Indian Institute of Technology Kharagpur Department of Computer Science & Engineering Spring Semester 2008

108.

CSE

Course	: CS 60054 Low Power Circuits & Sy	ystems	
Credits	: 3-0-0		
Faculty	: Ajit Pal		
Lecture hours	: WED-3, THU-2, FRI-4-5	Room	#:
Building			

TA of the course : Subhankar Mukherjee

Scope: In recent years, power dissipation has emerged as the key issue not only for portable computers and mobile communication devices, but also for high-end systems. Reducing power dissipation is of primary importance in achieving longer battery life in portable devices. On the other hand, for high-end systems the cooling and packaging requirements are pushing the chip designers for low power alternatives. As a consequence, apart from the size, cost and performance, now-a-days power is considered as the most important constraint. The objective of this course is to provide a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy.

Prerequisite: The students should have good background on digital circuits (should have attended a course on digital circuits). No background in the area of VLSI circuits is required.

Text/Reference Books:

- T1 Sung_Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits, Tata Mcgrag Hill
- **T2** Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd Edition, Addison Wesley (Indian reprint).
- **T3** A. Bellamour, and M. I. Elmasri, *Low Power VLSI CMOS Circuit Design*, Kluwer Academic Press, 1995
- **T3** Anantha P. Chandrakasan and Robert W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic Publishers, 1995
- **R1** Kaushik Roy and Sharat C. Prasad, Low-Power CMOS VLSI Design, Wiley-Interscience, 2000

Evaluation:

Mid-term	30%
End-term	50%
Term Assessment	20%

Course Outline:

1. Basics of MOS circuits:

- MOS Transistor structure and device modeling
- MOS Inverters
- MOS Combinational Circuits Different Logic Families
- 2. Sources of Power dissipation:
 - Dynamic Power Dissipation
 - i. Short Circuit Power
 - ii. Switching Power
 - iii. Gliching Power
 - Static Power Dissipation
 - Degrees of Freedom

3. Supply Voltage Scaling Approaches:

- Device feature size scaling
- Multi-Vdd Circuits
- Architectural level approaches: Parallelism, Pipelining
- Voltage scaling using high-level transformations
- Dynamic voltage scaling
- Power Management
- 4. Switched Capacitance Minimization Approaches:
 - Hardware Software Tradeoff
 - Bus Encoding
 - Two's complement Vs Sign Magnitude
 - Architectural optimization
 - Clock Gating
 - Logic styles
- 5. Leakage Power minimization Approaches:
 - Variable-threshold-voltage CMOS (VTCMOS) approach
 - Multi-threshold-voltage CMOS (MTCMOS) approach
 - Dual-Vt assignment approach (DTCMOS)
 - Transistor stacking

6. Special Topics:

- Adiabatic Switching Circuits
- Battery-aware Synthesis
- Variation tolerant design