can be transformed in 
into an appropriate non-homogenoues PP as follows (Bedford and Cooke p. 57): 

Let T1, T2, T3, … be the random occurrence times of a homogeneous PP with rate unity.  

Define: 

 ( ) inf{ | ( ) }x t m t x     (11.10) 

where m(t) is given by Eq (11.9). Then the sequence 1 2 3( ), ( ), ( ),...T T T    is the 

occurrence times of the non-homogeneous process with rate ( )t  . 

11.1.2.5 Mixed Poisson Process 

The rate is now a random variable, but is not a function of time.  

11.1.2.6 Compound Poisson process 

A process with random jumps in the state occuring at random points in time. The random 
points in time occur according to a Poisson process. At each random point, the state 
undergoes a jump of random magnitude according to a specified distribution.  
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11.1.2.7 Spatial Poisson processes 

11.1.2.8 Simulation of Poisson Processes 

11.1.2.8.1 Homogeneous Poission processes 

Let the homogeneous PP have constant rate . 

1. Generate IID exponentials with rate , these are the interarrival times. Hence get the 
occurrence times. If the life time is t, then continue until t is exceeded.  

2. Given length of time t, generate a Poisson random variable N with mean t. Let the 
realization of N be n.  Generate n independent uniforms between 0 and t. These are the 
random occurrence times.   

11.1.2.8.2 Non-homogeneous Poisson processes 

If the rate is bounded, let  

 ( ) , 0m t        (11.11) 

Then a homogeneous Poisson process, ( )X t ,  with rate m  may be thinned to obtain the 

desired non-homogeneous Poisson process, ( )Y t , with rate ( )t  as follows.  

Generate points { ( )}i ix t  from ( )X t . Also generate an IID U(0,1) sequence { }iu  . Retain 

the point ( )i ix t if ( ) /i i mu t   and thus populate {y ( )}i it . Proof is given in Ross.  

11.1.2.8.3 Spatial Poisson Processes 

 

11.1.3 Cox process 

A more versatile generalization of the pure Poisson process occurs if the rate, ( ) 0t  , 
itself is considered to be a random process yielding what is known as a doubly stochastic 
Poisson process (or Cox process) (Cox and Isham 2000).  The mean measure of the point 
process in the interval [0,t] is a random variable and is given by: 

 
0

( )
t

tM d    (11.12) 

Then, conditioned on t tM m  (where tm is any positive number for given t), the point 

process N(t) becomes a (generally non-homogeneous) Poisson process, i.e., the counts 
are distributed according to: 

   ( )
( ) |

!
t

x
m t

t t

m
P N t x M m e

x
    (11.13) 

Special cases of the Cox process include the following: ( )t    (a constant) yield the 
homogeneous Poisson process; if ( ) ( )t t  is a non-random function of time, we get a 
non-homogeneous Poisson process; and if ( )t   is a time-independent random 
variable, we are left with a mixed Poisson process.   
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  is a random measure on E . Let a counting process N(A) be defined on E. If given 
( )A , N(A) is Poisson, then N(A) is a Cox Process.   

Var [N(A)]  E[N(A)]. The two are equal when   is nonrandom.  

11.1.4 Polya process 
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   


     (11.14) 

In the limit =0, it boils down to the Poisson process. 


