Module B: Random Processes

A random process is a family/ collection of random variables indexed by a set T, stated at $\left\{X_{t}\right\}_{t \in T}$.

The set T is often interpreted as "time."

- When $T=\{1,2, \ldots . n\}$, then $\left\{X_{t}\right\}_{t \in T}=\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right]$ is a random vector.
- When $T=\{1,2,3, \ldots\}=.\mathbb{N}$, then $\left\{X_{t}\right\}_{t \in T}=\left(X_{1}, X_{2}, X_{3}, \ldots ..\right)$ is called a discrete-time random process.
- When $T=\mathbb{R}, \quad\left\{X_{t}\right\}_{t \in T}$ is an uncountable collection of random variables and is called a continuous-time random process.

Recall: $X_{t}: \Omega \rightarrow \mathbb{R} \quad$ fix $\omega: \quad X_{t}(\omega):$ function of t is called the sample path.

Example $X_{t}=\cos (2 \pi \omega t)$ where ω the random outcome $\quad \omega=\left\{\begin{array}{lll}1 & w \cdot p & \frac{1}{3} \\ 2 & w \cdot p & \frac{1}{3} \\ 3 & w \cdot p & \frac{1}{3}\end{array}\right.$

How do we specify a random process $\quad\left\{X_{t}\right\}_{t \in T}$: To fully specify a random process, for any finite collection of indices $\left(t_{1}, t_{2}, \ldots \ldots . t_{n}\right)$, the joint distribution $\left(X_{t_{1}}, X_{t_{2}}, \ldots \ldots X_{t_{n}}\right)$ should be provided.

Deterministic vs Stochastic Dynamical Systems

- Deterministic: starting from $x_{0} \in \mathbb{R}^{n}$ for all $t \geq 0$

$$
x_{t+1}=f\left(t, x_{t}\right) .
$$

More generally: $x_{t+1}=f\left(t, x_{t}, \ldots, x_{t-m}\right)$ where m is the memory of the system.
Example: $n=1$, starting at $x_{0}>0$, a simple (deterministic) population growth model:

$$
x_{t+1}=r_{0} x_{t} .
$$

Note that $x_{t}=r_{0}^{t} x_{0}$.

- Random process: starting from $x_{0} \in \mathbb{R}^{n}$ for all $t \geq 0$

$$
x_{t+1}=f\left(t, x_{t}, w_{t}\right) .
$$

More generally: $x_{t+1}=f\left(t, x_{t}, \ldots, x_{t-m}, w_{t}\right)$ where m is the memory of the system and w_{t} is a random variable/vector.
Example: Beginning phase of a pandemics: for some initially infected population $x_{0}>0$, the population of infected people at the beginning phase of a pandemics can be modeled by:

$$
x_{t+1}=r_{t} x_{t},
$$

where r_{t} is a non-negative random variable independent of r_{k} for $k<t$ with some $\mathbb{E}\left[r_{t}\right]=r_{0}$.

Examples of Random Processes

- Averaging: suppose that $\left\{w_{t}\right\}$ is an independently and identically distributed random process with $\mathbb{E}\left[w_{k}\right]=\mu$.
How does the running average $x_{t}=\frac{w_{1}+\ldots+w_{t}}{t}$ behave as $t \rightarrow \infty$?
In this case:

$$
\begin{aligned}
t x_{t} & =(t-1) x_{t-1}+w_{t} \\
x_{t} & =\left(1-\frac{1}{t}\right) x_{t-1}+\frac{1}{t} w_{t} \\
x_{t} & =f_{t}\left(x_{t-1}, w_{t}\right) \\
f_{t}(x, w) & =\left(1-\frac{1}{t}\right) x+\frac{1}{t} w .
\end{aligned}
$$

- What happens if we use other weights such as: $x_{t}=\frac{w_{1}+\ldots+w_{t}}{\sqrt{t}}$?
- What if we don't have any weights at all, i.e., $x_{t}=w_{1}+\ldots+w_{t}$? What happens?
- What can we say about asymptotic behavior of such processes in general?

Terminology

For a random process $X=\left\{X_{t}\right\}_{t \in T}$
(a) Mean function:

$$
\mu_{X}(t):=\mathbb{E}\left[X_{t}\right]
$$

(b) Autocorrelation function:

$$
R_{X}\left(t_{1}, t_{2}\right):=\mathbb{E}\left[X_{t_{1}} X_{t_{2}}\right]
$$

(c) Autocovariance function:

$$
C_{X}\left(t_{1}, t_{2}\right):=R_{X}\left(t_{1}, t_{2}\right)-\mu_{X}\left(t_{1}\right) \mu_{X}\left(t_{2}\right)
$$

For an i.i.d. process

If the random process $\left\{X_{t}\right\}$ is i.i.d., then
(a) For the mean function:

$$
\mu_{X}(t)=\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[X_{0}\right] .
$$

Therefore, we have a constant mean function.
(b) For the Autocorrelation function:

$$
R_{X}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[X_{t_{1}} X_{t_{2}}\right]=\left\{\begin{array}{ll}
\mathbb{E}\left[X_{t_{1}}^{2}\right]=\mathbb{E}\left[X_{1}^{2}\right] & t_{1}=t_{2} \\
\mathbb{E}\left[X_{t_{1}}\right] \mathbb{E}\left[X_{t_{2}}\right]=\mu_{X}\left(t_{1}\right) \mu_{X}\left(t_{2}\right)=\mu_{X}(0)^{2} & t_{1} \neq t_{2}
\end{array} .\right.
$$

(c) Autocovariance function:

$$
C_{X}\left(t_{1}, t_{2}\right)=R_{X}\left(t_{1}, t_{2}\right)-\mu_{X}\left(t_{1}\right) \mu_{X}\left(t_{2}\right)=\left\{\begin{array}{ll}
\operatorname{var}\left(X_{1}\right) & t_{1}=t_{2} \\
0 & t_{1} \neq t_{2}
\end{array} .\right.
$$

That is, the random process is uncorrelated in time.

Plus many other properties are true.

Stationary Processes

A random process is Strict Sense Stationary (SSS) if the (finite) joint probability distributions (CDFs) are invariant under shift, i.e., for all $t_{1}<$ $t_{2}<\cdots<t_{k}$ and all $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$:

$$
F_{X_{t_{1}}, \ldots, X_{t_{k}}}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=F_{X_{t_{1}+s}, \ldots, X_{t_{k}+s}}\left(\alpha_{1}, \ldots, \alpha_{k}\right)
$$

for all $-t_{1} \leq s$.
Example: i.i.d. processes as

$$
F_{X_{t_{1}}, \ldots, X_{t_{k}}}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=F_{X_{t_{1}}}\left(\alpha_{1}\right) \cdots F_{X_{t_{1}}}\left(\alpha_{k}\right)=F_{X}\left(\alpha_{1}\right) \cdots F_{X}\left(\alpha_{k}\right) .
$$

A random process is Wide Sense Stationary (WSS) if

1. the mean function does not depend on time t, and
2. the $R_{X}\left(t_{1}, t_{2}\right)=f\left(t_{1}-t_{2}\right)$, i.e., autocorrelation function is just a function of $t_{1}-t_{2}$.

Example: i.i.d. processes

For two random processes $\left\{X_{t}\right\}_{t \in T}$ and $\left\{Y_{t}\right\}_{t \in T}$,

- Cross-correlation $R_{X Y}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right] \neq \mathbb{E}\left[Y\left(t_{1}\right) X\left(t_{2}\right)\right]$
- Cross-covariance $C_{X Y}\left(t_{1}, t_{2}\right)=\operatorname{cov}\left[X\left(t_{1}\right), Y\left(t_{2}\right)\right]=R_{X Y}\left(t_{1}, t_{2}\right)-\mu_{X}\left(t_{1}\right) \mu_{Y}\left(t_{2}\right)$
$\left\{X_{t}\right\}_{t \in T}$ and $\left\{Y_{t}\right\}_{t \in T}$ are jointly WSS if
- Both $\left\{X_{t}\right\}_{t \in T}$ and $\left\{Y_{t}\right\}_{t \in T}$ are individually WSS
- $R_{X Y}\left(t_{1}, t_{2}\right)=R_{X Y}\left(t_{1}-t_{2}\right)$

Example: Random Walk

Let $\left\{X_{k}\right\}$ be a random walk, given by $X_{k+1}=X_{k}+Z_{k}$ where $\left\{Z_{k}\right\}$ is i.i.d. with zero mean and variance σ^{2} and $X_{0}=0$ a.s.
(a) For the mean function:

$$
\mu_{X}(k)=\mathbb{E}\left[X_{k-1}+Z_{k-1}\right]=\mathbb{E}\left[X_{k-1}\right] .
$$

Therefore, $\mu_{X}(k)=\mu_{X}(k-1)=\ldots=\mu_{X}(0)=0$.
(b) For the Autocorrelation function: Let $k_{1} \leq k_{2}$:

$$
\begin{aligned}
R_{X}\left(k_{1}, k_{2}\right) & =\mathbb{E}\left[X_{k_{1}} X_{k_{2}}\right]=\mathbb{E}\left[X_{k_{1}}\left(X_{k_{2}}-X_{k_{1}}+X_{k_{1}}\right)\right] \\
& =\mathbb{E}\left[X_{k_{1}}\left(X_{k_{2}}-X_{k_{1}}\right)\right]+\mathbb{E}\left[X_{k_{1}}^{2}\right] \\
& =\mathbb{E}\left[X_{k_{1}}^{2}\right]=k_{1} \sigma^{2} .
\end{aligned}
$$

Therefore, $R_{X}\left(k_{1}, k_{2}\right)=\min \left(k_{1}, k_{2}\right) \sigma^{2}$. Thus, such a process is not WSS and hence, not an SSS.
(c) Autocovariance function: since the process is zero mean $C_{X}=R_{X}$.

Continuous Time Random Processes

- Example: for a deterministic $\alpha>0$ and frequency ω, let $X_{t}=\alpha \cos (\omega t+\theta)$ where $\theta \sim U([0,2 \pi])$.
- The mean function:

$$
\mu_{X}(t)=\mathbb{E}[\alpha \cos (\omega t+\theta)]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \alpha \cos (\omega t+\theta) d \theta=0 .
$$

- The correlation function:

$$
\begin{aligned}
R_{X}\left(t_{1}, t_{2}\right) & =\mathbb{E}\left[\alpha \cos \left(\omega t_{1}+\theta\right) \alpha \cos \left(\omega t_{2}+\theta\right)\right] \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \alpha^{2} \cos \left(\omega t_{1}+\theta\right) \cos \left(\omega t_{2}+\theta\right) d \theta \\
& =\frac{\alpha^{2}}{2 \pi} \int_{0}^{2 \pi} \cos \left(\omega t_{1}+\theta\right) \cos \left(\omega t_{2}+\theta\right) d \theta \\
& =\frac{\alpha^{2}}{4 \pi} \int_{0}^{2 \pi} \cos \left(\omega\left(t_{1}+t_{2}\right)+2 \theta\right) d \theta+\frac{\alpha^{2}}{4 \pi} \int_{0}^{2 \pi} \cos \left(\omega\left(t_{1}-t_{2}\right)\right) d \theta \\
& =\frac{\alpha^{2}}{4 \pi} \int_{0}^{2 \pi} \cos \left(\omega\left(t_{1}-t_{2}\right)\right) d \theta \\
& =\frac{\alpha^{2}}{2} \cos \left(\omega\left(t_{1}-t_{2}\right)\right)
\end{aligned}
$$

Properties of WSS Processes

- Some properties of a WSS process $\left\{X_{t}\right\}$:

1. $R_{X}(\tau)=\mathbb{E}[X(t) X(t+\tau)]$ is an even function, i.e., $R_{X}(\tau)=R_{X}(-\tau)$.
2. $R_{X}(0) \geq R_{X}(\tau)$ for all τ.
3. For independent processes $\{X(t)\}$ and $\{Y(t)\}$ with zero mean, $R_{X+Y}(\tau)=$ $R_{X}(\tau)+R_{Y}(\tau)$.

Proof on board in class.

Ergodic Behavior

- Statistical mean: $\mu_{X}(t)=\mathbb{E}[X(t)]=\int_{\omega \in \Omega} X_{t}(\omega) d \mathbb{P}_{X_{t}}(\omega)$.
- If we have M samples of $X_{t_{1}}$, denoted $\left(\widehat{x}_{t_{1}}^{1}, \widehat{x}_{t_{1}}^{2}, \ldots, \widehat{x}_{t_{1}}^{M}\right)$, drawn from $\mathbb{P}_{X_{t_{1}}}$, then we can estimate the statistical average as $\widehat{\mu}_{X}\left(t_{1}\right)=\frac{1}{M} \sum_{i=1}^{m} \widehat{x}_{t_{1}}^{i}$.
- However, suppose we have a single sample path of the random process given by $x_{1}\left(\omega_{0}\right), x_{2}\left(\omega_{0}\right), \ldots$. Then, we can find the temporal mean and autocorrelation as

$$
\begin{aligned}
& \bar{X}\left(\omega_{0}\right)=\frac{1}{T} \int_{0}^{T} x_{t}\left(\omega_{0}\right) d t \\
& \bar{R}_{X}(\tau)=\frac{1}{T} \int_{0}^{T} x_{t+\tau}\left(\omega_{0}\right) x_{t}\left(\omega_{0}\right) d t
\end{aligned}
$$

- Do the temporal and statistical averages coincide? Yes, when the process is ergodic. The random process $\left\{X_{t}\right\}_{t \in T}$ is ergodic when

$$
\mathbb{E}\left[X_{t}\right]=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} X_{t}\left(\omega_{0}\right) d t
$$

It is implicit that for ergodic process, $\mathbb{E}\left[X_{t}\right]=\mu_{X}(t)=\mu_{X}$ for all t.

- For a discrete-time process, we replace the integral by summation to compute temporal averages.

Mean-Square Ergodic Theorem: Let $\left\{X_{t}\right\}_{t \in T}$ be a wide sense stationary process with $\mathbb{E}\left[X_{t}\right]=\mu_{X}$ and auto-correlation $R_{X}(\tau)$, and let the Fourier transform of $R_{X}(\tau)$ exists. Let $\overline{X_{T}}(\omega)=\frac{1}{2 T} \int_{-T}^{T} X_{t}(\omega) d t$. Then,

$$
\lim _{T \rightarrow \infty} \mathbb{E}\left[\left(\overline{X_{T}}-\mu_{X}\right)^{2}\right]=0
$$

In other words, $\overline{X_{T}}$ converges to μ_{X} in mean-square sense.
The implication of the above theorem is that, we can approximate mean/ Correlation by temporal average computed from a single sample path.

Random Process and LTI System

- Suppose we have a LTI system with impulse response $h(t)$. If we apply input signal $x(t)$ to this system, the output signal $y(t)$ is given as

$$
y(t)=\int_{\infty}^{\infty} h(\tau) x(t-\tau) d \tau=: x(t) \circledast h(t) .
$$

- Now, suppose the input $X(t)$ is a random process with mean $\mu_{X}(t)$ and autocorrelation $R_{X}\left(t_{1}, t_{2}\right)$. Determine the mean and autocorrelation of Y.
- If $X(t)$ is WSS, is $Y(t)$ also WSS?

Yes. Derivation in class.

- Are $X(t)$ and $Y(t)$ jointly WSS?

Yes. Derivation in class. We can show that

$$
R_{Y X}(\tau)=h(\tau) \circledast R_{X}(\tau)
$$

Power Spectral Density (PSD)

- From the above discussion, we have $R_{Y X}(\tau)=\int_{\infty}^{\infty} h(s) R_{X}(\tau-s) d s$.
- For a CT WSS process $X(t)$ (that is integrable), we can find the "power spectral density" at frequency ω ($\mathrm{rad} / \mathrm{s}$):

$$
S_{X}(\omega):=F T\left[R_{X}(\tau)\right]=\int_{-\infty}^{\infty} R_{X}(\tau) e^{-j \omega \tau} d \tau
$$

- Thus, $S_{Y X}(\omega)=H(\omega) S_{X}(\omega)$ where $H(\omega)$ is the Fourier transform of the impulse response $h(t)$.
- We can further show that

$$
\begin{aligned}
R_{Y}(\tau) & =h(\tau) \circledast R_{X Y}(\tau) \\
\Longrightarrow \quad S_{Y}(\omega) & =H(\omega) \times S_{X Y}(\omega)
\end{aligned}
$$

In addition, $\quad S_{Y X}(\omega)=H(\omega) \times S_{X}(\omega)$
Since, $\quad R_{X Y}(\tau)=R_{Y X}(\tau), \quad$ we have $\quad S_{X Y}(\omega)=S_{Y X}(\omega)^{*}$
$\Longrightarrow S_{Y}(\omega)=|H(\omega)|^{2} S_{X}(\omega)$.

Discrete-time WSS Processes

- A discrete-time random processs $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a collection of random variables $\left(X_{1}, X_{2}, \ldots, X_{n}, \ldots\right)$.
- Mean function $\mu_{X}[n]=\mathbb{E}\left[X_{n}\right]$.
- Autocorrelation function $R_{X}\left[n_{1}, n_{2}\right]=\mathbb{E}\left[X_{n_{1}} X_{n_{2}}\right]$.
- Autocovariance function $C_{X}\left[n_{1}, n_{2}\right]=\operatorname{cov}\left(X_{n_{1}}, X_{n_{2}}\right)$.
- Cross-correlation function $R_{X Y}\left[n_{1}, n_{2}\right]=\mathbb{E}\left[X_{n_{1}} Y_{n_{2}}\right]$.
- For X to be W.S.S, the following properties need to be satisfied.

1. $\mu_{X}[n]=\mu$ independent of n.
2. $R_{X}\left[n_{1}, n_{2}\right]=R_{X}\left[n_{2}-n_{1}\right]$.

- Properties such as ergodicity and output of LTI system to a WSS input continue to hold in an analogous manner.

Module B.2: Markov Chains

- Markov Process: A random process whose probability distribution at time $t+1$ given the past only depends on its value at time t. Specifically,

$$
\operatorname{Pr}\left(X_{k+1} \in A \mid X_{k}, \ldots, X_{1}\right)=\operatorname{Pr}\left(X_{k+1} \in A \mid X_{k}\right)
$$

More generally

$$
\operatorname{Pr}\left(X_{k+1} \in A \mid X_{k_{i}}, \ldots, X_{k_{1}}\right)=\operatorname{Pr}\left(X_{k+1} \in A \mid X_{k_{i}}\right)
$$

for any $k_{1}<k_{1}<\ldots<k_{i}<k$.

- If the (time) index set is continuous, the corresponding random process is called Markov Process.
- In this course: we focus on discrete-time Markov process where each random variable X_{k} is a discrete random variable that takes values from a finite set.
- Example: Infectious disease with reinfection where an individual can be in one of two possible states: susceptible (S) and infected (I).

Formal Definition

- Definition: We say that a (DT) random process $\left\{X_{k}\right\}$ is a Markov chain over a discrete-space if

1. X_{k} 's are all discrete random variables with common support S, i.e., $\operatorname{Pr}\left(X_{k} \in S\right)=1$ for all k, where S is countable, and
2. for all $i \geq 1$, all $1 \leq k_{1}<k_{2}<\ldots<k_{i} \leq k$, and all $1, \ldots, i, s \in S$:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{k+1}=s \mid X_{k_{i}}=s_{i}, \ldots, X_{k_{1}}=s_{1}\right)=\operatorname{Pr}\left(X_{k+1}=s \mid X_{k_{i}}=s_{i}\right) . \tag{1}
\end{equation*}
$$

- S is called the state space and each $s \in S$ is called a state. Relation (1) is called Markov property.
- If S is finite, $\left\{X_{k}\right\}$ is called a finite state Markov chain.

Transition Probabilities

- From this point on assume S is a finite set with elements, $S=\{1, \ldots, n\}$. Unless otherwise stated, many of the following discussions hold for $n=\infty$ but for convenience we assume that n is finite.
- For any k, let π_{k} be the (marginal) probability mass function X_{k}, i.e.,

$$
\pi_{k}(i)=\operatorname{Pr}\left(X_{k}=i\right)
$$

Note that the vector π_{k} is non-negative and $\sum_{i=1}^{d} \pi_{k}(i)=1$. Such a vector is called a stochastic (sometimes probability) vector. It is convenient to assume that π_{k} is a row vector.

- For any $1 \leq k_{1}<k_{2}$, define the matrix (array)

$$
P_{k_{1}, k_{2}}(i, j)=\operatorname{Pr}\left(X_{k_{2}}=j \mid X_{k_{1}}=i\right) .
$$

- $P_{k_{1}, k_{2}} \in \mathbb{R}^{n_{1} \times n_{2}}$ is called the transition matrix of MC from time k_{1} to time k_{2}. In other words,

$$
\pi_{k_{2}}=\pi_{k_{1}} P_{k_{1}, k_{2}}
$$

- We also (naturally) define $P_{k, k}:=I$, where I is the $n \times n$ identity matrix.

Properties of Transition Matrices

- Definition: We say that a $n \times n$ matrix A is a row-stochastic matrix if (i) A is non-negative, and (ii) $A \mathbf{1}=\mathbf{1}$ (or each row sums up to one).
- Properties of the transition matrices:
- Row-stochastic: For any $k \leq m, P_{k, m}$ is a row-stochastic matrix: The non-negativeness follows from the definition. Also, each row adds up to one:

$$
\sum_{j=1}^{n} P_{k, m}(i, j)=\sum_{j=1}^{n} \operatorname{Pr}\left(X_{m}=j \mid X_{k}=i\right)=1
$$

- For any $k \leq m$, we have:

$$
\pi_{m}=\pi_{k} P_{k, m} .
$$

This follow from the fact:

$$
\begin{aligned}
\pi_{m}(j) & =\operatorname{Pr}\left(X_{m}=j\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(X_{m}=j, X_{k}=i\right) \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(X_{m}=j \mid X_{k}=i\right) \operatorname{Pr}\left(X_{k}=i\right) \\
& =\left[\pi_{k} P_{k, m}\right]_{j} .
\end{aligned}
$$

Properties of Transition Matrices cont.

- Properties of the transition matrices cont.:
- Semigroup property: For any $k \leq m \leq q$, we have:

$$
P_{k, q}=P_{k, m} P_{m, q} .
$$

To show this, let i, j being fixed. Then, we have

$$
\begin{aligned}
& \qquad \begin{aligned}
P_{k, q}(i, j) & =\operatorname{Pr}\left(X_{q}=j \mid X_{k}=i\right) \\
& =\sum_{\ell=1}^{n} \operatorname{Pr}\left(X_{q}=j, X_{m}=\ell \mid X_{k}=i\right) \\
& =\sum_{\ell=1}^{n} \operatorname{Pr}\left(X_{q}=j \mid X_{m}=\ell, X_{k}=i\right) \operatorname{Pr}\left(X_{m}=\ell \mid X_{k}=i\right) \\
\text { (by Markov property) } & =\sum_{\ell=1}^{n} \operatorname{Pr}\left(X_{q}=j \mid X_{m}=\ell\right) \operatorname{Pr}\left(X_{m}=\ell \mid X_{k}=i\right) \\
& =\sum_{\ell=1}^{n} P_{k, m}(i, \ell) P_{m, q}(\ell, j) \\
& =\left[P_{k, m} P_{m, q}\right]_{i, j} .
\end{aligned}
\end{aligned}
$$

This property is widely known as Chapman-Kolmogorov equation.

- For DS Markov chains, the second property, and the Chapman-Kolmogorov property imply:

$$
\pi_{k}=\pi_{1} P_{1, k}=\pi_{1} P_{1,2} P_{2, k}=\cdots=\pi_{1} P_{1,2} P_{2,3} \cdots P_{k-1, k} .
$$

Homogeneous Markov Chains

Definition: We say that a Markov chain $\left\{X_{k}\right\}$ is (time-)homogeneous if $P_{1,2}=$ $P_{m, m+1}$ does not depend on m.

- Denote $P:=P_{m, m+1}$. P is called the one-step transition matrix of the underlying Homogeneous Markov chain.
- P is a row-stochastic matrix.
- For Homogeneous Markov chains, we have $P_{m, n}=P^{n-m}$.
- Distribution of X_{k} is given by $\pi_{k}=\pi_{k-1} P=\pi_{0} P^{k}$.
- With the abuse of notation, for a Homogeneous Markov chain P is also called (one-step) transition probability matrix (TPM).
- For homogeneous markov chains, the initial distribution and the one-step TPM completely specifies the random process.

Graph-Theoretic Interpretation

- Consider a homogeneoys MC on state space S with TPM P.
- Consider a directed weighted graph $G=(V, E, P)$ where
$-V=S=\{1, \ldots, n\}$,
- $E=\left\{(i, j) \mid P_{i j}>0\right\}$, and
- $P_{i j}$ is the weight of edge i, j.
- Then, the MC can be viewed as a random walk on this weighted graph.
- Example: infectious disease model. Determine the TPM, and simulate the MC.

Classification of States

We introduce a few basic definitions.

- An m-step walk on a graph $G=(V, E)$ is an ordered string of nodes $i_{0}, i_{1}, \ldots, i_{m}$ such that $\left(i_{k-1}, i_{k}\right) \in E$ for all $k \in\{1,2, \ldots, m\}$.
- A path is a walk where no two nodes are repeated. A cycle is a walk where the first and last nodes are identical and no other node is repeated.
- Let $G=(V, E, P)$ be the graph associated with a MC with TPM P. A state j is accessible from state i, denoted $i \rightarrow j$ if there is a walk in the graph from node i to node j.
- In other words, there exists nodes $i_{1}, i_{2}, \ldots, i_{k}$ such that $\left(i, i_{1}\right) \in E,\left(i_{1}, i_{2}\right) \in$ $E, \ldots,\left(i_{k}, j\right) \in E$. The length of this walk is $k+1$.
- Equivalently, $P_{i, i_{1}}>0, P_{i_{1}, i_{2}}>0, \ldots, P_{i_{k}, j}>0$. Thus, $\left[P^{k+1}\right]_{i, j}>0$.
- Two states i and j communicate if $i \rightarrow j$ and $j \rightarrow i$. This is denoted by $i \leftrightarrow j$.
- Naturally, if $i \leftrightarrow j, j \leftrightarrow k$, then $i \leftrightarrow k$.
- A subset of states $C \subseteq V$ is a communicating class if

1. $i \in C, j \in C \Longrightarrow i \leftrightarrow j$, and
2. $i \in C, j \notin C \Longrightarrow i \nrightarrow j$.

The set of states can be partitioned into distinct communicating classes. Each state belongs to exactly one communicating class.

Definition: A state i is called recurrent if $i \rightarrow j \Longrightarrow j \rightarrow i$. A state is transient if it is not recurrent.

If a state is recurrent, there is no path to a state from which there is no return.

Classification of States Cont.

Theorem: In a given communicating class, either all states are recurrent or all states are transient. Furthermore, in a finite-state MC, there is at least one recurrent communicating class.

- A matrix P is irreducible if for any $i, j,\left[P^{k_{i j}}\right]_{i j}>0$ for some $k_{i j} \geq 1$. In other words, $i \leftrightarrow j$ for every pair of states i, j.
- Graph theoretic interpretation: P is irreducible if there is a directed path between any two nodes on the graph.
- In this case, there is a single communicating class which is recurrent.

Definition: The period γ_{i} of a state i, to be greatest common divisor (gcd) of $\operatorname{gcd}\left(k \mid\left[P^{k}\right]_{i i}>0\right)$.

- Graph theoretic interpretation: gcd of lengths of all paths from i to itself.
- Example: for $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, determine the period of its states.
- All states in the same communicating class have the same period.
- We say that a non-negative matrix P is aperiodic if $\gamma_{i}=1$ for all i.
- A (homoegeneous) Markov chain with the transition matrix P is said to be irreducible (aperiodic) if P is irreducible (aperiodic).

Stationary and Limiting Distribution of a Markov Chain

- Let $P \in \mathbb{R}^{n \times n}$ be the single-step transition probability matrix of a homogeneous markov chain.
- Let π_{0} be the distribution of initial state X_{0}. It follows that $\pi_{n}=\pi_{0} P^{n}$.

A vector $\pi^{\star} \in \mathbb{R}^{1 \times n}$ is called invariant/stationary/steady-state distribution of the markov chain with TPM P if

- π^{\star} is a probability vector, i.e., $\pi^{\star}(i) \geq 0, \sum_{i=1}^{n} \pi^{\star}(i)=1$, and
- $\pi^{\star}=\pi^{\star} P$.

If $\pi_{k}=\pi^{\star}$ for some k, then $\pi_{m}=\pi^{\star}$ for all $m \geq k$.

Fundamental questions in the theory of (homogeneous) Markov chains:

- Existence and Uniqueness: When does π^{\star} exist? Is it unique?
- Ergodicity: When unique, under what conditions, $\pi_{k} \rightarrow \pi^{*}$?
- Mixing time: How fast does it converge to π^{*} ?
- Occupation Probability: How often do we spend time on a given state?

We know that the TPM P satisfies the following properties.

- P is non-negative.
- P is row-stochastic, which implies that all eigenvalues reisde on or within the unit circle, and 1 is an eigenvalue.
- Note: π^{\star} is nothing but the left eigenvector of eigenvalue 1.
- Thus, existence and uniqueness of stationary distribution is equivalent to showing existence and uniqueness of a non-negative left eigenvector of the TPM.

Example

- Let $P=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$.
- Solving for $(u, v) P=(u, v)$ with $v=1-u$, we get $u=\frac{2}{5}$ and $v=\frac{3}{5}$. Is this unique?
- What about $P=I$?

Linear Algebra Viewpoint

- Give a matrix $A \in \mathbb{R}^{n \times n}$, we define its spectral radius as

$$
\rho(A):=\{|\lambda|: \lambda \quad \text { is an eigenvalue of } \mathrm{A}\} .
$$

- An eigenvalue of A is called semi-simple if its algebratic multiplicity $=$ its geometric multiplicity.
- algebratic multiplicity: number of times the eigenvalue appears as root of the characteristic equation
- geometric multiplicity: number of linearly independent eigenvectors associated with this eigenvalue

It is called simple when both multiplicities are equal to 1 .

- The matrix A is called
- semi-convergent if $\lim _{k \rightarrow \infty} A^{k}$ exists, and
- convergent if it is semi-convergent and $\lim _{k \rightarrow \infty} A^{k}=0_{n \times n}$.

Theorem 1. A matrix $A \in \mathbb{R}^{n \times n}$ is

- convergent if and only if $\rho(A)<1$, and
- is semi-convergent if and only if either (i) $\rho(A)<1$ or (ii) 1 is a semi-simple eigenvalue and all other eigenvalues have magnitude strictly less than 1.

Perron-Frobenius Theorem

A matrix $A \in \mathbb{R}^{n \times n}$ is

- non-negative if $A_{i j} \geq 0$ for all i, j.
- irreducible if $\sum_{k=0}^{n-1} A^{k}$ is positive, i.e., all entries are strictly larger than 0 .
- primitive if there exists some \bar{k} such that $A^{\bar{k}}>0$.
- positive if $A_{i j}>0$ for all i, j.

Theorem 2. A matrix $A \in \mathbb{R}^{n \times n}$ be a non-negative matrix.

- Then, there exists a real eigenvalue $\lambda \geq|\mu| \geq 0$ where μ is any other eigenvalue. The left and right eigenvectors associated with A are non-negative.
- If A is irreducible, $\lambda \geq|\mu|$ is strictly positive and simple. The left and right eigenvectors associated with A are unique and positive.
- If A is primitive, $\lambda>|\mu|$. The left and right eigenvectors associated with A are unique and positive.

Let $P \in \mathbb{R}^{n \times n}$ be the single-step transition probability matrix of a homogeneous markov chain.

- Is P non-negative?
- When is P irreducible? Does it imply P is semi-convergent?
- When is P primitive? Does it imply P is semi-convergent?
- When is P positive? Does it imply P is semi-convergent?

Case 1: MC with Single Recurrent Class

- In this case, TPM P is irreducible. (why?)
- From PF Theorem, largest eigenvalue 1 is simple, and left eigenvector is unique and positive. In other words, π^{\star} exists and is unique.
- However, if the states have period $d>1$, then there are d eigenvalues on the unit circle that are equally spaced. Such a matrix is not primitive, and hence not semi-convergent.
- When the states are aperiodic (i.e., period $d=1$), then it is primitive, and P is semi-convergent.
- A MC which is both irreducible and aperiodic is called ergodic.
- We can show that

$$
\lim _{k \rightarrow \infty} P^{k}=(1)^{k} v w^{\top}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]\left[\begin{array}{ll}
w_{1} & w_{2} \ldots w_{n}
\end{array}\right]=\left[\begin{array}{cc}
w_{1} & w_{2} \ldots w_{n} \\
w_{1} & w_{2} \ldots w_{n} \\
& \vdots \\
w_{1} & w_{2} \ldots w_{n}
\end{array}\right]=: P_{\infty}
$$

where v is the right eigenvector and w is the left eigenvector of 1 . Note that $w=\pi^{\star}$.

- In addition, for any initial distribution π_{0}, we have

$$
\lim _{k \rightarrow \infty} \pi_{k}=\lim _{k \rightarrow \infty} \pi_{0} P^{k}=\pi_{0} P_{\infty}=\pi^{\star}
$$

Case 2: MC with one Recurrent Class and some Transient States

- Such a markov chain is called a unichain. The TPM P is no longer irreducible and can be partitioned as

$$
P={ }_{n-m_{1}}^{m_{1}}\left(\begin{array}{c:c}
m_{1} & P_{R} m_{1} \\
\hdashline P_{T R} & 0 \\
\hdashline P_{T T}
\end{array}\right)
$$

where the first m_{1} states belong to the recurrent class, and the remaining states being transient.

- Though P is not irreducible, the submatrix $P_{R R}$ is irreducible which has a unique stationary distribution $\pi_{R}^{\star} \in \mathbb{R}^{1 \times m_{1}}$.
- Then, the vector $\pi^{\star}=\left[\begin{array}{ll}\pi_{R}^{\star} & 0_{1 \times n-m_{1}}\end{array}\right]$ is the unique stationary distribution of P.
- If the states in the recurrent class is apeiodic, then P is semi-convergent. Such a MC is called an ergodic unichain.

The following result characterizes the uniqueness and limiting behavior of the stationary distribution.

Theorem 3. Consider a finite-state homogeneous MC.

- A MC has a unique stationary distribution π^{\star} if and only if it is a unichain (i.e., it has a single recurrent class)
- Let $\lim _{k \rightarrow \infty} P^{k}=P_{\infty}$. Each row of P_{∞} is identical and equal to π^{\star} if and only if MC is an ergodic unichain (unichain with an aperiodic recurrent class).

Case 3: MC with Multiple Recurrent Classes

- The TPM P can be partitioned as

$$
P=\left(\begin{array}{c:c:c:c}
m_{1} & m_{2} & m_{3} & n-\sum_{R_{1}} m_{i} \\
\hdashline 0 & 0 & 0 & 0 \\
\hdashline 0 & P_{R_{2}} & 0 & 0 \\
\hdashline 0 & 0 & 0 \\
\hdashline P_{T R 1} & P_{T R 2} & P_{T R 3} & P_{T T}
\end{array}\right)
$$

where the first m_{1} states belong to the first recurrent class, and so on.

- For each recurrent class, the corresponding submatrix $P_{R_{i}}$ is irreducible which has a unique stationary distribution $\pi_{i}^{\star} \in \mathbb{R}^{1 \times m_{i}}$.
- Then, the vector $\left[\begin{array}{llll}0 & \pi_{i}^{\star} & \ldots 0\end{array}\right]$ is a stationary distribution of P. Thus, stationary distribution is not unique.
- Every recurrent class adds one multiplicity to the eigenvalue 1 .
- P is semi-convergent only when every recurrent class is aperiodic. In this case, $\lim _{k \rightarrow \infty} P^{k}=P_{\infty}$, but P_{∞} has non-identical rows. However, rows corresponding to states in the same recurrent class are identical.

Ergodic Property

- Let the initial state $X_{0}=i$.
- $T_{i}:=\inf \left\{k \geq 1 \mid X_{k}=i\right\}$ (first passage time): smallest time index at which the state takes value i
- $f_{i}:=\mathbb{P}\left(T_{i}<\infty\right)$: return probability
- $m_{i}:=\mathbb{E}\left[T_{i}\right]$: mean return time
- $\nu_{i}:=\sum_{k=0}^{\infty} \mathbf{1}_{\left\{X_{k}=i\right\}}$ number of visits to i starting from i.
- State i is recurrent if and only if $f_{i}=1$. State i is transient if and only if $f_{i}<1$.

Theorem: If state i is recurrent, then $\mathbb{E}\left[\nu_{i}\right]=\infty$. If state i is transient, then $\mathbb{E}\left[\nu_{i}\right]<\infty$.

Theorem: Suppose the TPM is irreducible and let π^{\star} be the unique stationary distribution. Then, $m_{i}=\frac{1}{\pi^{\star}(i)}$ for all states i.

Theorem: Suppose the TPM is irreducible and aperiodic (i.e., ergodic) with the stationary distribution π^{\star}. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{\left\{X_{k}=i\right\}}=\pi^{\star}(i) \quad \text { almost surely. }
$$

Application: Page-Rank Algorithm

- Original idea of Google search ranking: Model a browsing person as a random walker over the graph of internet!
- Let $G=(V, E)$ where $d=$ number of webpages and there is a node for each webpage.
- $(i, j) \in E$ if i has a link to j.
- Then a person can be modeled as a random walker on G where

$$
P_{i j}= \begin{cases}\frac{1}{d_{i}} & j \in \mathcal{N}_{i} \\ 0 & \text { otherwise } .\end{cases}
$$

- Problem with this? Corresponding Markov chain is not irreducible.
- Now let us add a small reset probability, i.e., consider a Markov chain with one-step transition matrix

$$
\hat{P}=(1-a) P+a J,
$$

where $a \in(0,1)$ is a small reset parameter and J is the $d \times d$ matrix with all elements being $1 / d$.

- Then a Markov chain with the transition matrix \hat{P} is irreducible and aperiodic (why?).
- Therefore, it is ergodic, has a unique stationary distribution π^{*}, and $\pi_{k} \rightarrow \pi^{*}$ as $k \rightarrow \infty$.
- More importantly average visit percentage of state (webpage) i by time $k \rightarrow \pi_{i}^{*}$!
- Therefore, webpage i is superios to j if $\pi_{i}^{*}>\pi_{j}^{*}$.
- How does Google find π^{*} ?

Vector-valued Random Process

A random process $X=\left\{X_{t}\right\}_{t \in T}$ may be such that each X_{t} is a random vector taking values in \mathbb{R}^{n}. Then,
(a) Mean function:

$$
\mu_{X}(t):=\mathbb{E}\left[X_{t}\right] \in \mathbb{R}^{n}
$$

(b) Autocorrelation function:

$$
R_{X}\left(t_{1}, t_{2}\right):=\mathbb{E}\left[X_{t_{1}} X_{t_{2}}^{\top}\right] \in \mathbb{R}^{n \times n}
$$

(c) Autocovariance function:

$$
C_{X}\left(t_{1}, t_{2}\right):=\operatorname{cov}\left(X_{t_{1}}, X_{t_{2}}\right) \in \mathbb{R}^{n \times n} .
$$

For WSS, every element of $C_{X}\left(t_{1}, t_{2}\right)$ should only depend on $t_{2}-t_{1}$.

Other Class of Processes

- A stochastic process $\left\{X_{t}\right\}_{t \in T}$ is called a Gaussian Process if for every finite set of indices $t_{1}, t_{2}, \ldots, t_{k}$, the collection of random variables $X_{t_{1}}, X_{t_{1}}, \ldots, X_{t_{k}}$ is jointly Gaussian.
- A stochastic process which is both Gaussian and Markov is called GaussMarkov Process.
- A stochastic process $\left\{X_{t}\right\}_{t \in T}$ is said to have independent increments if for every finite set of indices $t_{1}, t_{2}, \ldots, t_{k}$, the collection of random variables $X_{t_{2}}-X_{t_{1}}, X_{t_{3}}-X_{t_{2}}, \ldots, X_{t_{k}}-X_{t_{k-1}}$ are mutually indepdenent.
- The increments are stationary if $X_{t_{2}}-X_{t_{1}}$ and $X_{t_{2}+s}-X_{t_{1}+s}$ have the same distribution irrespective of the value of s.
- Brownian Motion/Wiener Process: A stochastic process $\left\{X_{t}\right\}_{t \in T}$ is a Wiener Process if

1. $X_{0}=0$,
2. the process has stationary and independent increments,
3. $X_{t}-X_{s} \sim \mathcal{N}\left(0, \sigma^{2}(t-s)\right)$,
4. the sample paths are continuous with probability 1 .

For a Wiener process, one can show that the sample paths are not differentiable by showing

$$
\lim _{\Delta \rightarrow 0} \operatorname{var}\left[\frac{X(t+\Delta)-X(t)}{\Delta}\right]=\frac{\sigma^{2}}{\Delta} \rightarrow \infty
$$

Dynamical System

- Deterministic discrete-time dynamical system in state-space form is given by:

$$
x_{k+1}=f_{k}\left(x_{k}, u_{k}\right), \quad k=0,1, \ldots,
$$

where $x_{k} \in \mathbb{R}^{n}$ is the state at time k and $u_{k} \in \mathbb{R}^{m}$ is the input at time k.

- State variable: summarizes past information such that if we know the state at time k and the input for all $t \geq k$, then we can completely determine the future states.
- In other words, if we know the current state, we do not need to store past states and inputs to predict the future.
- If $f_{k}=f$ for all k, the system is time-invariant.

Stochastic Dynamical System

- Stochastic Model: the future state is uncertain even if the current state and input are known. There are two ways of representing such a system. Both are equivalent under reasonable assumptions.
- State-space form:

$$
x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right), \quad k=0,1, \ldots,
$$

where $w_{k} \in \mathbb{R}^{w}$ is a random variable/noise/disturbace which is not under our control (unlike input u).

- Note that $\left\{w_{1}, w_{2}, \ldots,\right\}$ is a discrete-time random process, as is $\left\{x_{1}, x_{2}, \ldots,\right\}$.
- Example: $x_{k+1}=a x_{k}+w_{k}$ where $w_{k} \in \mathcal{N}(c, 1)$ and $x_{0}=5$. What will the trajectories look like for different values of a and c ? What is the distribution of x_{k} as $k \rightarrow \infty$? Is this process Markovian?

Stochastic Linear System

A stochastic linear system is formally defined as

$$
x_{k+1}=A_{k} x_{k}+B_{k} u_{k}+w_{k} .
$$

Problem: recursively determine the mean and variance of x_{k} given that $\mathbb{E}\left[w_{k}\right]=0$, $\operatorname{var}\left(w_{k}\right)=Q$ and x_{0} is known.

Representation via Transition Kernel

- Recall the state-space form: $x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right), \quad k=0,1, \ldots$.
- Here, the distribution of x_{k+1} can be found in terms of the function f_{k} and indirectly, as a function of basic random variables $\left(x_{0}, w_{0}, \ldots, w_{k}\right)$.
- The alternative approach is to directly specify the distribution of x_{k+1} instead of relying on the function f_{k}. In particular, the conditional distribution of X_{k+1} given x_{k} and u_{k} is specified for all values of x_{k} and u_{k}.
- For the dynamical system to be Markovian, we need to show that for every Borel subset A and for all k,

$$
\mathbb{P}\left(X_{k+1} \in A \mid x_{0}, u_{0}, x_{1}, u_{1}, \ldots, x_{k}, u_{k}\right)=\mathbb{P}\left(X_{k+1} \in A \mid x_{k}, u_{k}\right) .
$$

- Is the above property always true?

Observation Model

- In many instances, the states can not be directly measured.
- Instead, we observe "output" quantities that depend on the state as

$$
y_{k}=g_{k}\left(x_{k}, v_{k}\right),
$$

where v_{k} is a random variable termed "measurement noise."

- Alternatively, the conditional distribution of y_{k} given x_{k} is specified.
- In case of a linear system, $y_{k}=C_{k} x_{k}+v_{k}$.
- One problem of significant interest is to infer or estimate the state x_{k} given the measured / output quantities y_{k} in an online and recursive manner.
- Module C will tackle this issue.

