
Module B: Random Processes

A random process is a family/ collection of random variables indexed by a
set T , stated at {Xt}t∈T .

The set T is often interpreted as “time.”

� When T = {1, 2, .....n}, then {Xt}t∈T =


X1

X2
...
Xn

 is a random vector.

� When T = {1, 2, 3, ....} = N, then {Xt}t∈T = (X1, X2, X3, .....) is called
a discrete-time random process.

� When T = R, {Xt}t∈T is an uncountable collection of random variables
and is called a continuous-time random process.

Recall: Xt : Ω → R fix ω: Xt(ω) : function of t is called the sample path.

Example Xt = cos(2π ωt) where ω the random outcome ω =


1 w.p 1

3

2 w.p 1
3

3 w.p 1
3

How do we specify a random process {Xt}t∈T : To fully specify a random
process, for any finite collection of indices (t1, t2, ......tn), the joint distribution
(Xt1, Xt2, ......Xtn) should be provided.
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Deterministic vs Stochastic Dynamical Systems

� Deterministic: starting from x0 ∈ Rn for all t ≥ 0

xt+1 = f(t, xt).

More generally: xt+1 = f(t, xt, . . . , xt−m) where m is the memory of the
system.

Example: n = 1, starting at x0 > 0, a simple (deterministic) population
growth model:

xt+1 = r0xt.

Note that xt = rt0x0.

� Random process: starting from x0 ∈ Rn for all t ≥ 0

xt+1 = f(t, xt, wt).

More generally: xt+1 = f(t, xt, . . . , xt−m, wt) where m is the memory of the
system and wt is a random variable/vector.

Example: Beginning phase of a pandemics: for some initially infected pop-
ulation x0 > 0, the population of infected people at the beginning phase of
a pandemics can be modeled by:

xt+1 = rtxt,

where rt is a non-negative random variable independent of rk for k < t with
some E[rt] = r0.
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Examples of Random Processes

� Averaging: suppose that {wt} is an independently and identically distributed
random process with E[wk] = µ.

How does the running average xt =
w1+...+wt

t behave as t → ∞?

In this case:

txt = (t− 1)xt−1 + wt

xt = (1− 1

t
)xt−1 +

1

t
wt

xt = ft(xt−1, wt)

ft(x,w) = (1− 1

t
)x+

1

t
w.

� What happens if we use other weights such as: xt =
w1+...+wt√

t
?

� What if we don’t have any weights at all, i.e., xt = w1 + . . . + wt? What
happens?

� What can we say about asymptotic behavior of such processes in general?

3



Terminology

For a random process X = {Xt}t∈T

(a) Mean function:

µX(t) := E[Xt]

(b) Autocorrelation function:

RX(t1, t2) := E[Xt1Xt2]

(c) Autocovariance function:

CX(t1, t2) := RX(t1, t2)− µX(t1)µX(t2)
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For an i.i.d. process

If the random process {Xt} is i.i.d., then

(a) For the mean function:

µX(t) = E[Xt] = E[X0].

Therefore, we have a constant mean function.

(b) For the Autocorrelation function:

RX(t1, t2) = E[Xt1Xt2] =

{
E[X2

t1
] = E[X2

1 ] t1 = t2

E[Xt1]E[Xt2] = µX(t1)µX(t2) = µX(0)
2 t1 ̸= t2

.

(c) Autocovariance function:

CX(t1, t2) = RX(t1, t2)− µX(t1)µX(t2) =

{
var(X1) t1 = t2

0 t1 ̸= t2
.

That is, the random process is uncorrelated in time.

Plus many other properties are true.
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Stationary Processes

A random process is Strict Sense Stationary (SSS) if the (finite) joint
probability distributions (CDFs) are invariant under shift, i.e., for all t1 <
t2 < · · · < tk and all α1, . . . , αk ∈ R:

FXt1
,...,Xtk

(α1, . . . , αk) = FXt1+s,...,Xtk+s
(α1, . . . , αk)

for all −t1 ≤ s.
Example: i.i.d. processes as

FXt1
,...,Xtk

(α1, . . . , αk) = FXt1
(α1) · · ·FXt1

(αk) = FX(α1) · · ·FX(αk).

A random process is Wide Sense Stationary (WSS) if

1. the mean function does not depend on time t, and

2. the RX(t1, t2) = f(t1 − t2), i.e., autocorrelation function is just a
function of t1 − t2.

Example: i.i.d. processes

For two random processes {Xt}t∈T and {Yt}t∈T ,

� Cross-correlation RXY (t1, t2) = E[X(t1)Y (t2)] ̸= E[Y (t1)X(t2)]

� Cross-covariance CXY (t1, t2) = cov[X(t1), Y (t2)] = RXY (t1, t2)−µX(t1)µY (t2)

{Xt}t∈T and {Yt}t∈T are jointly WSS if

� Both {Xt}t∈T and {Yt}t∈T are individually WSS

� RXY (t1, t2) = RXY (t1 − t2)
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Example: Random Walk

Let {Xk} be a random walk, given by Xk+1 = Xk +Zk where {Zk} is i.i.d. with
zero mean and variance σ2 and X0 = 0 a.s.

(a) For the mean function:

µX(k) = E[Xk−1 + Zk−1] = E[Xk−1].

Therefore, µX(k) = µX(k − 1) = . . . = µX(0) = 0.

(b) For the Autocorrelation function: Let k1 ≤ k2:

RX(k1, k2) = E[Xk1Xk2] = E[Xk1(Xk2 −Xk1 +Xk1)]

= E[Xk1(Xk2 −Xk1)] + E[X2
k1
]

= E[X2
k1
] = k1σ

2.

Therefore, RX(k1, k2) = min(k1, k2)σ
2. Thus, such a process is not WSS

and hence, not an SSS.

(c) Autocovariance function: since the process is zero mean CX = RX .
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Continuous Time Random Processes

� Example: for a deterministic α > 0 and frequency ω, let Xt = α cos(ωt+ θ)
where θ ∼ U([0, 2π]).

– The mean function:

µX(t) = E[α cos(ωt+ θ)] =
1

2π

∫ 2π

0

α cos(ωt+ θ)dθ = 0.

– The correlation function:

RX(t1, t2) = E[α cos(ωt1 + θ)α cos(ωt2 + θ)]

=
1

2π

∫ 2π

0

α2 cos(ωt1 + θ) cos(ωt2 + θ)dθ

=
α2

2π

∫ 2π

0

cos(ωt1 + θ) cos(ωt2 + θ)dθ

=
α2

4π

∫ 2π

0

cos(ω(t1 + t2) + 2θ)dθ +
α2

4π

∫ 2π

0

cos(ω(t1 − t2))dθ

=
α2

4π

∫ 2π

0

cos(ω(t1 − t2))dθ

=
α2

2
cos(ω(t1 − t2)).
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Properties of WSS Processes

� Some properties of a WSS process {Xt}:

1. RX(τ) = E[X(t)X(t+ τ)] is an even function, i.e., RX(τ) = RX(−τ).

2. RX(0) ≥ RX(τ) for all τ .

3. For independent processes {X(t)} and {Y (t)} with zero mean, RX+Y (τ) =
RX(τ) +RY (τ).

Proof on board in class.
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Ergodic Behavior

� Statistical mean: µX(t) = E[X(t)] =
∫
ω∈ΩXt(ω) dPXt

(ω).

� If we have M samples of Xt1, denoted (x̂1t1, x̂
2
t1
, . . . , x̂Mt1 ), drawn from PXt1

,
then we can estimate the statistical average as µ̂X(t1) =

1
M

∑m
i=1 x̂

i
t1
.

� However, suppose we have a single sample path of the random process given
by x1(ω0), x2(ω0), . . .. Then, we can find the temporal mean and au-
tocorrelation as

X(ω0) =
1

T

∫ T

0

xt(ω0)dt

RX(τ) =
1

T

∫ T

0

xt+τ(ω0)xt(ω0)dt

� Do the temporal and statistical averages coincide? Yes, when the process is
ergodic. The random process {Xt}t∈T is ergodic when

E[Xt] = lim
T→∞

1

T

∫ T

0

Xt(ω0) dt.

It is implicit that for ergodic process, E[Xt] = µX(t) = µX for all t.

� For a discrete-time process, we replace the integral by summation to compute
temporal averages.

Mean-Square Ergodic Theorem: Let {Xt}t∈T be a wide sense stationary pro-
cess with E[Xt] = µX and auto-correlation RX(τ), and let the Fourier

transform of RX(τ) exists. Let XT (ω) =
1
2T

∫ T

−T Xt(ω) dt. Then,

lim
T→∞

E[(XT − µX)
2] = 0.

In other words, XT converges to µX in mean-square sense.

The implication of the above theorem is that, we can approximate mean/ Corre-
lation by temporal average computed from a single sample path.
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Random Process and LTI System

� Suppose we have a LTI system with impulse response h(t). If we apply input
signal x(t) to this system, the output signal y(t) is given as

y(t) =

∫ ∞

∞
h(τ)x(t− τ)dτ =: x(t)⊛ h(t).

� Now, suppose the input X(t) is a random process with mean µX(t) and
autocorrelation RX(t1, t2). Determine the mean and autocorrelation of Y .

� If X(t) is WSS, is Y (t) also WSS?

Yes. Derivation in class.

� Are X(t) and Y (t) jointly WSS?

Yes. Derivation in class. We can show that

RY X(τ) = h(τ)⊛RX(τ)
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Power Spectral Density (PSD)

� From the above discussion, we have RY X(τ) =
∫∞
∞ h(s)RX(τ − s)ds.

� For a CT WSS process X(t) (that is integrable), we can find the “power
spectral density” at frequency ω (rad/s):

SX(ω) := FT [RX(τ)] =

∫ ∞

−∞
RX(τ)e

−jωτdτ

� Thus, SY X(ω) = H(ω)SX(ω) where H(ω) is the Fourier transform of the
impulse response h(t).

� We can further show that

RY (τ) = h(τ)⊛RXY (τ)

=⇒ SY (ω) = H(ω)× SXY (ω)

In addition, SY X(ω) = H(ω)× SX(ω)

Since, RXY (τ) = RY X(τ), we have SXY (ω) = SY X(ω)
∗

=⇒ SY (ω) = |H(ω)|2SX(ω).
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Discrete-time WSS Processes

� A discrete-time random processs (Xn)n∈N is a collection of random variables
(X1, X2, . . . , Xn, . . .).

� Mean function µX [n] = E[Xn].

� Autocorrelation function RX [n1, n2] = E[Xn1
Xn2

].

� Autocovariance function CX [n1, n2] = cov(Xn1
, Xn2

).

� Cross-correlation function RXY [n1, n2] = E[Xn1
Yn2

].

� For X to be W.S.S, the following properties need to be satisfied.

1. µX [n] = µ independent of n.

2. RX [n1, n2] = RX [n2 − n1].

� Properties such as ergodicity and output of LTI system to a WSS input
continue to hold in an analogous manner.
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Module B.2: Markov Chains

� Markov Process: A random process whose probability distribution at time
t+ 1 given the past only depends on its value at time t. Specifically,

Pr(Xk+1 ∈ A | Xk, . . . , X1) = Pr(Xk+1 ∈ A | Xk).

More generally

Pr(Xk+1 ∈ A | Xki, . . . , Xk1) = Pr(Xk+1 ∈ A | Xki),

for any k1 < k1 < . . . < ki < k.

� If the (time) index set is continuous, the corresponding random process is
called Markov Process.

� In this course: we focus on discrete-time Markov process where each random
variable Xk is a discrete random variable that takes values from a finite set.

� Example: Infectious disease with reinfection where an individual can be in
one of two possible states: susceptible (S) and infected (I).
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Formal Definition

� Definition: We say that a (DT) random process {Xk} is a Markov chain
over a discrete-space if

1. Xk’s are all discrete random variables with common support S, i.e.,
Pr(Xk ∈ S) = 1 for all k, where S is countable, and

2. for all i ≥ 1, all 1 ≤ k1 < k2 < . . . < ki ≤ k, and all 1, . . . , i, s ∈ S:

Pr(Xk+1 = s | Xki = si, . . . , Xk1 = s1) = Pr(Xk+1 = s | Xki = si).
(1)

� S is called the state space and each s ∈ S is called a state. Relation (1) is
called Markov property.

� If S is finite, {Xk} is called a finite state Markov chain.
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Transition Probabilities

� From this point on assume S is a finite set with elements, S = {1, . . . , n}.
Unless otherwise stated, many of the following discussions hold for n = ∞
but for convenience we assume that n is finite.

� For any k, let πk be the (marginal) probability mass function Xk, i.e.,

πk(i) = Pr(Xk = i).

Note that the vector πk is non-negative and
∑d

i=1 πk(i) = 1. Such a vector
is called a stochastic (sometimes probability) vector. It is convenient to
assume that πk is a row vector.

� For any 1 ≤ k1 < k2, define the matrix (array)

Pk1,k2(i, j) = Pr(Xk2 = j | Xk1 = i).

� Pk1,k2 ∈ Rn1×n2 is called the transition matrix of MC from time k1 to time
k2. In other words,

πk2 = πk1Pk1,k2.

� We also (naturally) define Pk,k := I, where I is the n× n identity matrix.
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Properties of Transition Matrices

� Definition: We say that a n×n matrix A is a row-stochastic matrix if (i) A
is non-negative, and (ii) A1 = 1 (or each row sums up to one).

� Properties of the transition matrices:

– Row-stochastic: For any k ≤ m, Pk,m is a row-stochastic matrix: The
non-negativeness follows from the definition. Also, each row adds up to
one:

n∑
j=1

Pk,m(i, j) =
n∑

j=1

Pr(Xm = j | Xk = i) = 1.

– For any k ≤ m, we have:

πm = πkPk,m.

This follow from the fact:

πm(j) = Pr(Xm = j) =
n∑

i=1

Pr(Xm = j,Xk = i)

=
n∑

i=1

Pr(Xm = j | Xk = i) Pr(Xk = i)

= [πkPk,m]j.
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Properties of Transition Matrices cont.

� Properties of the transition matrices cont.:

– Semigroup property: For any k ≤ m ≤ q, we have:

Pk,q = Pk,mPm,q.

To show this, let i, j being fixed. Then, we have

Pk,q(i, j) = Pr(Xq = j | Xk = i)

=
n∑

ℓ=1

Pr(Xq = j,Xm = ℓ | Xk = i)

=
n∑

ℓ=1

Pr(Xq = j | Xm = ℓ,Xk = i) Pr(Xm = ℓ | Xk = i)

(by Markov property) =
n∑

ℓ=1

Pr(Xq = j | Xm = ℓ) Pr(Xm = ℓ | Xk = i)

=
n∑

ℓ=1

Pk,m(i, ℓ)Pm,q(ℓ, j)

= [Pk,mPm,q]i,j.

This property is widely known as Chapman-Kolmogorov equation.

– For DS Markov chains, the second property, and the Chapman-Kolmogorov
property imply:

πk = π1P1,k = π1P1,2P2,k = · · · = π1P1,2P2,3 · · ·Pk−1,k.
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Homogeneous Markov Chains

Definition: We say that a Markov chain {Xk} is (time-)homogeneous if P1,2 =
Pm,m+1 does not depend on m.

� Denote P := Pm,m+1. P is called the one-step transition matrix of the
underlying Homogeneous Markov chain.

� P is a row-stochastic matrix.

� For Homogeneous Markov chains, we have Pm,n = P n−m.

� Distribution of Xk is given by πk = πk−1P = π0P
k.

� With the abuse of notation, for a Homogeneous Markov chain P is also
called (one-step) transition probability matrix (TPM).

� For homogeneous markov chains, the initial distribution and the one-step
TPM completely specifies the random process.
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Graph-Theoretic Interpretation

� Consider a homogeneoys MC on state space S with TPM P .

� Consider a directed weighted graph G = (V,E, P ) where

– V = S = {1, . . . , n},
– E = {(i, j) | Pij > 0}, and
– Pij is the weight of edge i, j.

� Then, the MC can be viewed as a random walk on this weighted graph.

� Example: infectious disease model. Determine the TPM, and simulate the
MC.

Susceptible Infected Recovered

0.9

0.1

0.8

0.2

0.05 0.95
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Classification of States

We introduce a few basic definitions.

� An m-step walk on a graph G = (V,E) is an ordered string of nodes
i0, i1, . . . , im such that (ik−1, ik) ∈ E for all k ∈ {1, 2, . . . ,m}.

� A path is a walk where no two nodes are repeated. A cycle is a walk where
the first and last nodes are identical and no other node is repeated.

� Let G = (V,E, P ) be the graph associated with a MC with TPM P . A
state j is accessible from state i, denoted i → j if there is a walk in the
graph from node i to node j.

� In other words, there exists nodes i1, i2, . . . , ik such that (i, i1) ∈ E, (i1, i2) ∈
E, . . . , (ik, j) ∈ E. The length of this walk is k + 1.

� Equivalently, Pi,i1 > 0, Pi1,i2 > 0, . . . , Pik,j > 0. Thus, [P k+1]i,j > 0.

� Two states i and j communicate if i → j and j → i. This is denoted by
i ↔ j.

� Naturally, if i ↔ j, j ↔ k, then i ↔ k.

� A subset of states C ⊆ V is a communicating class if

1. i ∈ C, j ∈ C =⇒ i ↔ j, and

2. i ∈ C, j /∈ C =⇒ i ↮ j.

The set of states can be partitioned into distinct communicating classes.
Each state belongs to exactly one communicating class.

Definition: A state i is called recurrent if i → j =⇒ j → i. A state is
transient if it is not recurrent.

If a state is recurrent, there is no path to a state from which there is no return.
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Classification of States Cont.

Theorem: In a given communicating class, either all states are recurrent
or all states are transient. Furthermore, in a finite-state MC, there is at least
one recurrent communicating class.

� A matrix P is irreducible if for any i, j, [P kij ]ij > 0 for some kij ≥ 1. In
other words, i ↔ j for every pair of states i, j.

� Graph theoretic interpretation: P is irreducible if there is a directed path
between any two nodes on the graph.

� In this case, there is a single communicating class which is recurrent.

Definition: The period γi of a state i, to be greatest common divisor
(gcd) of gcd(k | [P k]ii > 0).

� Graph theoretic interpretation: gcd of lengths of all paths from i to itself.

� Example: for P =

[
0 1
1 0

]
, determine the period of its states.

� All states in the same communicating class have the same period.

� We say that a non-negative matrix P is aperiodic if γi = 1 for all i.

� A (homoegeneous) Markov chain with the transition matrix P is said to be
irreducible (aperiodic) if P is irreducible (aperiodic).
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Stationary and Limiting Distribution of a Markov Chain

� Let P ∈ Rn×n be the single-step transition probability matrix of a homoge-
neous markov chain.

� Let π0 be the distribution of initial state X0. It follows that πn = π0P
n.

A vector π⋆ ∈ R1×n is called invariant/stationary/steady-state distribution
of the markov chain with TPM P if

� π⋆ is a probability vector, i.e., π⋆(i) ≥ 0,
∑n

i=1 π
⋆(i) = 1, and

� π⋆ = π⋆P .

If πk = π⋆ for some k, then πm = π⋆ for all m ≥ k.

Fundamental questions in the theory of (homogeneous) Markov chains:

� Existence and Uniqueness: When does π⋆ exist? Is it unique?

� Ergodicity : When unique, under what conditions, πk → π∗?

� Mixing time: How fast does it converge to π∗?

� Occupation Probability : How often do we spend time on a given state?

We know that the TPM P satisfies the following properties.

� P is non-negative.

� P is row-stochastic, which implies that all eigenvalues reisde on or within
the unit circle, and 1 is an eigenvalue.

� Note: π⋆ is nothing but the left eigenvector of eigenvalue 1.

� Thus, existence and uniqueness of stationary distribution is equivalent to
showing existence and uniqueness of a non-negative left eigenvector of the
TPM.
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Example

� Let P =

(
1
2

1
2

1
3

2
3

)
.

� Solving for (u, v)P = (u, v) with v = 1 − u, we get u = 2
5 and v = 3

5 . Is
this unique?

� What about P = I?
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Linear Algebra Viewpoint

� Give a matrix A ∈ Rn×n, we define its spectral radius as

ρ(A) := {|λ| : λ is an eigenvalue of A}.

� An eigenvalue of A is called semi-simple if its algebratic multiplicity =
its geometric multiplicity.

– algebratic multiplicity: number of times the eigenvalue appears as
root of the characteristic equation

– geometric multiplicity: number of linearly independent eigenvectors
associated with this eigenvalue

It is called simple when both multiplicities are equal to 1.

� The matrix A is called

– semi-convergent if limk→∞Ak exists, and

– convergent if it is semi-convergent and limk→∞Ak = 0n×n.

Theorem 1. A matrix A ∈ Rn×n is

� convergent if and only if ρ(A) < 1, and

� is semi-convergent if and only if either (i) ρ(A) < 1 or (ii) 1 is
a semi-simple eigenvalue and all other eigenvalues have magnitude
strictly less than 1.
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Perron-Frobenius Theorem

A matrix A ∈ Rn×n is

� non-negative if Aij ≥ 0 for all i, j.

� irreducible if
∑n−1

k=0 A
k is positive, i.e., all entries are strictly larger

than 0.

� primitive if there exists some k̄ such that Ak̄ > 0.

� positive if Aij > 0 for all i, j.

Theorem 2. A matrix A ∈ Rn×n be a non-negative matrix.

� Then, there exists a real eigenvalue λ ≥ |µ| ≥ 0 where µ is any
other eigenvalue. The left and right eigenvectors associated with A

are non-negative.

� If A is irreducible, λ ≥ |µ| is strictly positive and simple. The left
and right eigenvectors associated with A are unique and positive.

� If A is primitive, λ > |µ|. The left and right eigenvectors associated
with A are unique and positive.

Let P ∈ Rn×n be the single-step transition probability matrix of a homoge-
neous markov chain.

� Is P non-negative?

� When is P irreducible? Does it imply P is semi-convergent?

� When is P primitive? Does it imply P is semi-convergent?

� When is P positive? Does it imply P is semi-convergent?
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Case 1: MC with Single Recurrent Class

� In this case, TPM P is irreducible. (why?)

� From PF Theorem, largest eigenvalue 1 is simple, and left eigenvector is
unique and positive. In other words, π⋆ exists and is unique.

� However, if the states have period d > 1, then there are d eigenvalues on
the unit circle that are equally spaced. Such a matrix is not primitive, and
hence not semi-convergent.

� When the states are aperiodic (i.e., period d = 1), then it is primitive, and
P is semi-convergent.

� A MC which is both irreducible and aperiodic is called ergodic.

� We can show that

lim
k→∞

P k = (1)kvw⊤ =


1
1
...
1

 [
w1 w2 . . . wn

]
=


w1 w2 . . . wn

w1 w2 . . . wn
...

w1 w2 . . . wn

 =: P∞,

where v is the right eigenvector and w is the left eigenvector of 1. Note that
w = π⋆.

� In addition, for any initial distribution π0, we have

lim
k→∞

πk = lim
k→∞

π0P
k = π0P∞ = π⋆.
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Case 2: MC with one Recurrent Class and some Transient
States

� Such a markov chain is called a unichain. The TPM P is no longer irre-
ducible and can be partitioned as

P =
m1

n−m1

( m1

PRR

n−m1

0

PTR PTT

)
where the first m1 states belong to the recurrent class, and the remaining
states being transient.

� Though P is not irreducible, the submatrix PRR is irreducible which has a
unique stationary distribution π⋆

R ∈ R1×m1.

� Then, the vector π⋆ = [π⋆
R 01×n−m1

] is the unique stationary distribution
of P .

� If the states in the recurrent class is apeiodic, then P is semi-convergent.
Such a MC is called an ergodic unichain.

The following result characterizes the uniqueness and limiting behavior of the
stationary distribution.

Theorem 3. Consider a finite-state homogeneous MC.

� A MC has a unique stationary distribution π⋆ if and only if it is a
unichain (i.e., it has a single recurrent class)

� Let limk→∞ P k = P∞. Each row of P∞ is identical and equal to π⋆ if
and only if MC is an ergodic unichain (unichain with an aperiodic
recurrent class).
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Case 3: MC with Multiple Recurrent Classes

� The TPM P can be partitioned as

P =


m1

PR1

m2

0
m3

0
n−

∑
mi

0

0 PR2
0 0

0 0 PR3
0

PTR1 PTR2 PTR3 PTT


where the first m1 states belong to the first recurrent class, and so on.

� For each recurrent class, the corresponding submatrix PRi
is irreducible which

has a unique stationary distribution π⋆
i ∈ R1×mi.

� Then, the vector [0 π⋆
i . . . 0] is a stationary distribution of P . Thus,

stationary distribution is not unique.

� Every recurrent class adds one multiplicity to the eigenvalue 1.

� P is semi-convergent only when every recurrent class is aperiodic. In this
case, limk→∞ P k = P∞, but P∞ has non-identical rows. However, rows
corresponding to states in the same recurrent class are identical.
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Ergodic Property

� Let the initial state X0 = i.

� Ti := inf{k ≥ 1 | Xk = i} (first passage time): smallest time index at
which the state takes value i

� fi := P(Ti < ∞): return probability

� mi := E[Ti]: mean return time

� νi :=
∑∞

k=0 1{Xk=i} number of visits to i starting from i.

� State i is recurrent if and only if fi = 1. State i is transient if and only if
fi < 1.

Theorem: If state i is recurrent, then E[νi] = ∞. If state i is transient,
then E[νi] < ∞.

Theorem: Suppose the TPM is irreducible and let π⋆ be the unique sta-
tionary distribution. Then, mi =

1
π⋆(i) for all states i.

Theorem: Suppose the TPM is irreducible and aperiodic (i.e., ergodic)
with the stationary distribution π⋆. Then

lim
n→∞

1

n

n∑
k=1

1{Xk=i} = π⋆(i) almost surely.
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Application: Page-Rank Algorithm

� Original idea of Google search ranking: Model a browsing person as a random
walker over the graph of internet!

� Let G = (V,E) where d = number of webpages and there is a node for each
webpage.

� (i, j) ∈ E if i has a link to j.

� Then a person can be modeled as a random walker on G where

Pij =

{
1
di

j ∈ Ni

0 otherwise.

� Problem with this? Corresponding Markov chain is not irreducible.

� Now let us add a small reset probability, i.e., consider a Markov chain with
one-step transition matrix

P̂ = (1− a)P + aJ,

where a ∈ (0, 1) is a small reset parameter and J is the d × d matrix with
all elements being 1/d.

� Then a Markov chain with the transition matrix P̂ is irreducible and aperiodic
(why?).

� Therefore, it is ergodic, has a unique stationary distribution π∗, and πk → π∗

as k → ∞.

� More importantly average visit percentage of state (webpage) i by time
k→ π∗

i !

� Therefore, webpage i is superios to j if π∗
i > π∗

j .

� How does Google find π∗?
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Vector-valued Random Process

A random process X = {Xt}t∈T may be such that each Xt is a random vector
taking values in Rn. Then,

(a) Mean function:

µX(t) := E[Xt] ∈ Rn

(b) Autocorrelation function:

RX(t1, t2) := E[Xt1X
⊤
t2
] ∈ Rn×n

(c) Autocovariance function:

CX(t1, t2) := cov(Xt1, Xt2) ∈ Rn×n.

For WSS, every element of CX(t1, t2) should only depend on t2 − t1.
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Other Class of Processes

� A stochastic process {Xt}t∈T is called a Gaussian Process if for every finite
set of indices t1, t2, . . . , tk, the collection of random variablesXt1, Xt1, . . . , Xtk

is jointly Gaussian.

� A stochastic process which is both Gaussian and Markov is called Gauss-
Markov Process.

� A stochastic process {Xt}t∈T is said to have independent increments if
for every finite set of indices t1, t2, . . . , tk, the collection of random variables
Xt2 −Xt1, Xt3 −Xt2, . . . , Xtk −Xtk−1

are mutually indepdenent.

� The increments are stationary if Xt2 −Xt1 and Xt2+s−Xt1+s have the same
distribution irrespective of the value of s.

� Brownian Motion/Wiener Process: A stochastic process {Xt}t∈T is
a Wiener Process if

1. X0 = 0,

2. the process has stationary and independent increments,

3. Xt −Xs ∼ N (0, σ2(t− s)),

4. the sample paths are continuous with probability 1.

For a Wiener process, one can show that the sample paths are not differen-
tiable by showing

lim
∆→0

var
[X(t+∆)−X(t)

∆

]
=

σ2

∆
→ ∞.
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Dynamical System

� Deterministic discrete-time dynamical system in state-space form is given
by:

xk+1 = fk(xk, uk), k = 0, 1, . . . ,

where xk ∈ Rn is the state at time k and uk ∈ Rm is the input at time k.

� State variable: summarizes past information such that if we know the state
at time k and the input for all t ≥ k, then we can completely determine the
future states.

� In other words, if we know the current state, we do not need to store past
states and inputs to predict the future.

� If fk = f for all k, the system is time-invariant.
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Stochastic Dynamical System

� Stochastic Model: the future state is uncertain even if the current state
and input are known. There are two ways of representing such a system.
Both are equivalent under reasonable assumptions.

� State-space form:

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . ,

where wk ∈ Rw is a random variable/noise/disturbace which is not under
our control (unlike input u).

� Note that {w1, w2, . . . , } is a discrete-time random process, as is {x1, x2, . . . , }.

� Example: xk+1 = axk + wk where wk ∈ N (c, 1) and x0 = 5. What will the
trajectories look like for different values of a and c? What is the distribution
of xk as k → ∞? Is this process Markovian?

35



Stochastic Linear System

A stochastic linear system is formally defined as

xk+1 = Akxk +Bkuk + wk.

Problem: recursively determine the mean and variance of xk given that E[wk] = 0,
var(wk) = Q and x0 is known.
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Representation via Transition Kernel

� Recall the state-space form: xk+1 = fk(xk, uk, wk), k = 0, 1, . . . .

� Here, the distribution of xk+1 can be found in terms of the function fk and
indirectly, as a function of basic random variables (x0, w0, . . . , wk).

� The alternative approach is to directly specify the distribution of xk+1 instead
of relying on the function fk. In particular, the conditional distribution
of Xk+1 given xk and uk is specified for all values of xk and uk.

� For the dynamical system to be Markovian, we need to show that for every
Borel subset A and for all k,

P(Xk+1 ∈ A|x0, u0, x1, u1, . . . , xk, uk) = P(Xk+1 ∈ A|xk, uk).

� Is the above property always true?
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Observation Model

� In many instances, the states can not be directly measured.

� Instead, we observe “output” quantities that depend on the state as

yk = gk(xk, vk),

where vk is a random variable termed “measurement noise.”

� Alternatively, the conditional distribution of yk given xk is specified.

� In case of a linear system, yk = Ckxk + vk.

� One problem of significant interest is to infer or estimate the state xk given
the measured / output quantities yk in an online and recursive manner.

� Module C will tackle this issue.
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