
Module C: Estimation

Outline:

� Basic Estimation Theory: ML, MAP

� Conditional Expectation, and Mean Square Estimation

� Orthogonality Principle and LMMSE Estimator

1



Estimation Theory

� Main Question: Given an observation Y of a random variable X, how to
estimate X?

� In other words, what is the best function g such that X̂ = g(Y ) is the best
estimator? How to quantify “best”?

� More generally: given a sequence of observation of ŷ1, . . . , ŷk, how to esti-
mate X?

� Example: Radar detection: Suppose that X is the radial distance of an
aircraft from a radar station and Y = X+Z is the radar’s observed location
where Z is independent of X and Z ∼ N (0, σ2). What is the best estimator
X̂ = g(Y ) of the location X?
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Motivating Example

� Let X be a random variable which is uniformly distributed over [0, θ].

� We observe m samples of X denoted x̂1, x̂2, . . . , x̂m.

� Problem: estimate θ given our observations.

� Let the samples be {1, 2, 1.5, 1.75, 2, 1.3, 0.8, 0.3, 1}.

� What is a good estimate of θ?

� Can we find a function g(x̂1, x̂2, . . . , x̂m) which will map any set ofm samples
into an estimate of θ? Such a function is termed “estimator.”

� We often treat the observations as random variables that depend on the
quantities that we are trying to estimate.

� Case 1: The unknown quantity θ is assumed to be an unknown parameter/-
constant with observation X ∼ distribution(θ)

� Case 2: The unknown quantity θ is assumed to be a random variable.
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Maximum Likelihood Estimation (θ is a parameter)

� We observe X which is assumed to be a random variable whose distribution
depends on an unknown parameter θ.

� When X is continuous, its density fX(x; θ).

� When X is discrete, its pmf pX(x; θ).

� When the observation is x̂, we define Likelihood function as

L(θ|X = x̂) =

{
fX(x̂; θ) when X is continuous,

pX(x̂; θ) when X is discrete.

� The maximum likelihood estimate of θ when X = x̂ is

θ̂ML(x̂) := argmaxθ L(θ|X = x̂).

� Thus, maximum likelihood estimate is the value of θ which maximizes the
likelihood of observing x̂.
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Log Likelihood Estimation

� We rarely estimate a quantity based on a single observation.

� Suppose we have N i.i.d observations, {x̂1, x̂2, . . . , x̂N} each drawn from
the same distribution.

� Likelihood function is then computed as

L(θ|X1 = x̂1, X2 = x̂1, . . . , XN = x̂n) = fX1,X2,...,XN
(x̂1, x̂2, . . . , x̂N ; θ)

= fX1
(x̂1; θ)× fX2

(x̂2; θ) . . .× fXN
(x̂N ; θ) (due to independence of observations)

= fX(x̂1; θ)× fX(x̂2; θ) . . .× fX(x̂N ; θ) (each Xi has identical distribution)

=
N∏
i=1

fX(x̂i; θ) =
N∏
i=1

L(θ|Xi = x̂i).

� Product term is difficult to maximize. However, we can compute the log-
likelihood as

log(L(θ|X1 = x̂1, X2 = x̂1, . . . , XN = x̂n)) =
N∑
i=1

log(fX(x̂i; θ))

which is often easier to maximize with respect to θ.
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Example

� Consider a random variable X defined as

X =

{
1 with probability θ

0 with probability 1− θ
, θ ∈ [0, 1].

� We observe {x̂1, x̂2, . . . , x̂N} with each x̂i ∈ {0, 1}.

� Problem: find θ̂ML(x̂1, x̂2, . . . , x̂N)

� The likelihood function L(θ|X1 = x1, X2 = x2....XN = xn) = .

� The log-likelihood function log(L(θ|X1 = x1, X2 = x2....XN = xn)) = .

� Optimizing log-likelihood function with respect to θ yields

� ML Estimator θ̂ML(X1, X2, ......XN) is a r.v that is function of X1, ....XN

given by
θ̂ML(X1, X2, ......XN) = .

� When X is a discrete random variable with p.m.f. [θ1 θ2 ....θN ] = θ with

P(X = 1) = θ1, P(X = 2) = θ2 ... and so on.

Then, the likelihood function L(θ|X = i) = θi. What is the likelihood
function after N observations?
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Conditional distribution

� Recall that conditional probability of two events A and B is defined as

P(A|B) =
P(A ∩B)

P(B)
.

� Example: let X1 : outcome of one coin toss with

X1 =

{
1, with probability p

0, with probability 1− p.

� Let X2 : be outcome of second coin toss, and X2 has same distribution as
X1.

� Joint pmf: pX1X2
(x1, x2) =


p2 when (x1, x2) = (1, 1)

p(1− p) when (x1, x2) = (1, 0)

p(1− p) when (x1, x2) = (0, 1)

(1− p)2 when (x1, x2) = (0, 0)

� Conditional pmf of X1 conditioned on X2:

pX1|X2
(x1|X2 = x2) = P(X1 = x1|X2 = x2) =

P(X1 = x1, X2 = x2)

P(X2 = x2)
.

� Conditional pmf of X1 given X2 = 0 is given by:

pX1|X2
(0|X2 = 0) = P(X1 = 0|X2 = 0) =

pX1|X2
(1|X2 = 0) = P(X1 = 1|X2 = 0) =
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Conditional Distributions

� Consider two discrete random variables X and Y . Let X takes values from
the set {x1, . . . , xn} and let Y takes values from the set {y1, . . . , ym}.

� Conditional pmf of X given Y = yj is given by:

pX|Y (xi|Y = yj) = P(X = xi|Y = yj) =
P(X = xi, Y = yj)

P(Y = yj)
∀i ∈ {1, 2, . . . , n}.

� The numerator is obtained from the joint distribution of X and Y . The
denominator is obtained from the marginal distribution of Y .

� For two continuous random variables X and Y conditional CDF is given by

FX|Y (x|y) = P(X ≤ x|Y ≤ y) =
FX,Y (x, y)

FY (y)
.

� In this case, the conditional density is given by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.
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Example

Consider two continuous random variables X and Y with joint density

fXY (x, y) =

{
x+ y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Determine P(X < 1
4 |Y = 1

3) by deriving and using the conditional density of X
given Y .
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Example

Consider a random variable X whose density is given by

fX(x) =

{
1 , 0 ≤ x ≤ 1

0 , otherwise

The conditional density of Y given X = x is given by

fY |X=x(y) =

{
1

1−x , x ≤ y ≤ 1

0 otherwise.

Determine the marginal density of Y .
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Maximum A-Posteriori (MAP) Estimation

� ML estimators assume θ to be an unknown parameter. If instead θ is a
r.v with some distribution that is known, we use a Bayesian approach to
estimate θ.

� We assume prior distribution: fθ(θ)/pθ(θ) of θ that is known to us before-
hand.

� Conditional distribution: fX|θ(x|θ) is also as some to be known. The distri-
bution of the observed quantity is known if the unknown parameter is exactly
known.

� Once we observe X = x̂, we find posterior distribution using Baye’s law as:

fθ|X(θ|X = x̂) =
fθ,X(θ, x̂)

fX(x̂)

=
fX|θ(x̂|θ)fθ(θ)

fX(x̂)

=
fX|θ(x̂|θ)fθ(θ)∫

θ fX|θ(x̂|θ)fθ(θ)dθ
.

� The MAP estimate is defined as:

θ̂MAP(x̂) = argmaxθ fθ|X(θ|X = x̂) = argmaxθ fX|θ(x̂|θ)fθ(θ),

which is the mode of the posterior distribution.
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Example (Previous year End Semester Question)

Suppose Θ is a random parameter, and given Θ = θ, the observed quantity Y
has conditional density

fY |Θ(y|θ) =
θ

2
e−θ|y|, y ∈ R.

1. Find the Maximum Likelihood (ML) estimate of Θ based on the observation
Y = −0.5.

Suppose further that Θ has prior density given by fΘ(θ) = 1
θ , 1 ≤ θ ≤ e

(and fΘ(θ) = 0 for θ < 1 and θ > e.). Then,

2. find the Maximum A-Posteriori (MAP) estimate of Θ based on the observa-
tion Y = −0.5.

Answer: Θ̂ML(Y = −0.5) = 2, Θ̂MAP (Y = −0.5) = 1.
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Mean Square Estimation Theory

� The best is subjective and need to set a criteria. One popular criteria is
Mean Square Error (MSE).

� For measurements X1, . . . , Xk of a random variable X, we define the MSE
of (a measurable) an estimator (function) g : Rk → R to be

E[|g(X1, . . . , Xk)−X|2].

� In this setting, we view E[|U − X|2] as the squared distance of random
variables U and X.

� Once we fix the MSE criteria for the best estimator, then the problem of find-
ing the best MSE estimator for X based on the measurements X1, . . . , Xk

can be formulated as:

arg min
g:Rk→R

E[|g(X1, . . . , Xk)−X|2].

� Any g that minimizes the above criteria is called a Minimum Mean Square
Error (MMSE) estimator.

� When solving for MMSE, we always assume that all the random variables
involved have finite mean and variance.
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MMSE

� In practice: finding the MMSE might be hard.

� We can restrict our attention to special classes of functions g.

� Let k = 0, and suppose that we want to find the best constant c that
estimates X. Note that in this case, we view c as a constant random
variable.

objective: finding c ∈ argminc E[|X − c|2]. (1)

� Let X̄ = E[X]. Then,

E[|X − c|2] = E[|X − X̄ + X̄ − c|2]
= E[|X − X̄|2 + 2(X̄ − c)E[(X − X̄)] + (X̄ − c)2

= E[(X − X̄)2] + E[(X̄ − c)2].

� Therefore, (1) is minimized when c = X̄ and MMSE value is going to be
Var(X).

� Estimation theory interpretation of mean and variance: The best
constant MMSE estimator of X is E[X] and the corresponding MMSE value
is Var(X).
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Conditional Expectation

Example: Let X, Y be discrete r.v with (X, Y ∈ {1, 2}) and joint pmf:

P[X = 1, Y = 1] =
1

2
, P[X = 1, Y = 2] =

1

10

P[X = 2, Y = 1] =
1

10
, P[X = 2, Y = 2] =

3

10

� Determine the marginal pmf of X and Y .

� Show that the conditional pmf of X given Y = 1 is

P[X|Y = 1] =

{
5
6 if X = 1
1
6 if X = 2.

� We can then compute

E[X|Y = 1] =
∑
x∈X

xP[X = x|Y = 1] = .

� Similarly, show that the conditional pmf of X given Y = 2 is

P[X|Y = 2] =

{
1
4 if X = 1
3
4 if X = 2.

� Then, E[X|Y = 2] = .

� We can view E[X|Y ] as a function of Y as

g(Y ) = E[X|Y ] =

{
E[X|Y = 1] with probability P[Y = 1]

E[X|Y = 2] with probability P[Y = 2]

� Now, determine E[g(Y )].

� Determine E[X]. What do you notice?
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Conditional Expectation

� If the value of Y is specified, then E[X|Y = y] is a scalar.

� Otherwise, E[X|Y ] is a random variable which is a function of Y .

if for ω1 ̸= ω2, Y (ω1) = Y (ω2) ⇒ E[X|Y = Y (ω1)] = E[X|Y = Y (ω2)].

� For two continuous random variables X, Y ,

E[X|Y = y] =

∫
x

xfX|Y (x | Y = y)dx =

∫
x

x
fX,Y (x, y)

fY (y)
dx.

� Similarly,

E[h(X)|Y = y] =

∫
x

h(x)fX|Y (x, Y = y)dx

E[l(X, Y )|Y = y] =

∫
x

l(x, y)fX|Y (x, Y = y)dx

� If the value of Y is not specified, E[l(X, Y )|Y ] is a random variable.
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Example

Let X and Y be two random variables and independent with

X =

{
1 with probability 1

2 ,

0 with probability 1
2 .

Let Y have the same distribution as X. Let Z = X + Y .

� Determine the pmf of Z.

� Find conditional distribution and expectation of X when z = 1 and z = 2.

� Find conditional distribution and expectation of z when X = 1.
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Properties of Conditional Expectation

� Linearity: E[aX + bY |Z] = aE[X|Z] + bE[Y |Z] a.e.

� Monotonicty: X ≤ Y ⇒ E[X|Z] ≤ E[Y |Z] a.e.

� Identity: E[Y |Y = y] = y. What is the conditional distribution of Y when
its value is specified? Determine E[Y |Y ] and E[g(Y )].

� Independence: Suppose X and Y are indepdent. Then,

E[X | Y = y] =

∫
x

xfx|Y=y(x | Y = y)dx

=

∫
x

x
fxy(x, y)

fY (y)
dx =

∫
x

xfX(x)dx = E[X]

independent of the value of Y = y.

In other words,

E[X | Y ] =

∫
y

E[X | Y = y]fY (y)dy = E[X]

∫
y

fY (y)dy = E[X].

Similarly, E[g(X) | Y ] = E[g(X)].

� E[Xg(Y )|Y ] = g(Y )E[X|Y ].
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Tower Property and Orthogonality

Tower Property:
E[E[X|Y ]] = E[X].

Proof:

EY [E[X|Y ]] =

∫
y

E[X|Y = y]fY (y)dy

=

∫
y

(∫
x

xfX|Y (x | Y = y)dx
)
fY (y)dy

=

∫
y

∫
x

x fX|Y (x | Y = y)fY (y)︸ ︷︷ ︸
fxy(x,y)

dydx

=

∫
x

x

(∫
y

fXY (x, y)dy

)
︸ ︷︷ ︸

=:fX(x)

dx

=

∫
x

xfX(x)dx = E[X]

Orthogonality: for any measurable function g,

E[(X − E[X|Y ])g(Y )] = 0.

That is, (X − E[X|Y ]) is orthogonal to any function g(Y ) of Y .
Proof:
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Minimum Mean Square Estimator (MMSE)

Proposition: Let g(Y ) be an estimator of X, and the mean square estimation
error be defined as E[(X − g(Y ))2]. Then,

E[(X − E[X|Y ])2] ≤ E[(X − g(Y ))2], for all measurable g.

Proof:

E
[
(X − g(Y ))2

]
= E

[
(X − E[X | Y ] + E[X | Y ]− g(Y ))2

]
=
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L2(Ω,F ,P) Space of Random Variables

� We define L2(Ω,F ,P) (or simply L2) to be the set of random variables with
finite second moment, i.e., L2 = {X | E[X2] < ∞}.

� Properties of L2:

– L2 is a linear subspace of random variables:

(i) aX ∈ L2 for all X ∈ L2 and a ∈ R as E[(aX)2] = a2E[X2] < ∞,
and

(ii) X + Y ∈ L2 for all X, Y ∈ L2

– The most important property: L2 is an inner-product space. For any
two random variables X, Y ∈ L2, let us define their inner product

X · Y := E[XY ].

– Then this operation satisfies the axioms of an inner product:

(i) X ·X = E[X2] ≥ 0.

(ii) X ·X = 0 iff X = 0 almost surely.

(iii) linearity : (αX + Y ) · Z = X · Z + αY · Z.

� Therefore, L2 is a normed vector space, with the norm ∥ · ∥ defined by

∥X∥ :=
√
X ·X =

√
E[X2].

� Similarly, we have ∥X − Y ∥2 := (X − Y ) · (X − Y ) = E[(X − Y )2].
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L2-norm and L2 convergence

� Since L2 is a normed space, we can define a new limit of random variables:

Definition 1. We say that a sequence {Xk} converges in L2 (or in MSE
sense) to X if limk→∞ ∥X −Xk∥ = 0.

� Note that limk→∞ ∥X −Xk∥ = 0 iff limk→∞ E[|X −Xk|2] = 0.

� Definition: We say that H ⊆ L2 is a linear subspace if

(i) for any X, Y ∈ H, we have X + Y ∈ H, and

(ii) for any X ∈ H and a ∈ R, aX ∈ H.

� Definition: We say that H ⊆ L2 is closed if for any sequence {Xk} with

lim
m,n→∞

∥Xm −Xn∥2 = lim
m,n→∞

E[|Xm −Xn|2] = 0,

we have limk→∞Xk
L2→ X for some random variable X ∈ L2.

� Showing linear subspace is easy, but closedness might be hard.

� Important Cases:

1. For random variables X1, . . . , Xk ∈ L2, the set H = {α1X1 + . . . +
αkXk | αi ∈ R} is a closed linear subspace.

2. For any random variables X1, . . . , Xk ∈ L2, the set H = {α0 +α1X1 +
. . .+ αkXk | αi ∈ R} is a closed linear subspace.
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Orthogonality Principle

Theorem 1. Let H be a closed linear subspace of L2 and let X ∈ L2. Then,

a. There exists a unique (up to almost sure equivalence) random variable
Y ⋆ ∈ H such that

∥Y ⋆ −X∥2 ≤ ∥Z −X∥2, for all Z ∈ H.

b. Let W be a random variable. W = Y ⋆ a.e. if and only if W ∈ H and

E[(X −W )Z] = 0, for all Z ∈ H.

Note:

� Y ⋆ is called the projection of X on the subspace H and is denoted by
ΠH(X).

� Two random variables X, Y are orthogonal, X ⊥ Y , if E[XY ] = 0.

� Relate MSE estimator with the above theorem.
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Linear Minimum Mean Square Error (LMMSE) Estimation

� Let Y be a measurement of X and we want to find an estimate of X which
is a linear function of Y minimizing the mean square error. The estimator is
of the form: X̂LMSE(Y ) = aY + b. The goal is to find coefficients a∗, b∗ ∈ R
such that

∥X − (a∗Y + b∗)∥ ≤ ∥X − (aY + b)∥, for any a, b ∈ R.

� Let L(Y ) := {Z | Z = aY + b, a, b ∈ R} be the set of random variables
that are linear functions of Y . One can show that L(Y ) is a closed linear
subspace.

� Then, X̂LMSE(Y ) = ΠL(Y )(Y ).

� From orthogonality property, we know that E[(X − X̂LMSE(Y ))Z] = 0 for all
Z ∈ L(Y ).

� Show that the coefficients a∗, b∗ satisfy

a∗ =
Cov(X, Y )

Var(Y )
, b∗ = E[X]− a∗E[Y ].

� Thus, the LMMSE estimate

X̂(Y ) := a∗Y +b∗ = a∗(Y −E[Y ])+E[X] = E[X]+
Cov(X, Y )

Var(Y )
(Y −E[Y ]).

� We can verify that (X − X̂) ⊥ (αY + β) for all α, β ∈ R.

� What is the mean square estimation error?
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Derivation of LMMSE Coefficients
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LMMSE Coefficients for Multiple Observations

� Let Y = [Y1, . . . , Yk]
⊤ be measurements available to us.

� We wish to determine X̂LMSE(Y ) = a0 +
∑k

i=1 aiYi = ΠL(Y ).

� The goal is to find coefficients that minimize the mean square error

min
a0,a1,...,ak

E[(X − (a0 +
k∑

i=1

aiYi))
2].

� Due to the orthogonality property, the LMMSE estimator satisfies

E[(X − (a∗0 +
k∑

i=1

a∗iYi))Z] = 0 ∀Z ∈ L(Y ).

� We need to cleverly choose k + 1 elements from L(Y ) to set up a system
of k + 1 linear equations and solve for the coefficients.
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Derivation of LMMSE Coefficients

� Hint: Choose 1 and Yi − E[Yi] for all i ∈ {1, 2, . . . , k}.

� If Z = 1, then orthogonality yields

E[(X − (a∗0 +
k∑

i=1

a∗iYi))] = 0.

� If Z = Yj − E[Yj], then orthogonality yields

E[(X − (a∗0 +
k∑

i=1

a∗iYi))(Yj − E[Yj])] = 0.
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Derivation of LMMSE Coefficients

� Finally, from the above analysis, we obtain
a∗1
a∗2
...
a∗k

 = [Cov(Y )]−1Cov(X, Y ).

� The LMMSE is given by

X̂LMSE(Y ) = a∗0 +
k∑

i=1

a∗iYi

= E[X] +
k∑

i=1

a∗i (Yi − E[Yi])

= E[X] + (a∗)⊤[Y − E[Y ]]

= E[X] + Cov(X, Y )⊤[Cov(Y )]−1[Y − E[Y ]].

� When X is also a random vector


X1

X2
...
Xn

, the LMMSE is given by

X̂LMSE(Y ) =


X̂1,LMSE(Y )

X̂2,LMSE(Y )
...

X̂n,LMSE(Y )

 =


E[X1] + Cov(X1, Y )⊤[Cov(Y )]−1[Y − E[Y ]]
E[X2] + Cov(X2, Y )⊤[Cov(Y )]−1[Y − E[Y ]]

...
E[Xn] + Cov(Xn, Y )⊤[Cov(Y )]−1[Y − E[Y ]]

 .
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Example (Previous year End-Sem Question)

X is a three-dimensional random vector with E[X] = 0 and autocorrelation
matrix RX with elements rij = (−0.80)|i−j|. Use X1 and X2 to form a linear
estimate of X3 : X̂3 = a1X1 + a2X2, i.e., determine a1 and a2 that minimizes
mean-square error.
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MMSE and LMMSE Estimator Comparison

� An estimator X̂(Y ) is unbiased if E[X̂(Y )] = E[X].

– Is MMSE estimator unbiased?

– Is LMMSE estimator unbiased?

� Among MMSE and LMMSE estimators, which one has smaller estimation
error?

� If X and Y are uncorrelated, what does the LMMSE estimator give us?
What about MMSE estimator?

� What do you need to know to determine MMSE and LMMSE estimators?

� What if Cov(Y ) is not invertible?

� When X and Y are jointly Gaussian,

X̂LMMSE(Y ) = X̂MMSE(Y )

⇐⇒ E[X|Y ] = E[X] + Cov(X, Y )⊤[Cov(Y )]−1[Y − E[Y ]].

Conditional expectation of X given Y is a linear function of Y .
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