Design Assignments in Cadence: Mixed Signal Circuits and Systems-on-Chip (EE60100)

Department of Electrical Engineering, Indian Institute of Technology, Kharagpur

Faculty: Ashis Maity

Session: Spring 2020

Submission Guidelines:

- ✓ Only the soft copy of the report is acceptable. Soft copy should be sent to springee60100@gmail.com on or before 3rd February 2020.
- ✓ Do not write unnecessary things. The report should be limited to 2 pages per problem.
- ✓ Do NOT copy the design and report from others. If found, both will be penalised.

Full Marks: 10X2=20

1. Design a common source amplifier with source degeneration to meet the following specification: V_{dd} = 1.8 V, I_{ds} = 50 μ A, $\mu_n C_{ox}$ = 580 μ A/V², V_{th} =380 mV, R_s = 5 k Ω , output swing= 1 - 1.8 V. Use 1.8 V transistors for your design.

Report the following: -

- a) Your design path in the server.
- b) Snap-shot of cadence Schematic with dc node voltages. (Extra credit will be given for drawing neatly like book/paper quality)
- c) Table: aspect ratio of transistors (W/L), R_d , g_m .
- d) Show the gain and phase plot from 0.001 Hz to 1 GHz.
- 2. Design a differential amplifier with current mirror load to meet the following specification:

 V_{DD} =1.8 V, I_B (tail current)= 50 μ A, 0.8V \leq ICMR \leq 1.6V, small signal gain=30 dB, with C₀(Load capacitor)= 1 pF. Use 1.8 V transistors for your design.

Report the following: -

- a) Your design path in the server.
- b) Snap-shot of cadence schematic with dc node voltages. (Extra credit will be given for drawing neatly like book/paper quality).
- c) Table: All transistors (W/L).
- d) Show the gain and phase plots from 0.001 Hz to 1 GHz at two different input common mode levels of 0. 8 V and 1.6 V.
- e) Find the value of unity gain frequency.
- f) Find the output common mode range of your design.