A random process is a family/ collection of random variables indexed by a set T, stated at $\{X_t\}_{t\in T}$.

-

٦

The set T is often interpreted as "time."

• When
$$T = \{1, 2, \dots, n\}$$
, then $\{X_t\}_{t \in T} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$ is a random vector.

- When $T = \{1, 2, 3,\} = \mathbb{N}$, then $\{X_t\}_{t \in T} = (X_1, X_2, X_3,)$ is called a discrete-time random process.
- When $T = \mathbb{R}$, $\{X_t\}_{t \in T}$ is an uncountable collection of random variables and is called a continuous-time random process.

<u>Recall</u>: $X_t : \Omega \to \mathbb{R}$ fix ω : $X_t(\omega)$: function of t is called the sample path.

Example
$$X_t = \cos(2\pi \ \omega t)$$
 where ω the random outcome $\omega = \begin{cases} 1 & w.p & \frac{1}{3} \\ 2 & w.p & \frac{1}{3} \\ 3 & w.p & \frac{1}{3} \end{cases}$

How do we specify a random process $\{X_t\}_{t\in T}$: To fully specify a random process, for any finite collection of indices (t_1, t_2, \dots, t_n) , the joint distribution $(X_{t_1}, X_{t_2}, \dots, X_{t_n})$ should be provided.

• Deterministic: starting from $x_0 \in \mathbb{R}^n$ for all $t \ge 0$

$$x_{t+1} = f(t, x_t).$$

More generally: $x_{t+1} = f(t, x_t, \dots, x_{t-m})$ where m is the memory of the system.

Example: n = 1, starting at $x_0 > 0$, a simple (deterministic) population growth model:

$$x_{t+1} = r_0 x_t.$$

Note that $x_t = r_0^t x_0$.

• Random process: starting from $x_0 \in \mathbb{R}^n$ for all $t \ge 0$

$$x_{t+1} = f(t, x_t, w_t).$$

More generally: $x_{t+1} = f(t, x_t, \dots, x_{t-m}, w_t)$ where *m* is the memory of the system and w_t is a random variable/vector.

Example: Beginning phase of a pandemics: for some initially infected population $x_0 > 0$, the population of infected people at the beginning phase of a pandemics can be modeled by:

$$x_{t+1} = r_t x_t,$$

where r_t is a non-negative random variable independent of r_k for k < t with some $\mathbb{E}[r_t] = r_0$.

• Averaging: suppose that $\{w_t\}$ is an independently and identically distributed random process with $\mathbb{E}[w_k] = \mu$.

How does the running average $x_t = \frac{w_1 + \ldots + w_t}{t}$ behave as $t \to \infty$? In this case:

$$tx_{t} = (t-1)x_{t-1} + w_{t}$$
$$x_{t} = (1 - \frac{1}{t})x_{t-1} + \frac{1}{t}w_{t}$$
$$x_{t} = f_{t}(x_{t-1}, w_{t})$$
$$f_{t}(x, w) = (1 - \frac{1}{t})x + \frac{1}{t}w.$$

- What happens if we use other weights such as: $x_t = \frac{w_1 + ... + w_t}{\sqrt{t}}$?
- What if we don't have any weights at all, i.e., $x_t = w_1 + \ldots + w_t$? What happens?
- What can we say about asymptotic behavior of such processes in general?

For a random process $X = \{X_t\}_{t \in T}$

(a) Mean function:

$$\mu_X(t) := \mathbb{E}[X_t]$$

(b) Autocorrelation function:

$$R_X(t_1, t_2) := \mathbb{E}[X_{t_1} X_{t_2}]$$

(c) Autocovariance function:

$$C_X(t_1, t_2) := R_X(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$$

If the random process $\{X_t\}$ is i.i.d., then

(a) For the mean function:

$$\mu_X(t) = \mathbb{E}[X_t] = \mathbb{E}[X_0].$$

Therefore, we have a constant mean function.

(b) For the Autocorrelation function:

$$R_X(t_1, t_2) = \mathbb{E}[X_{t_1} X_{t_2}] = \begin{cases} \mathbb{E}[X_{t_1}^2] = \mathbb{E}[X_1^2] & t_1 = t_2 \\ \mathbb{E}[X_{t_1}] \mathbb{E}[X_{t_2}] = \mu_X(t_1)\mu_X(t_2) = \mu_X(0)^2 & t_1 \neq t_2 \end{cases}$$

(c) Autocovariance function:

$$C_X(t_1, t_2) = R_X(t_1, t_2) - \mu_X(t_1)\mu_X(t_2) = \begin{cases} \operatorname{var}(X_1) & t_1 = t_2 \\ 0 & t_1 \neq t_2 \end{cases}$$

That is, the random process is uncorrelated in time.

Plus many other properties are true.

A random process is **Strict Sense Stationary** (SSS) if the (finite) joint probability distributions (CDFs) are invariant under shift, i.e., for all $t_1 < t_2 < \cdots < t_k$ and all $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$:

$$F_{X_{t_1},\ldots,X_{t_k}}(\alpha_1,\ldots,\alpha_k) = F_{X_{t_1+s},\ldots,X_{t_k+s}}(\alpha_1,\ldots,\alpha_k)$$

for all $-t_1 \leq s$. Example: i.i.d. processes as

$$F_{X_{t_1},\ldots,X_{t_k}}(\alpha_1,\ldots,\alpha_k)=F_{X_{t_1}}(\alpha_1)\cdots F_{X_{t_1}}(\alpha_k)=F_X(\alpha_1)\cdots F_X(\alpha_k).$$

A random process is Wide Sense Stationary (WSS) if

- 1. the mean function does not depend on time t, and
- 2. the $R_X(t_1, t_2) = f(t_1 t_2)$, i.e., autocorrelation function is just a function of $t_1 t_2$.

Example: i.i.d. processes

For two random processes $\{X_t\}_{t\in T}$ and $\{Y_t\}_{t\in T}$,

- Cross-correlation $R_{XY}(t_1, t_2) = \mathbb{E}[X(t_1)Y(t_2)] \neq \mathbb{E}[Y(t_1)X(t_2)]$
- Cross-covariance $C_{XY}(t_1, t_2) = \text{cov}[X(t_1), Y(t_2)] = R_{XY}(t_1, t_2) \mu_X(t_1)\mu_Y(t_2)$

 ${X_t}_{t\in T}$ and ${Y_t}_{t\in T}$ are jointly WSS if

- Both $\{X_t\}_{t\in T}$ and $\{Y_t\}_{t\in T}$ are individually WSS
- $R_{XY}(t_1, t_2) = R_{XY}(t_1 t_2)$

Let $\{X_k\}$ be a random walk, given by $X_{k+1} = X_k + Z_k$ where $\{Z_k\}$ is i.i.d. with zero mean and variance σ^2 and $X_0 = 0$ a.s.

(a) For the mean function:

$$\mu_X(k) = \mathbb{E}[X_{k-1} + Z_{k-1}] = \mathbb{E}[X_{k-1}].$$

Therefore, $\mu_X(k) = \mu_X(k-1) = \ldots = \mu_X(0) = 0.$

(b) For the Autocorrelation function: Let $k_1 \leq k_2$:

$$R_X(k_1, k_2) = \mathbb{E}[X_{k_1} X_{k_2}] = \mathbb{E}[X_{k_1} (X_{k_2} - X_{k_1} + X_{k_1})]$$

= $\mathbb{E}[X_{k_1} (X_{k_2} - X_{k_1})] + \mathbb{E}[X_{k_1}^2]$
= $\mathbb{E}[X_{k_1}^2] = k_1 \sigma^2.$

Therefore, $R_X(k_1, k_2) = \min(k_1, k_2)\sigma^2$. Thus, such a process is not WSS and hence, not an SSS.

(c) Autocovariance function: since the process is zero mean $C_X = R_X$.

Continuous Time Random Processes

- Example: for a deterministic $\alpha > 0$ and frequency ω , let $X_t = \alpha \cos(\omega t + \theta)$ where $\theta \sim U([0, 2\pi])$.
 - The mean function:

$$\mu_X(t) = \mathbb{E}[\alpha \cos(\omega t + \theta)] = \frac{1}{2\pi} \int_0^{2\pi} \alpha \cos(\omega t + \theta) d\theta = 0.$$

- The correlation function:

$$R_X(t_1, t_2) = \mathbb{E}[\alpha \cos(\omega t_1 + \theta)\alpha \cos(\omega t_2 + \theta)]$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \alpha^2 \cos(\omega t_1 + \theta) \cos(\omega t_2 + \theta) d\theta$$

$$= \frac{\alpha^2}{2\pi} \int_0^{2\pi} \cos(\omega t_1 + \theta) \cos(\omega t_2 + \theta) d\theta + \frac{\alpha^2}{4\pi} \int_0^{2\pi} \cos(\omega (t_1 - t_2)) d\theta$$

$$= \frac{\alpha^2}{4\pi} \int_0^{2\pi} \cos(\omega (t_1 + t_2) + 2\theta) d\theta + \frac{\alpha^2}{4\pi} \int_0^{2\pi} \cos(\omega (t_1 - t_2)) d\theta$$

$$= \frac{\alpha^2}{4\pi} \int_0^{2\pi} \cos(\omega (t_1 - t_2)) d\theta$$

- Some properties of a WSS process $\{X_t\}$:
 - 1. $R_X(\tau) = \mathbb{E}[X(t)X(t+\tau)]$ is an even function, i.e., $R_X(\tau) = R_X(-\tau)$.
 - 2. $R_X(0) \ge R_X(\tau)$ for all τ .
 - 3. For independent processes $\{X(t)\}$ and $\{Y(t)\}$ with zero mean, $R_{X+Y}(\tau) = R_X(\tau) + R_Y(\tau)$.

Proof on board in class.

- Statistical mean: $\mu_X(t) = \mathbb{E}[X(t)] = \int_{\omega \in \Omega} X_t(\omega) \ d\mathbb{P}_{X_t}(\omega).$
- If we have M samples of X_{t_1} , denoted $(\widehat{x}_{t_1}^1, \widehat{x}_{t_1}^2, \dots, \widehat{x}_{t_1}^M)$, drawn from $\mathbb{P}_{X_{t_1}}$, then we can estimate the statistical average as $\widehat{\mu}_X(t_1) = \frac{1}{M} \sum_{i=1}^m \widehat{x}_{t_1}^i$.
- However, suppose we have a single sample path of the random process given by x₁(ω₀), x₂(ω₀),.... Then, we can find the temporal mean and autocorrelation as

$$\overline{X}(\omega_0) = \frac{1}{T} \int_0^T x_t(\omega_0) dt$$
$$\overline{R}_X(\tau) = \frac{1}{T} \int_0^T x_{t+\tau}(\omega_0) x_t(\omega_0) dt$$

Do the temporal and statistical averages coincide? Yes, when the process is ergodic. The random process {X_t}_{t∈T} is ergodic when

$$\mathbb{E}[X_t] = \lim_{T \to \infty} \frac{1}{T} \int_0^T X_t(\omega_0) \ dt.$$

It is implicit that for ergodic process, $\mathbb{E}[X_t] = \mu_X(t) = \mu_X$ for all t.

• For a discrete-time process, we replace the integral by summation to compute temporal averages.

 $\begin{array}{l} \underline{\text{Mean-Square Ergodic Theorem:}}_{\text{cess with }} \mathbb{E}[X_t] = \mu_X \text{ and auto-correlation } R_X(\tau), \text{ and let the Fourier transform of } R_X(\tau) \text{ exists. Let } \overline{X_T}(\omega) = \frac{1}{2T} \int_{-T}^T X_t(\omega) \ dt. \text{ Then,} \end{array}$

$$\lim_{T \to \infty} \mathbb{E}[(\overline{X_T} - \mu_X)^2] = 0.$$

In other words, $\overline{X_T}$ converges to μ_X in mean-square sense.

The implication of the above theorem is that, we can approximate mean/ Correlation by temporal average computed from a single sample path. • Suppose we have a LTI system with impulse response h(t). If we apply input signal x(t) to this system, the output signal y(t) is given as

$$y(t) = \int_{\infty}^{\infty} h(\tau) x(t-\tau) d\tau =: x(t) \circledast h(t).$$

• Now, suppose the input X(t) is a random process with mean $\mu_X(t)$ and autocorrelation $R_X(t_1, t_2)$. Determine the mean and autocorrelation of Y.

• If X(t) is WSS, is Y(t) also WSS?

Yes. Derivation in class.

• Are X(t) and Y(t) jointly WSS?

 $\mathbf{Yes.}\ \mathbf{Derivation}\ \mathbf{in}\ \mathbf{class.}\ \mathbf{We}\ \mathbf{can}\ \mathbf{show}\ \mathbf{that}$

$$R_{YX}(\tau) = h(\tau) \circledast R_X(\tau)$$

- From the above discussion, we have $R_{YX}(\tau) = \int_{\infty}^{\infty} h(s) R_X(\tau s) ds$.
- For a CT WSS process X(t) (that is integrable), we can find the "power spectral density" at frequency ω (rad/s):

$$S_X(\omega) := FT[R_X(\tau)] = \int_{-\infty}^{\infty} R_X(\tau) e^{-j\omega\tau} d\tau$$

- Thus, $S_{YX}(\omega) = H(\omega)S_X(\omega)$ where $H(\omega)$ is the Fourier transform of the impulse response h(t).
- We can further show that

$$\begin{split} R_Y(\tau) &= h(\tau) \circledast R_{XY}(\tau) \\ \Longrightarrow S_Y(\omega) &= H(\omega) \times S_{XY}(\omega) \\ \text{In addition,} \quad S_{YX}(\omega) &= H(\omega) \times S_X(\omega) \\ \text{Since,} \quad R_{XY}(\tau) &= R_{YX}(\tau), \quad \text{we have} \quad S_{XY}(\omega) &= S_{YX}(\omega)^* \\ &\implies S_Y(\omega) &= |H(\omega)|^2 S_X(\omega). \end{split}$$

- A discrete-time random processs (X_n)_{n∈ℕ} is a collection of random variables (X₁, X₂,..., X_n,...).
- Mean function $\mu_X[n] = \mathbb{E}[X_n]$.
- Autocorrelation function $R_X[n_1, n_2] = \mathbb{E}[X_{n_1}X_{n_2}].$
- Autocovariance function $C_X[n_1, n_2] = \operatorname{cov}(X_{n_1}, X_{n_2}).$
- Cross-correlation function $R_{XY}[n_1, n_2] = \mathbb{E}[X_{n_1}Y_{n_2}].$
- For X to be W.S.S, the following properties need to be satisfied.
 - 1. $\mu_X[n] = \mu$ independent of n.
 - 2. $R_X[n_1, n_2] = R_X[n_2 n_1].$
- Properties such as ergodicity and output of LTI system to a WSS input continue to hold in an analogous manner.

• Markov Process: A random process whose probability distribution at time t + 1 given the past only depends on its value at time t. Specifically,

$$\Pr(X_{k+1} \in A \mid X_k, \dots, X_1) = \Pr(X_{k+1} \in A \mid X_k).$$

More generally

$$\Pr(X_{k+1} \in A \mid X_{k_i}, \dots, X_{k_1}) = \Pr(X_{k+1} \in A \mid X_{k_i}),$$

for any $k_1 < k_1 < \ldots < k_i < k$.

- If the (time) index set is continuous, the corresponding random process is called *Markov Process*.
- In this course: we focus on discrete-time Markov process where each random variable X_k is a discrete random variable that takes values from a finite set.
- Example: Infectious disease with reinfection where an individual can be in one of two possible states: susceptible (S) and infected (I).

- **Definition**: We say that a (DT) random process $\{X_k\}$ is a Markov chain over a discrete-space if
 - 1. X_k 's are all discrete random variables with common support S, i.e., $\mathbf{Pr}(X_k \in S) = 1$ for all k, where S is countable, and
 - 2. for all $i \ge 1$, all $1 \le k_1 < k_2 < ... < k_i \le k$, and all $1, ..., i, s \in S$:

$$\Pr(X_{k+1} = s \mid X_{k_i} = s_i, \dots, X_{k_1} = s_1) = \Pr(X_{k+1} = s \mid X_{k_i} = s_i).$$
(1)

- S is called the state space and each $s \in S$ is called a state. Relation (1) is called *Markov property*.
- If S is finite, $\{X_k\}$ is called a finite state Markov chain.

- From this point on assume S is a finite set with elements, S = {1,...,n}.
 Unless otherwise stated, many of the following discussions hold for n = ∞ but for convenience we assume that n is finite.
- For any k, let π_k be the (marginal) probability mass function X_k , i.e.,

$$\pi_k(i) = \Pr(X_k = i).$$

Note that the vector π_k is non-negative and $\sum_{i=1}^d \pi_k(i) = 1$. Such a vector is called a stochastic (sometimes probability) vector. It is convenient to assume that π_k is a **row** vector.

• For any $1 \le k_1 < k_2$, define the matrix (array)

$$P_{k_1,k_2}(i,j) = \Pr(X_{k_2} = j \mid X_{k_1} = i).$$

• $P_{k_1,k_2} \in \mathbb{R}^{n_1 \times n_2}$ is called the transition matrix of MC from time k_1 to time k_2 . In other words,

$$\pi_{k_2} = \pi_{k_1} P_{k_1, k_2}.$$

• We also (naturally) define $P_{k,k} := I$, where I is the $n \times n$ identity matrix.

- Definition: We say that a $n \times n$ matrix A is a row-stochastic matrix if (i) A is non-negative, and (ii) $A\mathbf{1} = \mathbf{1}$ (or each row sums up to one).
- Properties of the transition matrices:
 - **Row-stochastic**: For any $k \le m$, $P_{k,m}$ is a row-stochastic matrix: The non-negativeness follows from the definition. Also, each row adds up to one:

$$\sum_{j=1}^{n} P_{k,m}(i,j) = \sum_{j=1}^{n} \Pr(X_m = j \mid X_k = i) = 1.$$

- For any $k \leq m$, we have:

$$\pi_m = \pi_k P_{k,m}.$$

This follow from the fact:

$$\pi_m(j) = \Pr(X_m = j) = \sum_{i=1}^n \Pr(X_m = j, X_k = i)$$
$$= \sum_{i=1}^n \Pr(X_m = j \mid X_k = i) \Pr(X_k = i)$$
$$= [\pi_k P_{k,m}]_j.$$

- Properties of the transition matrices cont.:
 - Semigroup property: For any $k \leq m \leq q$, we have:

$$P_{k,q} = P_{k,m}P_{m,q}.$$

To show this, let i,j being fixed. Then, we have

$$P_{k,q}(i,j) = \Pr(X_q = j \mid X_k = i)$$

$$= \sum_{\ell=1}^n \Pr(X_q = j, X_m = \ell \mid X_k = i)$$

$$= \sum_{\ell=1}^n \Pr(X_q = j \mid X_m = \ell, X_k = i) \Pr(X_m = \ell \mid X_k = i)$$
(by Markov property)
$$= \sum_{\ell=1}^n \Pr(X_q = j \mid X_m = \ell) \Pr(X_m = \ell \mid X_k = i)$$

$$= \sum_{\ell=1}^n P_{k,m}(i,\ell) P_{m,q}(\ell,j)$$

$$= [P_{k,m}P_{m,q}]_{i,j}.$$

This property is widely known as *Chapman-Kolmogorov* equation.

For DS Markov chains, the second property, and the Chapman-Kolmogorov property imply:

$$\pi_k = \pi_1 P_{1,k} = \pi_1 P_{1,2} P_{2,k} = \dots = \pi_1 P_{1,2} P_{2,3} \cdots P_{k-1,k}$$

Definition: We say that a Markov chain $\{X_k\}$ is (time-)homogeneous if $P_{1,2} = P_{m,m+1}$ does not depend on m.

- Denote $P := P_{m,m+1}$. P is called the one-step transition matrix of the underlying Homogeneous Markov chain.
- *P* is a row-stochastic matrix.
- For Homogeneous Markov chains, we have $P_{m,n} = P^{n-m}$.
- Distribution of X_k is given by $\pi_k = \pi_{k-1}P = \pi_0 P^k$.
- With the abuse of notation, for a Homogeneous Markov chain *P* is also called (one-step) transition probability matrix (TPM).
- For homogeneous markov chains, the initial distribution and the one-step TPM completely specifies the random process.

- Consider a homogeneous MC on state space S with TPM P.
- Consider a directed weighted graph G = (V, E, P) where
 - $-V = S = \{1, \dots, n\},\$
 - $-E = \{(i, j) \mid P_{ij} > 0\}, \text{ and }$
 - $-P_{ij}$ is the weight of edge i, j.
- Then, the MC can be viewed as a random walk on this weighted graph.
- Example: infectious disease model. Determine the TPM, and simulate the MC.

We introduce a few basic definitions.

- An *m*-step walk on a graph G = (V, E) is an ordered string of nodes i_0, i_1, \ldots, i_m such that $(i_{k-1}, i_k) \in E$ for all $k \in \{1, 2, \ldots, m\}$.
- A path is a walk where no two nodes are repeated. A cycle is a walk where the first and last nodes are identical and no other node is repeated.
- Let G = (V, E, P) be the graph associated with a MC with TPM P. A state j is accessible from state i, denoted $i \rightarrow j$ if there is a walk in the graph from node i to node j.
- In other words, there exists nodes i_1, i_2, \ldots, i_k such that $(i, i_1) \in E, (i_1, i_2) \in E, \ldots, (i_k, j) \in E$. The length of this walk is k + 1.
- Equivalently, $P_{i,i_1} > 0, P_{i_1,i_2} > 0, \dots, P_{i_k,j} > 0$. Thus, $[P^{k+1}]_{i,j} > 0$.
- Two states i and j communicate if $i \rightarrow j$ and $j \rightarrow i$. This is denoted by $i \leftrightarrow j$.
- Naturally, if $i \leftrightarrow j, j \leftrightarrow k$, then $i \leftrightarrow k$.
- A subset of states $C \subseteq V$ is a communicating class if

1. $i \in C, j \in C \implies i \leftrightarrow j$, and 2. $i \in C, j \notin C \implies i \nleftrightarrow j$.

The set of states can be partitioned into distinct communicating classes. Each state belongs to exactly one communicating class.

Definition: A state *i* is called recurrent if $i \rightarrow j \implies j \rightarrow i$. A state is transient if it is not recurrent.

If a state is recurrent, there is no path to a state from which there is no return.

Theorem: In a given communicating class, either all states are recurrent or all states are transient. Furthermore, in a finite-state MC, there is at least one recurrent communicating class.

- A matrix P is irreducible if for any i, j, [P^{k_{ij}}]_{ij} > 0 for some k_{ij} ≥ 1. In other words, i ↔ j for every pair of states i, j.
- Graph theoretic interpretation: *P* is irreducible if there is a directed path between any two nodes on the graph.
- In this case, there is a single communicating class which is recurrent.

Definition: The period γ_i of a state *i*, to be greatest common divisor (gcd) of $gcd(k \mid [P^k]_{ii} > 0)$.

- Graph theoretic interpretation: gcd of lengths of all paths from i to itself.
- Example: for $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, determine the period of its states.
- All states in the same communicating class have the same period.
- We say that a non-negative matrix P is aperiodic if $\gamma_i = 1$ for all i.
- A (homoegeneous) Markov chain with the transition matrix P is said to be irreducible (aperiodic) if P is irreducible (aperiodic).

Stationary and Limiting Distribution of a Markov Chain

- Let $P \in \mathbb{R}^{n \times n}$ be the single-step transition probability matrix of a homogeneous markov chain.
- Let π_0 be the distribution of initial state X_0 . It follows that $\pi_n = \pi_0 P^n$.

A vector $\pi^* \in \mathbb{R}^{1 \times n}$ is called invariant/stationary/steady-state distribution of the markov chain with TPM P if

• π^{\star} is a probability vector, i.e., $\pi^{\star}(i) \geq 0, \sum_{i=1}^{n} \pi^{\star}(i) = 1$, and

•
$$\pi^* = \pi^* P$$
.

If $\pi_k = \pi^*$ for some k, then $\pi_m = \pi^*$ for all $m \ge k$.

Fundamental questions in the theory of (homogeneous) Markov chains:

- *Existence and Uniqueness*: When does π^* exist? Is it unique?
- *Ergodicity*: When unique, under what conditions, $\pi_k \rightarrow \pi^*$?
- *Mixing time*: How fast does it converge to π^* ?
- Occupation Probability: How often do we spend time on a given state?

We know that the TPM P satisfies the following properties.

- *P* is non-negative.
- P is row-stochastic, which implies that all eigenvalues reisde on or within the unit circle, and 1 is an eigenvalue.
- Note: π^* is nothing but the left eigenvector of eigenvalue 1.
- Thus, existence and uniqueness of stationary distribution is equivalent to showing existence and uniqueness of a non-negative left eigenvector of the TPM.

• Let
$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
.

- Solving for (u, v)P = (u, v) with v = 1 u, we get $u = \frac{2}{5}$ and $v = \frac{3}{5}$. Is this unique?
- What about P = I?

• Give a matrix $A \in \mathbb{R}^{n \times n}$, we define its spectral radius as

 $\rho(A) := \{ |\lambda| : \lambda \text{ is an eigenvalue of } A \}.$

- An eigenvalue of A is called semi-simple if its algebratic multiplicity = its geometric multiplicity.
 - algebratic multiplicity: number of times the eigenvalue appears as root of the characteristic equation
 - geometric multiplicity: number of linearly independent eigenvectors associated with this eigenvalue

It is called simple when both multiplicities are equal to 1.

- The matrix A is called
 - semi-convergent if $\lim_{k \to \infty} A^k$ exists, and
 - convergent if it is semi-convergent and $\lim_{k\to\infty} A^k = 0_{n\times n}$.

Theorem 1. A matrix $A \in \mathbb{R}^{n \times n}$ is

- convergent if and only if $\rho(A) < 1$, and
- is semi-convergent if and only if either (i) $\rho(A) < 1$ or (ii) 1 is a semi-simple eigenvalue and all other eigenvalues have magnitude strictly less than 1.

A matrix $A \in \mathbb{R}^{n \times n}$ is

- non-negative if $A_{ij} \ge 0$ for all i, j.
- irreducible if $\sum_{k=0}^{n-1} A^k$ is positive, i.e., all entries are strictly larger than 0.
- primitive if there exists some \bar{k} such that $A^{\bar{k}} > 0$.
- **positive** if $A_{ij} > 0$ for all i, j.

Theorem 2. A matrix $A \in \mathbb{R}^{n \times n}$ be a non-negative matrix.

- Then, there exists a real eigenvalue $\lambda \ge |\mu| \ge 0$ where μ is any other eigenvalue. The left and right eigenvectors associated with A are non-negative.
- If A is irreducible, $\lambda \ge |\mu|$ is strictly positive and simple. The left and right eigenvectors associated with A are unique and positive.
- If A is primitive, $\lambda > |\mu|$. The left and right eigenvectors associated with A are unique and positive.

Let $P \in \mathbb{R}^{n \times n}$ be the single-step transition probability matrix of a homogeneous markov chain.

- ls *P* non-negative?
- When is *P* irreducible? Does it imply *P* is semi-convergent?
- When is *P* primitive? Does it imply *P* is semi-convergent?
- When is *P* positive? Does it imply *P* is semi-convergent?

- In this case, TPM *P* is irreducible. (why?)
- From PF Theorem, largest eigenvalue 1 is simple, and left eigenvector is unique and positive. In other words, π^* exists and is unique.
- However, if the states have period d > 1, then there are d eigenvalues on the unit circle that are equally spaced. Such a matrix is not primitive, and hence not semi-convergent.
- When the states are aperiodic (i.e., period d = 1), then it is primitive, and P is semi-convergent.
- A MC which is both irreducible and aperiodic is called ergodic.
- We can show that

$$\lim_{k \to \infty} P^{k} = (1)^{k} v w^{\top} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} w_{1} & w_{2} \dots w_{n} \end{bmatrix} = \begin{bmatrix} w_{1} & w_{2} \dots w_{n} \\ w_{1} & w_{2} \dots w_{n} \\ \vdots \\ w_{1} & w_{2} \dots w_{n} \end{bmatrix} =: P_{\infty},$$

where v is the right eigenvector and w is the left eigenvector of 1. Note that $w=\pi^{\star}.$

• In addition, for any initial distribution π_0 , we have

$$\lim_{k \to \infty} \pi_k = \lim_{k \to \infty} \pi_0 P^k = \pi_0 P_\infty = \pi^\star.$$

Case 2: MC with one Recurrent Class and some Transient States

• Such a markov chain is called a unichain. The TPM *P* is no longer irreducible and can be partitioned as

$$P = \frac{m_1}{n-m_1} \left(\begin{array}{c} \frac{m_1}{P_{RR}} & n-m_1 \\ 0 \\ \hline P_{TR} & P_{TT} \end{array} \right)$$

where the first m_1 states belong to the recurrent class, and the remaining states being transient.

- Though P is not irreducible, the submatrix P_{RR} is irreducible which has a unique stationary distribution $\pi_R^{\star} \in \mathbb{R}^{1 \times m_1}$.
- Then, the vector $\pi^{\star} = \begin{bmatrix} \pi_R^{\star} & 0_{1 \times n-m_1} \end{bmatrix}$ is the unique stationary distribution of P.
- If the states in the recurrent class is apeiodic, then P is semi-convergent. Such a MC is called an ergodic unichain.

The following result characterizes the uniqueness and limiting behavior of the stationary distribution.

Theorem 3. Consider a finite-state homogeneous MC.

- A MC has a unique stationary distribution π^{*} if and only if it is a unichain (i.e., it has a single recurrent class)
- Let $\lim_{k\to\infty} P^k = P_{\infty}$. Each row of P_{∞} is identical and equal to π^* if and only if MC is an ergodic unichain (unichain with an aperiodic recurrent class).

• The TPM P can be partitioned as

P =	$\left(\begin{array}{c} P_{R_1} \\ P_{R_1} \end{array} \right)$	$\stackrel{m_2}{0}$	$\stackrel{m_3}{0}$	$\begin{bmatrix} n-\sum m_i \\ 0 \end{pmatrix}$
	0	P_{R_2}	0	0
	0	0	P_{R_3}	0
	$\langle P_{TR1} \rangle$	P_{TR2}	P_{TR3}	P_{TT}

where the first m_1 states belong to the first recurrent class, and so on.

- For each recurrent class, the corresponding submatrix P_{R_i} is irreducible which has a unique stationary distribution $\pi_i^* \in \mathbb{R}^{1 \times m_i}$.
- Then, the vector $\begin{bmatrix} 0 & \pi_i^{\star} & \dots & 0 \end{bmatrix}$ is a stationary distribution of P. Thus, stationary distribution is not unique.
- Every recurrent class adds one multiplicity to the eigenvalue 1.
- P is semi-convergent only when every recurrent class is aperiodic. In this case, $\lim_{k\to\infty} P^k = P_{\infty}$, but P_{∞} has non-identical rows. However, rows corresponding to states in the same recurrent class are identical.

- Let the initial state $X_0 = i$.
- $T_i := \inf\{k \ge 1 \mid X_k = i\}$ (first passage time): smallest time index at which the state takes value i
- $f_i := \mathbb{P}(T_i < \infty)$: return probability
- $m_i := \mathbb{E}[T_i]$: mean return time
- $\nu_i := \sum_{k=0}^{\infty} \mathbf{1}_{\{X_k=i\}}$ number of visits to i starting from i.
- State *i* is recurrent if and only if $f_i = 1$. State *i* is transient if and only if $f_i < 1$.

Theorem: If state *i* is recurrent, then $\mathbb{E}[\nu_i] = \infty$. If state *i* is transient, then $\mathbb{E}[\nu_i] < \infty$.

Theorem: Suppose the TPM is irreducible and let π^* be the unique stationary distribution. Then, $m_i = \frac{1}{\pi^*(i)}$ for all states *i*.

Theorem: Suppose the TPM is irreducible and aperiodic (i.e., ergodic) with the stationary distribution π^* . Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{X_k = i\}} = \pi^\star(i) \quad \text{almost surely.}$$

- Original idea of Google search ranking: Model a browsing person as a random walker over the graph of internet!
- Let G = (V, E) where d = number of webpages and there is a node for each webpage.
- $(i, j) \in E$ if i has a link to j.
- Then a person can be *modeled* as a random walker on G where

$$P_{ij} = \begin{cases} \frac{1}{d_i} & j \in \mathcal{N}_i \\ 0 & \text{otherwise.} \end{cases}$$

- Problem with this? Corresponding Markov chain is not irreducible.
- Now let us add a small reset probability, i.e., consider a Markov chain with one-step transition matrix

$$\hat{P} = (1-a)P + aJ,$$

where $a \in (0,1)$ is a small reset parameter and J is the $d \times d$ matrix with all elements being 1/d.

- Then a Markov chain with the transition matrix P̂ is irreducible and aperiodic (why?).
- Therefore, it is ergodic, has a unique stationary distribution π^* , and $\pi_k \to \pi^*$ as $k \to \infty$.
- More importantly average visit percentage of state (webpage) i by time $k \rightarrow \pi_i^*!$
- Therefore, webpage i is superios to j if $\pi_i^* > \pi_j^*$.
- How does Google find π^* ?

A random process $X = \{X_t\}_{t \in T}$ may be such that each X_t is a random vector taking values in \mathbb{R}^n . Then,

(a) Mean function:

$$\mu_X(t) := \mathbb{E}[X_t] \in \mathbb{R}^n$$

(b) Autocorrelation function:

$$R_X(t_1, t_2) := \mathbb{E}[X_{t_1} X_{t_2}^\top] \in \mathbb{R}^{n \times n}$$

(c) Autocovariance function:

$$C_X(t_1, t_2) := \operatorname{cov}(X_{t_1}, X_{t_2}) \in \mathbb{R}^{n \times n}.$$

For WSS, every element of $C_X(t_1, t_2)$ should only depend on $t_2 - t_1$.

- A stochastic process {X_t}_{t∈T} is called a Gaussian Process if for every finite set of indices t₁, t₂,..., t_k, the collection of random variables X_{t1}, X_{t1},..., X_{tk} is jointly Gaussian.
- A stochastic process which is both Gaussian and Markov is called Gauss-Markov Process.
- A stochastic process {X_t}_{t∈T} is said to have independent increments if for every finite set of indices t₁, t₂,..., t_k, the collection of random variables X_{t2} - X_{t1}, X_{t3} - X_{t2},..., X_{tk} - X_{tk-1} are mutually indepdenent.
- The increments are stationary if $X_{t_2} X_{t_1}$ and $X_{t_2+s} X_{t_1+s}$ have the same distribution irrespective of the value of s.
- Brownian Motion/Wiener Process: A stochastic process {X_t}_{t∈T} is a Wiener Process if
 - 1. $X_0 = 0$,
 - 2. the process has stationary and independent increments,
 - 3. $X_t X_s \sim \mathcal{N}(0, \sigma^2(t-s))$,
 - 4. the sample paths are continuous with probability 1.

For a Wiener process, one can show that the sample paths are not differentiable by showing

$$\lim_{\Delta \to 0} \operatorname{var} \Big[\frac{X(t + \Delta) - X(t)}{\Delta} \Big] = \frac{\sigma^2}{\Delta} \to \infty.$$

• Deterministic discrete-time dynamical system in state-space form is given by:

$$x_{k+1} = f_k(x_k, u_k), \quad k = 0, 1, \dots,$$

where $x_k \in \mathbb{R}^n$ is the state at time k and $u_k \in \mathbb{R}^m$ is the input at time k.

- State variable: summarizes past information such that if we know the state at time k and the input for all t ≥ k, then we can completely determine the future states.
- In other words, if we know the current state, we do not need to store past states and inputs to predict the future.
- If $f_k = f$ for all k, the system is time-invariant.

- Stochastic Model: the future state is uncertain even if the current state and input are known. There are two ways of representing such a system. Both are equivalent under reasonable assumptions.
- State-space form:

$$x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, 1, \dots,$$

where $w_k \in \mathbb{R}^w$ is a random variable/noise/disturbace which is not under our control (unlike input u).

- Note that $\{w_1, w_2, \ldots, \}$ is a discrete-time random process, as is $\{x_1, x_2, \ldots, \}$.
- Example: $x_{k+1} = ax_k + w_k$ where $w_k \in \mathcal{N}(c, 1)$ and $x_0 = 5$. What will the trajectories look like for different values of a and c? What is the distribution of x_k as $k \to \infty$? Is this process Markovian?

A stochastic linear system is formally defined as

$$x_{k+1} = A_k x_k + B_k u_k + w_k.$$

Problem: recursively determine the mean and variance of x_k given that $\mathbb{E}[w_k] = 0$, $var(w_k) = Q$ and x_0 is known.

- Recall the state-space form: $x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, 1, \dots$
- Here, the distribution of x_{k+1} can be found in terms of the function f_k and indirectly, as a function of *basic random variables* (x_0, w_0, \ldots, w_k) .
- The alternative approach is to directly specify the distribution of x_{k+1} instead of relying on the function f_k . In particular, the conditional distribution of X_{k+1} given x_k and u_k is specified for all values of x_k and u_k .
- For the dynamical system to be Markovian, we need to show that for every Borel subset A and for all k,

$$\mathbb{P}(X_{k+1} \in A | x_0, u_0, x_1, u_1, \dots, x_k, u_k) = \mathbb{P}(X_{k+1} \in A | x_k, u_k).$$

• Is the above property always true?

- In many instances, the states can not be directly measured.
- Instead, we observe "output" quantities that depend on the state as

$$y_k = g_k(x_k, v_k),$$

where v_k is a random variable termed "measurement noise."

- Alternatively, the conditional distribution of y_k given x_k is specified.
- In case of a linear system, $y_k = C_k x_k + v_k$.
- One problem of significant interest is to infer or estimate the state x_k given the measured / output quantities y_k in an online and recursive manner.
- Module C will tackle this issue.