Tutorial Assignments: Analog Signal Processing (EE60032),

Department of Electrical Engineering, Indian Institute of Technology, Kharagpur

Faculty: Ashis Maity

Session: Autumn 2018

1. A current mirror circuit is shown in Figure 1 where $I_{in}=100 \ \mu$ A and each transistor has W/L = $10 \mu m/0.4 \mu m$. Find out the output impedance (r_{o2}) and the input impedance $(1/g_{m1})$. Also estimate the change in I_{out} for a 100 mV change in the output voltage. What voltage must be maintained at the drain of M₂ to ensure it remains in active mode? Assume: λL = 0.16 $\mu m/V$ and μC_{ox} = 190 $\mu A/V^2$.

2. Design an NMOS differential pair with resistive load (shown in Figure 2) for a voltage gain of 5 and a power budget of 2mW subject to the condition that the stage following the differential pair an output CM level of at least 1.6V. Assume: $\mu_n C_{ox} = 100 \ \mu A/V^2$, $\lambda=0$ and $V_{DD} = 1.8 \ V$.

3. A differential amplifier with an active current mirror load (shown in Figure 3) has a tail bias current of 200 μ A. All the transistors have W/L = 20 μ m/0.4 μ m. Find the output impedance r_{out} and the differential gain of the circuit. Assume: λ L= 0.16 μ m/V and μ C_{ox} = 190 μ A/V².

Figure 3

Answers:

- 1. r_{o2} = 25kohms; 1/g_{m1} = 1.03kohms ; ΔI_{out} = 4 μ A ; V_{eff2} = 205 mV
- 2. $R_D = 360 \text{ ohms}$; W/L = 1738; $I_{ss} = 1.11 \text{ mA}$