Tutorial Assignments: Analog Signal Processing (EE60032),

Department of Electrical Engineering, Indian Institute of Technology, Kharagpur

Faculty: Ashis Maity

Session: Autumn 2018

1. Design an inverting amplifier for a nominal gain of 4, a gain error of 0.1% and an input impedance of 10 k $\Omega.$

- 2. Design a circuit which can generate an output voltage $v_0=-2(3v_1+4v_2+2v_3)$, where v_1 , v_2 and v_3 are the input voltages.
- 3. For the instrumentation amplifier shown in the figure below, verify that $v_0 = (1+R_2/R_1+2R_2/R)(v_2-v_1)$.

4. Calculate V_0 for the circuit shown below for V_1 =5V and V_2 = 2V.

5. Compared with the classical triple op-amp, below figure uses fewer resistances. The wiper is nominally positioned halfway to maximize the CMRR. Show that $v_0 = (1+2R_2/R_1)(v_2-v_1)$.

6. Show that $v_0 = 2(1+R/R_G) (v_2-v_1)$.

- 7. Show that $v_0 = a_1v_1 + a_2v_2 + a_3v_3$. Find a_1 , a_2 and a_3 . Find the value of v_0 if
 - i) R₄ is shorted.
 - ii) R₄ is removed.
 - iii) R₁ is shorted.

- 8. Design an adder circuit using op-amps to get $v_0 = -(0.1v_1+v_2+10v_3)$, where v_1 , v_2 and v_3 are the inputs.
- 9. Find V_{o} .

10. Determine the phase angle and the time delay for the circuit shown in the figure for a frequency of 2 kHz. Given: R_1 = 20 k Ω , R= 39 k Ω , R_{f=} R_1 and C= 1nF.

- 11. For a non-inverting amplifier, R1= 1 k Ω and R_f= 10 k $\Omega.$
 - a) Calculate the maximum output offset voltage due to v_{ios} and I_B where v_{ios} = 10mV, I_B = 300 nA and I_{OS} = 50 nA.
 - b) Calculate the value of R_{comp} needed to reduce the effect of IB.
 - c) Calculate the maximum offset voltage if R_{comp} is connected to the circuit.

