Module B: Random Processes

A random process is a family/ collection of random variables indexed by a
set 7', stated at {X;}ier.

The set T is often interpreted as “time.”

e When T' = {1,2,....n}, then {X;}1er = is a random vector.

e When T'={1,2,3,....} =N, then {X;her = (X1, X5, X3, .....) is called
a discrete-time random process.

e When " = R, {X;}ier is an uncountable collection of random variables
and is called a continuous-time random process.

Recall: X;: Q2 — R fixw: Xy(w) : function of ¢ is called the sample path.

1 wp %
Example X; = cos(2m wt) where w the random outcome  w =42 wp 3

3 w.p %
How do we specify a random process { X ter: To fully specify a random
process, for any finite collection of indices (1, %o, ...... tn), the joint distribution

(Xt,, Xtyy -o.... Xy, ) should be provided.



Deterministic vs Stochastic Dynamical Systems

e Deterministic: starting from xy € R” for all t > 0

ri1 = f(t,2).
More generally: ;1 = f(t,x¢,...,24_) where m is the memory of the

system.

Example: n = 1, starting at o > 0, a simple (deterministic) population
growth model:
Li41 = ToLt-

Note that z; = rfzo.

e Random process: starting from xy € R" for all £ > 0

T = [ (24, we).
More generally: xy1 = f(t, 2, ..., T, W) where m is the memory of the
system and wy is a random variable/vector.

Example: Beginning phase of a pandemics: for some initially infected pop-
ulation xy > 0, the population of infected people at the beginning phase of
a pandemics can be modeled by:

Ti41 = Tt Ly,

where 7; is a non-negative random variable independent of r; for & < ¢ with
some E[r] = 7.



Examples of Random Processes

e Averaging: suppose that {w;} is an independently and identically distributed
random process with Efwy]| = p.

How does the running average z; = “*=+% behave as t — 00?

In this case:

tll?t = (t — 1)$t_1 + wy

1 1
ry = (1— g)%ﬁ—l =+ Zwt
Ty = fi(@i1, wy)
1 1
fi(z,w)=(1—-=)xr + -w.
t t
e What happens if we use other weights such as: z; = %7

e What if we don’t have any weights at all, i.e., z; = wy + ... + w;? What
happens?

e What can we say about asymptotic behavior of such processes in general?



Terminology

For a random process X = {X;}ier

(a) Mean function:
ux(t) = ELX)
(b) Autocorrelation function:
Rx(t1,t2) = E[ X}, X4,]
(c) Autocovariance function:

Cx(t1,t2) == Rx(t1,t2) — px(t1)px(t2)



For an i.i.d. process

If the random process { X;} is i.i.d., then
(a) For the mean function:
px (t) = E[X,] = E[X].
Therefore, we have a constant mean function.
(b) For the Autocorrelation function:
E[X7] = E[X7] b=ty

RX(tl,tQ) = E[thXtQ] = {E[th]E[XtQ] _ /LX(tl)MX(t2) _ MX(O)Q t 7§ to .

(c) Autocovariance function:

var(Xl) tl = tQ
0 ty £ty

That is, the random process is uncorrelated in time.

Cx(t1,t2) = Rx(t1,t2) — px(t)px(t2) = {

Plus many other properties are true.



Stationary Processes

A random process is Strict Sense Stationary (SSS) if the (finite) joint
probability distributions (CDFs) are invariant under shift, i.e., for all t; <
o <---<tpandall ag,...,a; € R:

X (o, ak) = Fx, L ox, (o, o)

for all —t; < s.
Example: i.i.d. processes as

Fx, ..x, (a1,...,ap) = Fx, (a1) -+~ Fx, (ar) = Fx(a1) - - Fx (o).

A random process is Wide Sense Stationary (WSS) if
1. the mean function does not depend on time ¢, and

2. the Rx(t1,t3) = f(t1 — t2), i.e., autocorrelation function is just a
function of t; — ts.

Example: i.i.d. processes

For two random processes { X;}icr and {Y; }ier,

e Cross-correlation Rxy (t1,t2) = E[X (t1)Y (t2)] # E[Y (t1) X (t2)]

e Cross-covariance Cxy (t1,t9) = cov[X(t1), Y (t2)] = Rxy (t1,ta)—px (t1)py (t2)
{Xi}ier and {Y; }ier are jointly WSS if

e Both {X;}ier and {Y;}icr are individually WSS

o Rxy(t1,t2) = Rxy(t1 — t2)



Example: Random Walk

Let { X} be a random walk, given by X;.1 = X} + Z; where {Z;} is i.i.d. with
zero mean and variance 02 and Xy =0 a.s.

(a) For the mean function:
px(k) = E[X,_1 + Z1_1] = E[X}_1].
Therefore, ux(k) = ux(k—1) = ... = ux(0) = 0.
(b) For the Autocorrelation function: Let &y < ko:

Rx (k1, ko) = E[ Xy, Xy, = E[ Xy, (Xp, — Xi, + X3,)]
(X, (Xk, — Xi)] + E[X}]
[Xlgl] = k10'2.

E
E

Therefore, Rx(k1,ko) = min(ky, ke2)o?. Thus, such a process is not WSS
and hence, not an SSS.

(c) Autocovariance function: since the process is zero mean C'y = Ry.



Continuous Time Random Processes

e Example: for a deterministic « > 0 and frequency w, let X; = « cos(wt + 6)
where 6 ~ U([0, 27]).

— The mean function:

1 2m
px(t) = E[acos(wt + 6)] = 2—/ a cos(wt + 0)df = 0.
T Jo

— The correlation function:

Rx(t1,t2) = Ela cos(wty + 0)a cos(wty + 6)]

1 27
= — o cos(wty + ) cos(wty + 0)do
2m 0
042 2m
= — cos(wty + 0) cos(wty + 0)do
2T 0
042 2 &2 2m
= E ; Cos(w(tl + tg) + 29)619 + E/O COS(W(tl - tz))d(g
042 2m
= — cos(w(ty — to))dl
4 0

2

= % cos(w(ty — ta)).



Properties of WSS Processes

e Some properties of a WSS process { X;}:
1. Rx(1) = E[X(t)X (¢t +7)] is an even function, i.e., Rx(7) = Rx(—7).
2. Rx(O) > RX(’7'> for all 7.

3. For independent processes { X (¢)} and {Y ()} with zero mean, Rx.y(7) =
R)((T) + Ry(T).

Proof on board in class.



Ergodic Behavior

e Statistical mean: px(t) =E[X(t)] = [ o Xi(w) dPx,(w).
o If we have M samples of X, , denoted (7,77 ,...,Z}"), drawn from ]P’Xt :

then we can estimate the statistical average as fix(t1) = & > 1" Ti .

e However, suppose we have a single sample path of the random process given
by x1(wp), x2(wp), - ... Then, we can find the temporal mean and au-
tocorrelation as

X(wp) = %/0 x(wo)dt
Ralr) = 7 | suerln)atund

e Do the temporal and statistical averages coincide? Yes, when the process is
ergodic. The random process { X }ier is ergodic when

E[X:] = lim —/ Xi(wo)

T—oo T

It is implicit that for ergodic process, E[X;] = ux(t) = px for all t.

e For a discrete-time process, we replace the integral by summation to compute
temporal averages.

Mean-Square Ergodic Theorem: Let { X; };cr be a wide sense stationary pro-
cess with E[X;] = px and auto-correlation Rx(7), and let the Fourier
transform of Rx (1) exists. Let X7(w) = 5= f_TT Xi(w) dt. Then,

Jim E[(X7 — 1)’ = 0.

In other words, X7 converges to j1x in mean-square sense.

The implication of the above theorem is that, we can approximate mean/ Corre-
lation by temporal average computed from a single sample path.

10



Random Process and LTIl System

e Suppose we have a LTI system with impulse response h(t). If we apply input
signal z(t) to this system, the output signal y(t) is given as

y(t) = / T h(m)a(t — T)dr = a(t) @ h()

oo

e Now, suppose the input X (¢) is a random process with mean uy(t) and
autocorrelation Rx(t1,t2). Determine the mean and autocorrelation of Y.

o If X (t)is WSS, is Y () also WSS?

Yes. Derivation in class.

e Are X () and Y (¢) jointly WSS?

Yes. Derivation in class. We can show that

Ryx(T) = h(T) ® RX(T)

11



Power Spectral Density (PSD)

e From the above discussion, we have Ry x(7) = [ h(s)Rx (7 — s)ds.

e For a CT WSS process X (t) (that is integrable), we can find the “power
spectral density” at frequency w (rad/s):

oo

Sx(w) = FT[Rx(T)] :/_ Rx(7)e “dr

oo

e Thus, Syx(w) = H(w)Sx(w) where H(w) is the Fourier transform of the
impulse response h(t).

e We can further show that

Ry(T h(T)@ny( )

)
— Sy(w) = H(w) X Sxy( )
In addition, Syx(w)= H(w) x Sx(w)
Since y(T) = RYX( ), we have Sxy(w) = Syx(w)*
= Sy(w) = [H(w)|*Sx(w).

12



Discrete-time WSS Processes

e A discrete-time random processs (X}, ),en is a collection of random variables
(X1, Xo, oo, Xy o).

e Mean function px[n| = E[X,].

e Autocorrelation function Rx[ni,no| = E[X,,, X,,].

e Autocovariance function Cx[ny, ny] = cov(X,,, Xy,,).
e Cross-correlation function Rxy[ni,ns| = E[X,,Y,].

e For X to be W.S.S, the following properties need to be satisfied.

1. pux[n] = p independent of n.

2. Rx[nl,ng] = Rx[ng — nl].

e Properties such as ergodicity and output of LTI system to a WSS input
continue to hold in an analogous manner.

13



Module B.2: Markov Chains

Markov Process: A random process whose probability distribution at time
t + 1 given the past only depends on its value at time ¢. Specifically,

Pr(Xpn € A| X, ..., X1) =Pr(Xp1 € A| Xy).
More generally

Pr(Xpm € A| X,y oo, Xpy) = Pr(Xp1 € A | Xi,),
forany ki1 < k1 < ... <k; <k.

If the (time) index set is continuous, the corresponding random process is
called Markov Process.

In this course: we focus on discrete-time Markov process where each random
variable X, is a discrete random variable that takes values from a finite set.

Example: Infectious disease with reinfection where an individual can be in
one of two possible states: susceptible (S) and infected (I).

14



Formal Definition

e Definition: We say that a (DT) random process { X} is a Markov chain
over a discrete-space if

1. X}'s are all discrete random variables with common support S, i.e.,
Pr(X; € S) =1 for all k, where S is countable, and

2. foralle>1,all 1<k <ko<...<k;<k,andall1,...,7,s€ S:

Pr(Xii1=s| Xg, =iy, X, = 51) = Pr( X1 = s | Xi, = 54).
(1)

e S is called the state space and each s € S is called a state. Relation (1) is
called Markov property.

o If S is finite, {X}} is called a finite state Markov chain.

15



Transition Probabilities

e From this point on assume S is a finite set with elements, S = {1,...,n}.
Unless otherwise stated, many of the following discussions hold for n = oo
but for convenience we assume that n is finite.

e For any k, let 7 be the (marginal) probability mass function Xy, i.e.,
7Tk(2) = PI‘(Xk = Z)

Note that the vector 7, is non-negative and 327, 7.(7) = 1. Such a vector
is called a stochastic (sometimes probability) vector. It is convenient to
assume that 7, is a row vector.

e For any 1 < ky < ko, define the matrix (array)
Biy iy (6,) = Pr( X, = J | X, = 1)

o Py 1, € R"*" is called the transition matrix of MC from time £; to time
ks. In other words,
Thy = Ty Dl -

e We also (naturally) define Py, := I, where [ is the n x n identity matrix.

16



Properties of Transition Matrices

e Definition: We say that a n x n matrix A is a row-stochastic matrix if (i) A
is non-negative, and (ii) A1 = 1 (or each row sums up to one).

e Properties of the transition matrices:

— Row-stochastic: For any k < m, P, is a row-stochastic matrix: The
non-negativeness follows from the definition. Also, each row adds up to
one:

ZPk,m(z'j ZPr m=7|Xp=1) =1
=1

— For any £ < m, we have:
T = Tk Phm.

This follow from the fact:

mm(j) = Pr(X ZPr m =7, Xp =1)

— Zpr(xm =7 | Xp = 1) Pr(X; = 1)

= [ LPg ;-

17



Properties of Transition Matrices cont.

e Properties of the transition matrices cont.:
— Semigroup property: For any £ < m < ¢, we have:
Priy= PimPyg
To show this, let 7, 7 being fixed. Then, we have
Pra(ij) = Pr(X, = j | Xi = 1)

= Pr(X,=j,Xp =] X; =1)
/=1
= Pr(X,=j| X=Xy =0)Pr(X,, =] X} =)

(by Markov property) = ZPr(Xq =j| Xpn=0Pr(X,, =0 | Xy =1)

= Penli, ) Prg(l, )

/=1
- [Pk,mpm,q]i,j-

This property is widely known as Chapman-Kolmogorov equation.
— For DS Markov chains, the second property, and the Chapman-Kolmogorov

property imply:

Ty =Py =mPioPy = =mP1aPa3- - Py

18



Homogeneous Markov Chains

Definition: We say that a Markov chain {X}} is (time-)homogeneous if P, 5 =
Py, m+1 does not depend on m.

e Denote P := P,,,,4+1. P is called the one-step transition matrix of the
underlying Homogeneous Markov chain.

e P is a row-stochastic matrix.
e For Homogeneous Markov chains, we have P, , = P"™™.
e Distribution of X}, is given by 7, = m,_1 P = moP*.

e With the abuse of notation, for a Homogeneous Markov chain P is also
called (one-step) transition probability matrix (TPM).

e For homogeneous markov chains, the initial distribution and the one-step
TPM completely specifies the random process.

19



Graph-Theoretic Interpretation

e Consider a homogeneoys MC on state space S with TPM P.

e Consider a directed weighted graph G = (V, E, P) where
-V=5={1,...,n},
- E={(i,5) | P; >0}, and
— P;; is the weight of edge 1, j.

e Then, the MC can be viewed as a random walk on this weighted graph.

e Example: infectious disease model. Determine the TPM, and simulate the
MC.

0.9

0.05 0.95

Susceptible Recovered

0.2

0.8
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Classification of States

We introduce a few basic definitions.

e An m-step walk on a graph G = (V. E) is an ordered string of nodes
00,11, - - -, 4 such that (ix_1,1;) € E forall k € {1,2,...,m}.

e A path is a walk where no two nodes are repeated. A cycle is a walk where
the first and last nodes are identical and no other node is repeated.

o Let G = (V,E, P) be the graph associated with a MC with TPM P. A
state j is accessible from state i, denoted i — 7 if there is a walk in the
graph from node 7 to node j.

e In other words, there exists nodes i1, is, . . . , iy such that (¢,41) € F, (i1,i2) €
E, ... (ix,j) € E. The length of this walk is k& + 1.

e Equivalently, P;, > 0,P,;, >0,...,P, ;> 0. Thus, [P**!];; > 0.

1,02

e Two states ¢ and j communicate if ¢+ — 7 and 7 — 7. This is denoted by
14> 7.

e Naturally, if i <> 7,7 <> k, then 7 < k.

e A subset of states C' C V' is a communicating class if

l.i:eC,jeC = i+ 7, and
2.i€Cjgd C = i j.

The set of states can be partitioned into distinct communicating classes.
Each state belongs to exactly one communicating class.

Definition: A state ¢ is called recurrent if : - 5 = j — 7. A state is
transient if it is not recurrent.

If a state is recurrent, there is no path to a state from which there is no return.

21



Classification of States Cont.

Theorem: In a given communicating class, either all states are recurrent
or all states are transient. Furthermore, in a finite-state MC, there is at least
one recurrent communicating class.

e A matrix P is irreducible if for any i, j, [P¥i];; > 0 for some k;; > 1. In
other words, ¢ <+ j for every pair of states 1, .

e Graph theoretic interpretation: P is irreducible if there is a directed path
between any two nodes on the graph.

e In this case, there is a single communicating class which is recurrent.

Definition: The period ~; of a state ¢, to be greatest common divisor
(gcd) of ged(k | [P > 0).

e Graph theoretic interpretation: gcd of lengths of all paths from i to itself.
1 : : :
e Example: for P = {(1) 0], determine the period of its states.

e All states in the same communicating class have the same period.
e We say that a non-negative matrix P is aperiodic if ; = 1 for all i.

e A (homoegeneous) Markov chain with the transition matrix P is said to be
irreducible (aperiodic) if P is irreducible (aperiodic).

22



Stationary and Limiting Distribution of a Markov Chain

o Let P € R™" be the single-step transition probability matrix of a homoge-
neous markov chain.

e Let my be the distribution of initial state X|,. It follows that =, = 7y P".

A vector m € R is called invariant/stationary/steady-state distribution
of the markov chain with TPM P if

e 7" is a probability vector, i.e., 7*(¢) > 0,> "  7*(¢) = 1, and
o T =T"P.

If 7, = 7* for some k, then 7, = 7 for all m > k.

Fundamental questions in the theory of (homogeneous) Markov chains:
e Existence and Uniqueness: When does 7* exist? Is it unique?
e Ergodicity: When unique, under what conditions, 7 — 7*7
e Mixing time: How fast does it converge to 7*7?

e Occupation Probability: How often do we spend time on a given state?

We know that the TPM P satisfies the following properties.
e P is non-negative.

e P is row-stochastic, which implies that all eigenvalues reisde on or within
the unit circle, and 1 is an eigenvalue.

e Note: 7" is nothing but the left eigenvector of eigenvalue 1.

e Thus, existence and uniqueness of stationary distribution is equivalent to

showing existence and uniqueness of a non-negative left eigenvector of the
TPM.

23



Example

o Let P = < )
e Solving for (u,v)P = (u,v) with v = 1 — u, we get u =
this unique?

e What about P = [7

W|—Do|—
O INOND | =

24

2

5

and v =

W



Linear Algebra Viewpoint

e Give a matrix A € R™*", we define its spectral radius as

p(A) :={|A\| : A s an eigenvalue of A}.

e An eigenvalue of A is called semi-simple if its algebratic multiplicity =
its geometric multiplicity.

— algebratic multiplicity: number of times the eigenvalue appears as
root of the characteristic equation

— geometric multiplicity: number of linearly independent eigenvectors
associated with this eigenvalue

It is called simple when both multiplicities are equal to 1.

e The matrix A is called

— semi-convergent if limy,_,,, A" exists, and

— convergent if it is semi-convergent and limy_,., A% = 0,,,..

Theorem 1. A matric A € R"*" is
e convergent if and only if p(A) < 1, and

e is semi-convergent if and only if either (i) p(A) < 1 or (i) 1 is
a semi-stmple eigenvalue and all other eigenvalues have magnitude
strictly less than 1.

25



Perron-Frobenius Theorem

A matrix A € R™" is
e non-negative if A;; > 0 for all 7, ;.

e irreducible if Zz;é AF is positive, i.e., all entries are strictly larger
than 0.

e primitive if there exists some k such that AF > 0.

e positive if A;; > 0 for all ¢, j.

Theorem 2. A matriz A € R™" be a non-negative matriz.

o Then, there exists a real eigenvalue N > |u| > 0 where p is any
other ergenvalue. The left and right eigenvectors associated with A
are non-negative.

o If A is irreducible, X\ > |u| is strictly positive and simple. The left
and right eigenvectors associated with A are unique and positive.

o If A is primitive, A > |u|. The left and right eigenvectors associated
with A are unique and positive.

Let P € R™ " be the single-step transition probability matrix of a homoge-
neous markov chain.

e Is P non-negative?
e When is P irreducible? Does it imply P is semi-convergent?
e When is P primitive? Does it imply P is semi-convergent?

e When is P positive? Does it imply P is semi-convergent?

26



Case 1: MC with Single Recurrent Class

e In this case, TPM P is irreducible. (why?)

e From PF Theorem, largest eigenvalue 1 is simple, and left eigenvector is
unique and positive. In other words, 7 exists and is unique.

e However, if the states have period d > 1, then there are d eigenvalues on
the unit circle that are equally spaced. Such a matrix is not primitive, and
hence not semi-convergent.

e When the states are aperiodic (i.e., period d = 1), then it is primitive, and
P is semi-convergent.

e A MC which is both irreducible and aperiodic is called ergodic.

e We can show that

1 wr W2...WH
, 1 W] Wy ...W,
lim PF = (1)kva = | [wl Wy ... wn] = _ =: P,
k—o0 : :
1 W] Wy ...Wy,

where v is the right eigenvector and w is the left eigenvector of 1. Note that
w=T7".

e In addition, for any initial distribution 7, we have

lim 71, = lim 7P = myPy = 7.
k—oo k—o0
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Case 2: MC with one Recurrent Class and some Transient
States

e Such a markov chain is called a unichain. The TPM P is no longer irre-
ducible and can be partitioned as

where the first m, states belong to the recurrent class, and the remaining
states being transient.

e Though P is not irreducible, the submatrix Pgrg is irreducible which has a
unique stationary distribution 73 € R,

e Then, the vector 7* = [}, O1xn_m,| is the unique stationary distribution
of P.

e If the states in the recurrent class is apeiodic, then P is semi-convergent.
Such a MC is called an ergodic unichain.

The following result characterizes the uniqueness and limiting behavior of the
stationary distribution.

Theorem 3. Consider a finite-state homogeneous MC.

o A MC has a unique stationary distribution 7 if and only if it is a
unichain (i.e., it has a single recurrent class)

o Letlimy_,oo P* = P.. Fach row of Py is identical and equal to 7 if
and only if MC is an ergodic unichain (unichain with an aperiodic
recurrent class).
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Case 3: MC with Multiple Recurrent Classes

e The TPM P can be partitioned as

my , M2 , M3 n_zmz
P 0 0 0
0  Pg,1 0 1 0
P = | -—————- L S —————-
L0 0 i PRy O

where the first m; states belong to the first recurrent class, and so on.

e For each recurrent class, the corresponding submatrix Pg, is irreducible which
has a unique stationary distribution 77 € R,

e Then, the vector [0 77 ...0] is a stationary distribution of P. Thus,
stationary distribution is not unique.

e Every recurrent class adds one multiplicity to the eigenvalue 1.

e P is semi-convergent only when every recurrent class is aperiodic. In this
case, limy_,o, P¥ = P, but P, has non-identical rows. However, rows
corresponding to states in the same recurrent class are identical.
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Ergodic Property

e Let the initial state X, = 1.

o T; ;= inf{k > 1| X}, = i} (first passage time): smallest time index at
which the state takes value ¢

o fi:=P(T; < 00): return probability
e m; := E[T;]: mean return time
o U =) 1, 1¢x,—; number of visits to 7 starting from 1.

e State 7 is recurrent if and only if f; = 1. State 7 is transient if and only if
fi < 1.

Theorem: If state i is recurrent, then E[v;] = oo. If state i is transient,
then E[y;] < oo.

Theorem: Suppose the TPM is irreducible and let 7* be the unique sta-
tionary distribution. Then, m; = W%(l) for all states 7.

Theorem: Suppose the TPM is irreducible and aperiodic (i.e., ergodic)
with the stationary distribution 7*. Then

1 .
T}l_{l(’)lo - ; 1(x,—iy = 7" (i) almost surely.
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Application: Page-Rank Algorithm

e Original idea of Google search ranking: Model a browsing person as a random
walker over the graph of internet!

e Let G = (V, FE) where d = number of webpages and there is a node for each
webpage.

e (i,7) € FE if i has a link to j.
e Then a person can be modeled as a random walker on G where

1 .
+— e N,

0 otherwise.

e Problem with this? Corresponding Markov chain is not irreducible.

e Now let us add a small reset probability, i.e., consider a Markov chain with
one-step transition matrix

A

P=(1—-a)P+al,

where a € (0,1) is a small reset parameter and .J is the d x d matrix with
all elements being 1/d.

e Then a Markov chain with the transition matrix P is irreducible and aperiodic
(why?).

e Therefore, it is ergodic, has a unique stationary distribution 7*, and 7, — 7*
as k — oo.

e More importantly average visit percentage of state (webpage) i by time
k— 7]

e Therefore, webpage i is superios to j if m; > 7.

e How does Google find 7*7
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Vector-valued Random Process

A random process X = {X;};cr may be such that each X; is a random vector
taking values in R"™. Then,

(a) Mean function:
ux(t) = B[X,] € R”
(b) Autocorrelation function:
Rx(t1,t2) :=E[X,, X, ] € R™"
(c) Autocovariance function:
Cx(t1,1t9) := cov(Xy,, X3,) € R™",

For WSS, every element of Cx(t1,t2) should only depend on ¢ — ;.
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Other Class of Processes

e A stochastic process { X;}ier is called a Gaussian Process if for every finite
set of indices £y, to, . . ., T, the collection of random variables X, , X;,,..., X;
is jointly Gaussian.

k

e A stochastic process which is both Gaussian and Markov is called Gauss-
Markov Process.

e A stochastic process { X; }ser is said to have independent increments if
for every finite set of indices ¢4, o, . . ., t;, the collection of random variables
Xi, — Xy, Xy — Xby, ..., Xy, — X4, are mutually indepdenent.

e The increments are stationary if X;, — Xy, and X, s — Xy 45 have the same
distribution irrespective of the value of s.

¢ Brownian Motion/Wiener Process: A stochastic process {X;}er is
a Wiener Process if

1. Xy =0,
2. the process has stationary and independent increments,
3. Xt — X5 ~ N(0,0%(t — s)),

4. the sample paths are continuous with probability 1.

For a Wiener process, one can show that the sample paths are not differen-
tiable by showing

. 2
o [X (A X(t)} o
A—0 A
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Dynamical System

e Deterministic discrete-time dynamical system in state-space form is given
by:
karl:fk(xk'auk)) k:()?la"'a
where x5 € R” is the state at time k and u; € R™ is the input at time k.
e State variable: summarizes past information such that if we know the state

at time k£ and the input for all ¢ > k, then we can completely determine the
future states.

e In other words, if we know the current state, we do not need to store past
states and inputs to predict the future.

o If fr = f for all k, the system is time-invariant.
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Stochastic Dynamical System

e Stochastic Model: the future state is uncertain even if the current state
and input are known. There are two ways of representing such a system.
Both are equivalent under reasonable assumptions.

e State-space form:

oy | :fk(a:k,uk,wk), k?:(),l,...,

where wy, € R" is a random variable/noise/disturbace which is not under
our control (unlike input u).

e Note that {wy, ws, ..., } is a discrete-time random process, asis {z1, zo, . .., }.

e Example: xj.1 = axy + wy, where wy € N(c,1) and xy = 5. What will the
trajectories look like for different values of a and ¢? What is the distribution
of x; as k — oo? Is this process Markovian?
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Stochastic Linear System

A stochastic linear system is formally defined as
Tpy1 = Arxr + Brug + wyg.

Problem: recursively determine the mean and variance of x;, given that E[w;] = 0,
var(wg) = @ and zg is known.
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Representation via Transition Kernel

Recall the state-space form: zj1 = fi(vk, uk, wi), k=0,1,....

Here, the distribution of x;1 can be found in terms of the function f; and
indirectly, as a function of basic random variables (g, wy, ..., wy).

The alternative approach is to directly specify the distribution of x; 1 instead
of relying on the function fj. In particular, the conditional distribution
of X1 given x; and uy is specified for all values of x; and wy,.

For the dynamical system to be Markovian, we need to show that for every
Borel subset A and for all &,

P(Xpt1 € Alzo, ug, 1,01, ..o T, up) = P(Xgpr € Alzg, up).

Is the above property always true?

37



Observation Model

¢ In many instances, the states can not be directly measured.

e Instead, we observe “output” quantities that depend on the state as

Yk = gk(xkavk)a

where v is a random variable termed “measurement noise.”
e Alternatively, the conditional distribution of y; given x;. is specified.
e In case of a linear system, y. = Crxy + vg.

e One problem of significant interest is to infer or estimate the state x; given
the measured / output quantities yy in an online and recursive manner.

e Module C will tackle this issue.
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