EE60039: Probability and Random Processes for Signals and Systems
 Instructor: Prof. Ashish R. Hota

Logistics:

- Class Timing: Monday: 12 noon-12:55pm; Tuesday: 10am-11:55am,
- Venue: NC 244
- Instructor Email: ashish.hota@ieee.org. Use EE60039 in Subject Line.
- Course Website: http://www.facweb.iitkgp.ac.in/~ahota/prob.html

Syllabus:
Module A: Introduction to Probability and Random Variables. 4 Weeks. Main Reference: Chapters 1-5 of Wasserman.

1. Probability Space. Independence. Conditional Probability. [Chapter 1 of Hajek, Chapter 2-5 of Chan, Chapter 1 of Gallager]
2. Random Variables and Vectors. Discrete and Continuous Distributions. [Chapter 1 of Hajek, Chapter 2-5 of Chan, Chapter 1 of Gallager]
3. Expectation, Moments, Characteristic Functions. [Chapter 1 of Hajek, Chapter 2-5 of Chan, Chapter 1 of Gallager]
4. Inequalities and Bounds. [Chapter 1-2 of Hajek, Chapter 6 of Chan, Chapter 1 of Gallager]
5. Convergence of Random Variables. Law of Large Numbers, Central Limit Theorem. [Chapter 2 of Hajek, Chapter 6 of Chan, Chapter 1 of Gallager]

Module B: Random Processes. 4 Weeks.

1. Definition, Discrete-time and Continuous-time Random Processes [Chapter 4 of Hajek, Chapter 10 of Chan]
2. Stationarity, Power Spectral Density, Second order Theory [Chapter 4, 8 of Hajek, Chapter 10 of Chan]
3. Gaussian Process [Chapter 3 of Hajek, Chapter 3 of Gallager]
4. Markov Chain, Classification of States, Limiting Distributions [Chapter 4 of Gallager]
Module C: Basics of Bayesian Estimation. 4 Weeks.
5. Maximum Likelihood, Maximum Aposteriori, Mean Square and Linear Mean Square Estimation [Chapter 5 of Hajek, Chapter 8 of Chan]
6. Conditional Expectation and Orthogonality [Chapter 3 of Hajek, Chapter 10 of Gallager]
7. Kalman Filters [Chapter 3 of Hajek]
8. Hidden Markov Models [Chapter 5 of Hajek]

Module D: Information, Entropy, and Divergence, 1 Week

Reference:

The subject will closely follow the treatment in the following texts.

1. Larry Wasserman, All of Statistics, Springer Texts in Statistics, 2004. Available at: https://link.springer.com/book/10.1007/978-0-387-21736-9
2. Bruce Hajek, Random Process For Engineers, Cambridge University Press, 2015. Available at: https://hajek.ece.illinois.edu/Papers/randomprocJuly14.pdf
3. Robert G. Gallager, Stochastic Processes: Theory for Applications, Cambridge University Press, 2013.
4. Stanley H. Chan, Introduction to Probability for Data Science, Michigan Publishing, 2021. Available at: https://probability4datascience.com/index.html
5. Jason Speyer and Walter Chung, Stochastic Processes, Estimation and Control, SIAM, 2008.

Evaluation Plan:

1. Midsem: 30\%
2. Endsem: 50\%
3. Homework and Class Performance: 20%

Probability Space

Notations:

- \mathbb{N} : set of natural numbers
- \mathbb{R} : set of real numbers
- \mathbb{Z} : set of integers
- \mathbb{Q} : set of rational numbers
- $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x \geq 0\}$ and $\mathbb{Z}^{+}=\{a \in \mathbb{Z} \mid a \geq 0\}$.
- For a set X, we denote the set of all its subsets by $\mathcal{P}(X)$

Definition 1. Probability spaces are triplets of $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$ consisting

- Sample space: A set Ω that contains all possible outcomes.
- Events \mathcal{F} : This is a set consisting of subsets of Ω satisfying:
a. $\Omega \in \mathcal{F}$,
b. Closed under complement: $E \in \mathcal{F}$ implies $E^{c} \in \mathcal{F}$, and
c. Closed under countable union: for any countably many subsets $E_{1}, \ldots, E_{k}, \ldots \in \mathcal{F}$, we have $\cup_{k=1}^{\infty} E_{k} \in \mathcal{F}$.
- Probability measure $\mathbb{P}(\cdot)$: is a function from \mathcal{F} to $[0,1]$ that satisfies:
i. $\mathbb{P}(\Omega)=1$, and
ii. For countably many subsets $\left\{E_{k}\right\}$ in \mathcal{F} that are mutually disjoint (i.e., $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$), we have

$$
\mathbb{P}\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} \mathbb{P}\left(E_{k}\right) .
$$

Note

- Any \mathcal{F} that satisfies the properties a, b, and c is called a σ-algebra over Ω, and (Ω, \mathcal{F}) is called a measurable space.

Examples

- Toss of a coin: $\Omega=\{H, T\}$
- Roll of a dice: $\Omega=\{1,2,3,4,5,6\}$
- Waiting time for the next bus: $\Omega=\{t \geq 0\}$
- Each event is a subset of Ω.
- Event is "yes/no questions that can be answered after the experiment is conducted and the outcome is known"
- Example of measurable space: $\Omega=\{0,1\}$, and $\mathcal{F}=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.
- Example of measurable space: In general, power set $\mathcal{P}(\Omega)$ is a σ-algebra for any Ω.
- Example of measurable space: $\{\emptyset, \Omega\}$ is a σ-algebra for any Ω.
- What if Ω is uncountable such as \mathbb{R}^{n} ? Fortunately, for \mathbb{R}^{n} there exists a σ-algebra that we can define meaningful measures (such as uniform) in \mathbb{R}^{n}, namely the Borel σ-algebra.
- Probability measure \mathbb{P} measures the size of a set (an event).
- Example: Does the following define a probability space?

$$
\begin{aligned}
& \overline{\Omega_{1}}=\{1,2,3\}, \mathcal{F}_{1}=\{\phi, \Omega,\{1\},\{2,3\}\} \\
& \mathbb{P}_{1}[\phi]=0.5, \mathbb{P}_{1}[\{1\}]=0.3 \\
& \mathbb{P}_{1}[\Omega]=0.2, \mathbb{P}_{1}[\{2,3\}]=0.9 .
\end{aligned}
$$

- Countable Union: Example: (i) $A_{i}=\left[-1,1-\frac{1}{i}\right], i=1,2 \ldots$

Specifically, $A_{1}=[-1,0], A_{2}=[-1,0.5], \ldots, A_{10}=[-1,0.9]$
$\bigcup_{i=1}^{\infty} A_{i}=\left\{a \mid a \in A_{i}\right.$ for some finite $\left.i\right\}=[-1,1]$.

- Homework:

$$
\begin{aligned}
& B_{n}\left[0,1-\frac{1}{n}\right), \quad \bigcap_{n=1}^{\infty} B_{n}=? \\
& C_{n}=\left[0,1+\frac{1}{n}\right), \quad \bigcap_{n=1}^{\infty} C_{n}=?
\end{aligned}
$$

Elementary Properties implied by probability axioms

Let $A, B \in \mathcal{F}$. Then, the following properties are true.

1. $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
2. $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$.
3. $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) \leq \mathbb{P}(A)+\mathbb{P}(B)$.
4. $\mathbb{P}\left(\bigcup_{i=1}^{N} A_{i}\right) \leqslant \sum_{i=1}^{N} \mathbb{P}\left(A_{i}\right)$ for every N, including $N=\infty$. (Union bound)

Conditional Probability and Independence

Definition 2. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider events A and B with $\mathbb{P}(B)>0$. The conditional probability of A given B is

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Definition 3. A countable collection of events $\left\{A_{1}, A_{2}, \ldots\right\}$ are said to be mutually independent, if any finite collection from the above, $\left\{A_{1}^{\prime}, A_{2}^{\prime} \ldots A_{k}^{\prime}\right\}$ satisfies

$$
\mathbb{P}\left(A_{1}^{\prime} \cap A_{2}^{\prime} \ldots \cap A_{k}^{\prime}\right)=\mathbb{P}\left(A_{1}^{\prime}\right) \cdot \mathbb{P}\left(A_{2}^{\prime}\right) \cdots \mathbb{P}\left(A_{k}^{\prime}\right)
$$

Notes:

- If A, B are independent, $\mathbb{P}(B)>0$, then $\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B) \Rightarrow \mathbb{P}(A \mid B)=\mathbb{P}(A)$.
Knowledge that event B is true gives you no further information about occurence of A.
- Suppose A and B are disjoint can they be independent?

No. Disjoint is the strongest form of dependence. Occurence of one event rules out the occurence of the other.

Baye's Law

Proposition 1. Let Ω be the set of outcomes. Let $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ form a partition of Ω, and let B be another event. Then,

- $\left\{A_{1} \cap B, A_{2} \cap B, \ldots, A_{k} \cap B\right\}$ also form a partition of B.
- Law of Total Probability:

$$
\mathbb{P}(B)=\sum_{i=1}^{k} \mathbb{P}\left(A_{i} \cap B\right)=\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)
$$

- Baye's Law:

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(A_{i} \cap B\right)}{\mathbb{P}(B)}=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{j=1}^{k} \mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}
$$

Problem: Consider a disease that affects one out of every 1000 individuals. There is a test that detects the disease with 99% accuracy, that is, it classifies a healthy individual as having the disease with 1% chance, and a sick individual as healthy with 1% chance. Then,

1. What is the probability that a randomly chosen individual will test positive by the test?
2. Given that a person tests positive, what is the probability that he or she has the disease?

Homework: Repeat the above when detection accuracy is $99.9 \%, 99.99 \%$ and 99.999\%.

Random Variable

Definition 4. Let $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$ be a probability space. The mapping X : $\Omega \rightarrow \mathbb{R}$ is called a random variable if the pre-image of any interval $(-\infty, a]$ belongs to \mathcal{F}, i.e.

$$
\begin{equation*}
X^{-1}((-\infty, a]) \in \mathcal{F} \quad \text { for every } a \in \mathbb{R} \tag{1}
\end{equation*}
$$

where

$$
X^{-1}(B):=\{\omega \in \Omega \mid X(\omega) \in B\} .
$$

Note: Functions that satisfy this property are called measurable functions. Measurability is a property of the function X and the σ-algebra.

Example: Let $\Omega=\{H H, T H, H T, T T\}$. Consider two σ-algebras defined on Ω.

- $\mathcal{F}_{1}=\{\phi, \Omega,\{H H\},\{H T, T H, T T\}\}$
- $\mathcal{F}_{2}=\{\phi, \Omega,\{T T\},\{H H, H T, T H\}\}$

Consider a function $Y: \Omega \rightarrow \mathbb{R}$ such that $Y(H H)=1, Y(T H)=1, Y(H T)=1$ and $Y(T T)=0$, i.e, $Y=1$ when at least one win toss is head, and 0 , otherwise.

- Is Y a random variable with respect to \mathcal{F}_{1} ?
- Is Y a random variable with respect to \mathcal{F}_{2} ?

A random variable is neither random, nor is it a variable. The function X itself is deterministic. Randomness is due to uncertainty regarding which outcome $\omega \in \Omega$ is true. Once the outcome ω is determined, the value $X(\omega)$ is also determined.

(Important) Indicator Random Variable

Definition 5. (Indicator Function) For a set $E \subseteq \Omega$, define the indicator function of E as

$$
\mathbf{1}_{E}(\omega)= \begin{cases}1 & \text { if } \omega \in E \\ 0 & \text { if } \omega \notin E\end{cases}
$$

Show that $\mathbf{1}_{E}(\omega)$ is a random-variable if and only if (iff) $E \in \mathcal{F}$.

Let us determine the pre-images for different $a \in \mathbb{R}$. We have three cases;

1. if $a<0, \mathbf{1}_{E}^{-1}((-\infty, a])=$?,
2. if $0 \leq a<1$, then $\mathbf{1}_{E}^{-1}((-\infty, a])=$?, and
3. if $1 \leq a$, then $\mathbf{1}_{E}^{-1}((-\infty, a])=$?.

What do we conclude from here?

Probability Distribution of a Random Variable

Definition 6. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$ and a random variable $X: \Omega \rightarrow \mathbb{R}$ defined on this space. The probability distribution function of X is a function $F_{X}: \mathbb{R} \rightarrow[0,1]$ defined as

$$
F_{X}(\alpha):=\mathbb{P}(\{\omega: X(\omega) \leq \alpha\}):=\mathbb{P}\left(X^{-1}(-\infty, \alpha]\right):=\operatorname{Prob}(X \leq \alpha) .
$$

 variables.

- $Y_{1}(H)=1, Y_{1}(T)=0$.
- $Y_{2}(H)=0, Y_{2}(T)=1$.

Find the distribution functions $F_{Y_{1}}$ and $F_{Y_{2}}$.

Properties of Distribution Function:

1. F_{X} is non-decreasing, i.e, if $\alpha_{1}, \leq \alpha_{2}, F_{X}\left(\alpha_{1}\right) \leq F_{X}\left(\alpha_{2}\right)$.
2. $\lim _{\alpha \rightarrow \infty} F_{X}(\alpha)=1, \quad \lim _{\alpha \rightarrow-\infty} F_{X}(\alpha)=0$.
3. F_{X} is right continuous, i.e., $F_{X}(\alpha)=\lim _{\epsilon \rightarrow 0^{+}} F_{X}(\alpha+\epsilon)$.
F_{X} is called the cumulative distribution function (CDF).

Example

Let $\Omega=\{1,2,3\}$ and $X: \Omega \rightarrow \mathbb{R}$ such that $X(1)=0.5, X(2)=0.7, X(3)=$ 0.7 .

- Find the smallest σ-algebra on Ω such that X is a random variable.
- Let $\mathbb{P}(\{1\})=0.3$. Find the distribution F_{X}.

Random Vectors and Random Processes

- Random Vectors: Any mapping $X: \Omega \rightarrow \mathbb{R}^{n}$ with $X(\omega)=$ $\left(X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)\right)$ is called a random vector if X_{i} is a random variable for all $i=1, \ldots, n$.
- Random Process: An infinitely indexed collection $\left\{X_{\alpha}\right\}_{\alpha \in I}$ of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ is called a random process.
- If the index set I is a discrete set (usually $I=\mathbb{Z}^{+}$), the random process is called a discrete-time random process. When $I=\mathbb{R}$ or $I=\mathbb{R}^{+}$, the random process is called a continuous-time random process.

More generally, a random variable X maps one probability space $\left(\Omega_{1}, \mathcal{F}_{1}, \mathbb{P}_{1}\right)$ to another $\left(\Omega_{2}, \mathcal{F}_{2}, \mathbb{P}_{2}\right)$ in a systematic manner such that

- $X: \Omega_{1} \rightarrow \Omega_{2}$,
- for any event $E_{2} \in \mathcal{F}_{2}$, its pre-image $\left\{\omega \in \Omega_{1} \mid X(\omega) \in E_{2}\right\} \in \mathcal{F}_{1}$, and
- for any event $E_{2} \in \mathcal{F}_{2}, \mathbb{P}_{2}\left(E_{2}\right):=\mathbb{P}_{1}\left(\left\{\omega \in \Omega_{1} \mid X(\omega) \in E_{2}\right\}\right)$ is called the induced measure.

For a real-valued random variable $X: \Omega \rightarrow \mathbb{R}$, the corresponding σ-algebra on \mathbb{R} is called the Borel σ-algebra and the induced measure gives rise to the distribution function.

Discussion on Random Variables

- When $|\Omega|$ is finite, we can define the collection of events $\mathcal{F}=2^{\Omega}$.
- However, then $|\Omega|$ is (uncountably) infinite, there are several technical difficulties that arise in defining $\mathcal{F}=2^{\Omega}$.
- When $\Omega=\mathbb{R}$, we use a specific σ-algebra as the set of events.

Definition 7. The Borel σ - algebra, denoted $\mathbb{B}(\mathbb{R})$, is the smallest σ - algebra that contains all sets of the form $(-\infty, \alpha]$ for every $\alpha \in \mathbb{R}$.

- Define $\mathcal{F}:=\{(-\infty, \alpha] \mid \alpha \in \mathbb{R}\}$. Is \mathcal{F} a σ - algebra ?
- $\mathbb{B}(\mathbb{R})=\sigma\{\mathcal{F}\}$ is the σ - algebra generated by the sets contained in \mathcal{F}.
- Thus, a real-valued random variable $X: \Omega \rightarrow \mathbb{R}$ is a mapping from an arbitrary probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to $\left(\mathbb{R}, \mathbb{B}(\mathbb{R}), \mathbb{P}_{X}\right)$ where the induced measure \mathbb{P}_{X} is characterized in terms of the distribution function F_{X}.

Discrete Random Variable

- A random variable is discrete when X takes a finite or countable number of values.
- Suppose X takes values in the set $\left\{x_{1}, x_{2}, \ldots . x_{n}\right\}$. Then,

$$
\begin{gathered}
\mathbb{P}\left(X=x_{1}\right)=\mathbb{P}\left(\left\{\omega \in \Omega \mid X(\omega)=x_{1}\right\}\right)=: p_{X}\left(x_{1}\right), \ldots \\
\mathbb{P}\left(X=x_{n}\right)=\mathbb{P}\left(\left\{\omega \in \Omega \mid X(\omega)=x_{n}\right\}\right)=: p_{X}\left(x_{n}\right) .
\end{gathered}
$$

where p_{X} is called the probability mass function.

- The quantities $\left\{p_{X}\left(x_{1}\right) \ldots . p_{X}\left(x_{n}\right)\right\}$ satisfy $p_{X}\left(x_{i}\right) \geq 0$ and $\sum_{i=1}^{n} p_{X}\left(x_{i}\right)=1$.
- The distribution function F_{X} is a stair case function.
- Example: Bernoulli Random variable (p):
$X=1$ with probability p and $X=0$ with probability $1-p$.
- Binomial r.v (n, p):

Outcome of n coin tosses where each coin toss comes Head with probability p.
$\Omega=\{H H \ldots H \ldots T, \ldots T H H T \ldots, T T \ldots T\}$
$X: \Omega \rightarrow \mathbb{R}$ gives the number of Heads in n coin tosses.
E.g., $X(H H \ldots H)=n, X(H T T \ldots T)=1$, and so on.

Can we express a Binomial r.v in terms of a collection of Bernoulli r.v.s?

- Homework: write a program to plot the pmf and distribution of a Binomial r.v. for $n=25$ and $p \in\{0,0.2,0.4,0.6,0.8,1\}$.

Continuous Random Variable

- A random variable X is continuous if there exists a function $f_{X}: \mathbb{R} \rightarrow[0, \infty]$ such that for every $\alpha \in \mathbb{R}$, we have

$$
F_{X}(\alpha)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega) \leq \alpha\})=\int_{-\infty}^{\alpha} f_{X}(x) d x
$$

- $\underline{f_{X}}$: is called the probability density function (pdf) of r.v. X.
- If F_{X} is differentiable at $\alpha, f_{X}(\alpha)=\left.\frac{d F_{X}(x)}{d x}\right|_{x=\alpha}$.
- Example: X is uniformly distributed between $[a, b]$. The pdf is given by

$$
f_{X}(\alpha)= \begin{cases}\frac{1}{b-a}, & \text { when } \alpha \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

Determine the distribution function F_{X}.

- Example: Let X be a r.v which takes value 0 with probability 0.5 . Otherwise, it is uniformly dist. between 0.5 to 1 .

1. Plot $F_{X}(\alpha)$ for $\alpha \in \mathbb{R}$.
2. Find $f_{X}(x)$ such that $\int_{-\infty}^{\alpha} f_{X}(x) d x=F_{X}(\alpha)$.

- Exponential r.v. $(\lambda>0)$: The pdf is given by The pdf is given by

$$
f_{X}(\alpha)=\left\{\begin{array}{l}
\lambda e^{-\lambda \alpha}, \quad \text { when } \quad \alpha \geq 0 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Determine the distribution function F_{X}.

- Gaussian r.v. $(\mu, \sigma>0)$: The pdf $f_{X}(\alpha)=\frac{1}{\sqrt{2 \pi \sigma}} e^{\left(\frac{-(\alpha-\mu)^{2}}{2 \sigma^{2}}\right)}$ for $\alpha \in \mathbb{R}$.

Properties of probability density function

For a continuous random variable X, its pdf satisfies the following properties.

1. $f_{X}(x) \geq 0$, for every $x \in \mathbb{R}$.
2. $\int_{-\infty}^{\infty} f_{X}(x) d x=F_{X}(\infty)=1$.
3. $f_{X}(x)$ is not a probability; if can be take values larger than 1 at some points.
4. $F_{X}(x+\epsilon)-F_{X}(x)=\int_{-\infty}^{x+\epsilon} f_{X}(x) d x-\int_{-\infty}^{x} f_{X}(x) d x=\int_{x}^{x+\epsilon} f_{X}(x) d x$.
5. $\mathbb{P}(a \leq X \leq b)=F_{X}(b)-F_{X}(a)=\int_{a}^{b} f_{X}(x) d x$.

Note: If the CDF of a r.v. X is continuous at some α, then $\mathbb{P}(X=\alpha)=0$.

Expectation of a Random Variable

- A r.v. X is called a simple random variable if it takes finite number of possible values, i.e.,

$$
X(\omega)=\left\{\begin{array}{lll}
a_{1}, & \text { if } & \omega \in A_{1} \\
a_{2}, & \text { if } & \omega \in A_{2}, \ldots \\
a_{n}, & \text { if } & \omega \in A_{n}
\end{array}\right.
$$

For this simple r.v X, we define $\mathbb{E}[X]:=\sum_{i=1}^{n} a_{i} \mathbb{P}\left(A_{i}\right) \in \mathbb{R}$.

- Indicator r.v for event A is a simple random variable with $\mathbb{E}\left[\mathbf{1}_{A}\right]=\mathbb{P}(A)$.
- For a non-negative random variable X,
- there exists a sequence of simple random variables $\left\{X_{1}, X_{2}, \ldots\right\}$ which converges to X.
- the expectation of each simple r.v in the sequence $\left\{\mathbb{E}\left[X_{1}\right], \mathbb{E}\left[X_{2}\right], \ldots\right\}$ can be computed as above, and this sequence of real number is convergent,
$-\mathbb{E}[X]:=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]$.
- For discrete r.v: $\mathbb{E}[X]=\sum_{i=1}^{n} x_{i} \mathbb{P}\left(X=x_{i}\right)=\sum_{i=1}^{n} x_{i} p_{X}\left(x_{i}\right)$.
- For continuous r.v: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- General notation: $\mathbb{E}[X]=\int x d F_{X}(x)=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)$.
- Note: $\mathbb{E}[X] \in \mathbb{R}$, i.e., expectation of a random variable is a deterministic scalar without any randomness in it.

Properties of Expectation

Definition 8. For two random variables X and Y, we define

- $X=Y$ almost surely (a.s.) if $P[\{\omega \in \Omega \mid X(\omega)=Y(\omega)\}]=1$.
- $X \leq Y$ almost surely (a.s.) if $P[\{\omega \in \Omega \mid X(\omega) \leq Y(\omega)\}]=1$.

Properties of Expectation:

- Linearity: For two random variables X, and Y,

$$
\mathbb{E}[\alpha X+\beta Y]=\alpha \mathbb{E}[X]+\beta \mathbb{E}[Y] \quad \text { for any } \quad \alpha, \beta \in \mathbb{R}
$$

Equivalently, $\mathbb{E}[\alpha X]=\alpha \mathbb{E}[X], \& \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$.

- If $X=Y$ a.s, then $\mathbb{E}[X]=\mathbb{E}[Y]$.
- If $X \leq Y$ a.s, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$.

Function of random variables

- Let X be a random variable. Then $Y=g(X)$ is a random variable if the function g is measurable, i.e., for any $\alpha \in \mathbb{R}$, the inverse map $Y^{-1}((-\infty, \alpha])$ belongs to the Borel σ-algebra over \mathbb{R}.
- All continuous functions are measurable. In fact, almost all functions we encounter satisfies this property.
- Example: If X is a random variable, so are $\sin (X), \log (X), X^{k}$, and so on.
- Law of the unconscious statistician (LOTUS): If $Y=g(X)$, then

$$
\mathbb{E}[Y]=\int y d F_{Y}(y)=\int_{-\infty}^{\infty} g(x) d F_{X}(x)
$$

There is no need to find the distribution of Y. Thus, for a continuous r.v. X with density f_{X}, we have

$$
\begin{aligned}
& \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x \\
& \mathbb{E}\left[X^{k}\right]=\int_{-\infty}^{\infty} x^{k} f_{X}(x) d x \\
& \mathbb{E}[\sin (X)]=\int_{-\infty}^{\infty} \sin (x) f_{X}(x) d x
\end{aligned}
$$

- $\mathbb{E}\left[X^{k}\right]$ is called the k-th moment of X.
- Variance of a r.v. X is defined as $\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$.

Characteristic Function

Characteristic function of a r.v X is defined as

$$
C_{X}(h)=\mathbb{E}\left[e^{i h X}\right], \quad \text { where } \quad i=\sqrt{-1} .
$$

- For a continuous r.v, $C_{X}(h)=\int_{-\infty}^{\infty} e^{i h X} f_{X}(x) d x$.
- $C_{X}(0)=\mathbb{E}[1]=1$.
- $\frac{d C_{X}(h)}{d h}=\int_{-\infty}^{\infty}(i x) e^{i h x} f_{X}(x) d x$.
- $\left.\frac{d C_{X}(h)}{d h}\right|_{h=0}=\int_{-\infty}^{\infty}(i x) f_{X}(x) d x=i \mathbb{E}[X]$.
- How about higher order derivatives?
- A random vector $X=\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right]$ such that each $X_{i}, 1 \leq i \leq n$ is a r.v..
- Joint distribution function (CDF) $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$ is defined as

$$
\begin{aligned}
F_{X}\left(c_{1}, c_{2}, \ldots . c_{n}\right) & =\mathbb{P}\left[\left\{\omega \in \Omega \mid X_{1}(\omega) \leq c_{1}, X_{2}(\omega) \leq c_{2}, \ldots, X_{n}(\omega) \leq c_{n}\right\}\right] \\
& =\mathbb{P}\left[\cap_{i=1}^{n}\left\{\omega \in \Omega \mid X_{i}(\omega) \leq c_{i}\right\}\right] .
\end{aligned}
$$

- The random variables $X_{1}, X_{2}, \ldots . X_{n}$ are jointly continuous if there exists a function $f_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$

$$
F_{X}\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\int_{-\infty}^{c_{1}} \int_{-\infty}^{c_{2}} \ldots \int_{-\infty}^{c_{n}} f_{X}\left(x_{1}, x_{2}, \ldots . x_{n}\right) d x_{1} d x_{2} \ldots . d x_{n}
$$

- Random vector $X=\left[X_{1}, \ldots, X_{n}\right]^{\top}$ is jointly discrete if each X_{i} is a joint discrete random variable. Joint pmf is defined as

$$
p_{X}\left(c_{1}, c_{2}, \ldots . c_{n}\right)=\mathbb{P}\left(\left\{\omega \in \Omega \mid X_{i}(\omega)=c_{i}, 1 \leq i \leq n\right\}\right) .
$$

- Joint Characteristic Function: For a continuous random vector X,

$$
\begin{aligned}
& C_{X}\left(h_{1}, h_{2}, \ldots h_{n}\right)=\mathbb{E}\left[e^{i\left(h_{1} X_{1}+h_{2} X_{2}+\ldots h_{n} X_{n}\right)}\right] \\
& \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} e^{i\left(h_{1} x_{1}+h_{2} x_{2}+\ldots h_{n} x_{n}\right)} f_{X}\left(x_{1}, x_{2}, \ldots x_{n}\right) d x_{1} d x_{2} d x_{n} . \\
& \text { - Expectation: } \mathbb{E}[X]=\left[\begin{array}{c}
\mathbb{E}\left[X_{1}\right] \\
\mathbb{E}\left[X_{2}\right] \\
\vdots \\
\mathbb{E}\left[X_{n}\right]
\end{array}\right] \in \mathbb{R}^{n} .
\end{aligned}
$$

Computing Marginal Distributions

If joint distribution/ density/ mass function is given, we can compute the distribution/ density/ PMF of each individual constituent random variable.

- Joint distribution $F_{X}\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\mathbb{P}\left[\bigcap_{i=1}^{n}\left\{\omega \mid X_{i}(\omega) \leq c_{i}\right\}\right]$.
- Marginal distribution of the second constituent random variable

$$
\begin{aligned}
F_{X_{2}}\left(c_{2}\right) & =\mathbb{P}\left[\left\{\omega \in \Omega \mid X_{2}(\omega) \leq c_{2}\right\}\right] \\
& =\mathbb{P}\left[\bigcap_{i=1, i \neq 2}^{n}\left\{\omega \mid X_{i}(\omega) \leq \infty\right\} \cap\left\{\omega \in \Omega \mid X_{2}(\omega) \leq c_{2}\right\}\right] \\
& =\lim _{c_{1} \rightarrow \infty} \lim _{c_{3} \rightarrow \infty} \cdots \lim _{c_{n} \rightarrow \infty} F_{X}\left(c_{1}, c_{2}, \ldots, c_{n}\right)
\end{aligned}
$$

- Suppose joint density $f_{X}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is given, Find $f_{X_{2}}\left(c_{2}\right)$. Recall that

$$
\begin{aligned}
F_{X}\left(c_{1}, c_{2}, \ldots, c_{n}\right) & =\int_{x_{1}=-\infty}^{c_{1}} \int_{x_{2}=-\infty}^{c_{2}} \ldots \int_{x_{n}=-\infty}^{c_{n}} f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n} \\
F_{X_{2}}\left(c_{2}\right) & =\lim _{c_{i} \rightarrow \infty, i \neq 2} F_{X}\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =\int_{x_{1}=-\infty}^{\infty} \int_{x_{2}=-\infty}^{c_{2}} \ldots \int_{x_{n}=-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n} \\
& =\int_{x_{2}=-\infty}^{c_{2}}\left[\int_{x_{1}=-\infty}^{\infty} \ldots \int_{x_{n}=-\infty}^{\infty} f_{X}\left(x_{1} \ldots x_{n}\right) d x_{1} d x_{3} \ldots d x_{n}\right] d x_{2} \\
& =\int_{x_{2}=-\infty}^{c_{2}} f_{X_{2}}\left(x_{2}\right) d x_{2}
\end{aligned}
$$

Example

Consider a random vector $\left[\begin{array}{l}X \\ Y\end{array}\right]$ with joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{l}
x+c y^{2}, \quad x \in[0,1], y \in[0,1] \\
0, \quad \text { otherwise }
\end{array}\right.
$$

- Find the value of c.
- Find marginal densities $f_{X}(x)$ and $f_{Y}(y)$.
- Find the cumulative distribution function $F_{X Y}\left(c_{1}, c_{2}\right)$.
- Compute $\mathbb{P}\left[0 \leq X \leq \frac{1}{2}, 0 \leq Y \leq \frac{1}{2}\right]$ using the density and the cumulative distribution function.

Independence of Random Variables

A collection of random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are said to be mutually independent if for any collection of Borel subsets (events on \mathbb{R}) $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ the underlying events $\left\{\omega \in \Omega \mid X_{1}(\omega) \in A_{1}\right\},\{\omega \in$ $\left.\Omega \mid X_{2}(\omega) \in A_{2}\right\} \ldots$ are mutually independent.

We have the following equivalent conditions that are easier to verify.

- Joint CDF satisfies the following property.

$$
\begin{aligned}
F_{X}\left(c_{1}, c_{2}, \ldots, c_{n}\right) & =\mathbb{P}\left[\cap_{i=1}^{n}\left\{\omega \mid X_{i}(\omega) \leq c_{i}\right\}\right] \\
& =\prod_{i=1}^{n} \mathbb{P}\left[\left\{\omega \mid X_{i}(\omega) \leq c_{1}\right\}\right] \\
& =F_{X_{1}}\left(c_{1}\right) \times F_{X_{2}}\left(c_{2}\right) \times \ldots \times F_{X_{n}}\left(c_{n}\right)
\end{aligned}
$$

- For a discrete set of random variables, independence is equivalent to joint pmf satisfying

$$
p_{X}\left(c_{1}, \ldots, c_{n}\right)=p_{X_{1}}\left(c_{1}\right) \times \ldots \times p_{X_{n}}\left(c_{n}\right) .
$$

- For a continuous set of random variables, independence is equivalent to joint pdf satisfying

$$
f_{X}\left(c_{1}, \ldots, c_{n}\right)=f_{X_{1}}\left(c_{1}\right) \times \ldots \times f_{X_{n}}\left(c_{n}\right) .
$$

- Joint characteristic function satisfies

$$
C_{X}\left(h_{1}, \ldots, h_{n}\right)=C_{X_{1}}\left(h_{1}\right) \times \ldots \times C_{X_{n}}\left(h_{n}\right) \quad \forall\left\{h_{1} h_{2} \ldots h_{n}\right\} .
$$

Only checking $C_{X}(h, h, \ldots, h)=C_{X_{1}}(h) \times \ldots \times C_{X_{n}}(h)$ is not enough to conclude. that X_{i} 's are independent.

- $\mathbb{E}\left[X_{1} X_{2} \ldots X_{n}\right]=\mathbb{E}\left[X_{1}\right] \times \ldots \times \mathbb{E}\left[X_{n}\right]$.
- More generally, for any collection of bounded continuous functions $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, $\mathbb{E}\left[g_{1}\left(X_{1}\right) g_{2}\left(X_{2}\right) \ldots g_{n}\left(X_{n}\right)\right]=\mathbb{E}\left[g_{1}\left(X_{1}\right)\right] \times \ldots \times \mathbb{E}\left[g_{n}\left(X_{n}\right)\right]$.

Practice Problems

Let X and Y have joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{l}
2 e^{-(x+2 y)}, \quad \text { if } x>0, y>0 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Determine whether X and Y are independent.

Consider a random variable X with cumulative distribution function given by:

$$
F_{X}(x)=\left\{\begin{array}{l}
1-3^{-\lfloor x\rfloor}, \quad x \geq 0 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

where $\lfloor x\rfloor$ is the floor of x, i.e., the largest integer smaller than or equal to x. Is X a discrete or continuous random variable? Compute $\mathbb{P}[X=2]$ and $\mathbb{P}[X>2]$.

Let X and Y be two independent random variables, each having uniform distribution over the range $[0,1]$. Let $Z=\max (X, Y)$ and $W=\min (X, Y)$.

1. Determine the CDF and expectation of Z.
2. Determine the CDF and expectation of W.
3. Determine the covariance $\operatorname{cov}(Z, W)$.

Correlation and Covariance

Correlation between two random variables X and Y is defined as $\mathbb{E}[X Y]$.

Let X and Y be discrete random variables that take values as $X \in\left\{x_{1}, x_{2} \ldots . x_{n}\right\}$ and $Y \in\left\{y_{1}, y_{2} \ldots \ldots y_{m}\right\}$. Let the joint pmf be $p_{i j}=\mathbb{P}\left(X=x_{i}, Y=y_{j}\right)$. Then,

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j} p_{i j}=x^{T} P y, \quad \text { where, } \\
x & =\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right], \quad P=\left[\begin{array}{cc}
p_{11} & p_{12} \ldots p_{1 m} \\
p_{21} & p_{22} \ldots p_{2 m} \\
\vdots \\
p_{n 1} & p_{n 2} \ldots p_{n m}
\end{array}\right] .
\end{aligned}
$$

Covariance between two random variables X and Y is

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y-X \mathbb{E}[Y]-Y \mathbb{E}[X]+\mathbb{E}[X] \mathbb{E}[Y]] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

Correlation Coefficient

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}}, \quad-1 \leq \rho_{X Y} \leq 1
$$

Inner product interpretation

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}=\|x\| \quad\|y\| \cos \theta \Longrightarrow \cos \theta=\frac{x^{T} y}{\|x\|\|y\|}
$$

If $Y=a X+b$, then determine $\rho_{X, Y}$.

Properties of Covariance

Covariance satisfies the following properties.

- $\operatorname{cov}(X, X)=\operatorname{var}(X)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(Y, X)$.
- $\operatorname{cov}(a X, Y)=a \operatorname{cov}(X, Y)$.
- $\operatorname{cov}(X+c, Y)=\operatorname{cov}(X, Y)$.
- $\operatorname{cov}(X+Z, Y)=\operatorname{cov}(X, Y)+\operatorname{cov}(Z, Y)$.
- More generally,

$$
\operatorname{cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} a_{i} \operatorname{cov}\left(X_{i}, Y_{j}\right)
$$

Two random variables X and Y are said to be uncorrelated if $\operatorname{cov}(X, Y)=0$. If X and Y are independent, then they are uncorrelated. However, the converse is not true.

Covariance Matrix of a Random Vector

For a random vector $X=\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right]$, the covariance matrix contains the covariance of each pair of constituent random variables.

$$
\begin{aligned}
\operatorname{cov}(X, X) & =\operatorname{cov}(X)=\left[\begin{array}{ccc}
\operatorname{cov}\left(X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) \ldots \operatorname{cov}\left(X_{1}, X_{n}\right) \\
\vdots & \vdots \\
\operatorname{cov}\left(X_{n}, X_{1}\right) & \operatorname{cov}\left(X_{n}, X_{2}\right) \ldots \operatorname{cov}\left(X_{n}\right)
\end{array}\right] \in \mathbb{R}^{n \times n} \\
& =\mathbb{E}\left[\begin{array}{cc}
X_{1}-\mathbb{E}\left[X_{1}\right] & \left(X_{1}-\mathbb{E}\left[X_{1}\right]\right) \\
\left.X_{2}-\mathbb{E}\left[X_{2}\right]-\mathbb{E}\left[X_{2}\right]\right) \ldots\left(X_{n}-\mathbb{E}\left[X_{n}\right]\right) \\
\vdots \\
X_{n}-\mathbb{E}\left[X_{n}\right]
\end{array}\right] \\
& =\mathbb{E}\left[(X-\mathbb{E}[X]) \quad(X-\mathbb{E}[X])^{\top}\right] .
\end{aligned}
$$

For two random vectors $X=\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right]$, and $Y=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{m}\end{array}\right]$, the (cross)-covariance matrix is given by

$$
\begin{aligned}
& \operatorname{cov}(X, Y)=\left[\begin{array}{cc}
\operatorname{cov}\left(X_{1}, Y_{1}\right) & \operatorname{cov}\left(X_{1}, Y_{2}\right) \ldots \operatorname{cov}\left(X_{1}, Y_{m}\right) \\
\vdots \\
\operatorname{cov}\left(X_{n}, Y_{1}\right) & \operatorname{cov}\left(X_{n}, Y_{2}\right) \ldots \operatorname{cov}\left(X_{n}, Y_{m}\right)
\end{array}\right] \in \mathbb{R}^{n \times m} \\
&=\mathbb{E}[(X-\mathbb{E}[X]) \\
&\left.(Y-\mathbb{E}[Y])^{\top}\right] .
\end{aligned}
$$

Sum of IID Random Variables

- In many applications, we need to repeat the experiment to generate more samples. The outcome of every experiment is random and the experiments are independent.
- Let X_{i} be the random variable that represents the outcome of i-th experiment.
- The collection $\left\{X_{i}\right\}_{i=1,2, \ldots, N}$ is said to be independent and identically distributed (IID) is each X_{i} has the same distribution and the random variables in the collection are mutually independent.
- Suppose $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Let $S=\sum_{i=1}^{n} X_{i}$. Determine the expectation and variance of S.
- Determine the characteristic function of S from the characteristic function of X_{i}.

Solution

Let $S=\sum_{i=1}^{n} X_{i}$ and $\bar{S}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
$\mathbb{E}[S]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n \mu$.
$\mathbb{E}[\bar{S}]=\mu$.
The variance of the sum is given by

$$
\begin{aligned}
\operatorname{var}(S) & =\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right)=\mathbb{E}\left[(S-\mathbb{E}[S])^{2}\right] \\
& =\mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}-n \mu\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i \neq j}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\
& =n \sigma^{2},
\end{aligned}
$$

since when two r.v.s X_{i} and X_{j} are independent,

$$
\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)\right]=\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\right] \times \mathbb{E}\left[X_{j}-\mathbb{E}\left[X_{j}\right]\right]=0
$$

Now: $\operatorname{var}(\bar{S})=\left(\frac{1}{n}\right)^{2} \operatorname{var}(S)=\frac{\sigma^{2}}{n}$

More generally, if $\operatorname{var}(X)=\sigma^{2}$, then $\operatorname{var}(c X)=c^{2} \sigma^{2}$.

Gaussian Random Variable

A Gaussian random variable X is characterized by two parameters: mean (μ) and variance σ^{2}, and is denoted $\mathcal{N}\left(\mu, \sigma^{2}\right)$. The distribution is defined below.

- If $\sigma=0$, then $\mathbb{P}[X=\mu]=1$ and $\mathbb{P}[X \neq \mu]=0$.
- If $\sigma>0$, it is a continuous random variable with density and CDF

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad \Psi(c)=\int_{-\infty}^{c} f_{X}(x) d x
$$

Consequently,

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}=1 .
$$

The characteristic function of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is given by

$$
\Phi_{X}(h)=e^{i \mu h-\frac{h^{2} \sigma^{2}}{2}} .
$$

Most derivations involving Gaussian random variables and vectors leverage characteristic function.

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ be a collection of Gaussian random variables and are independent. Then, show that $Z:=\sum_{i=1}^{n} a_{i} X_{i}$ is a Gaussian random variable.

Jointly Gaussian Random Variables

Definition 9. A collection of random variables $\left(X_{t}\right)_{t \in T}$ is called jointly Gaussian if every finite linear combination is Gaussian. In particular, X is a Gaussian random vector if its constituent random variables are jointly Gaussian.

Two random vectors $X=\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right]$ and $Y=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{m}\end{array}\right]$ are jointly Gaussian if the collection $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right\}$ is jointly Gaussian.

A Gaussian random vector $X=\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right]$ is characterized by two quantities:
mean: $\quad \mu_{X}=\mathbb{E}[X]=\left[\begin{array}{c}\mathbb{E}\left[X_{1}\right] \\ \mathbb{E}\left[X_{2}\right] \\ \vdots \\ \mathbb{E}\left[X_{n}\right]\end{array}\right] \in \mathbb{R}^{n} \quad$ and
covariance matrix: $\quad C_{X} \in \mathbb{R}^{n \times n}$ with $\quad\left(C_{X}\right)_{i, j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$.

Show that the joint characteristic function of Gaussian random vector X is given by

$$
\Phi_{X}(h)=e^{i h^{\top} \mu_{X}-\frac{h^{\top} C_{X} h}{2}} .
$$

Properties of Gaussian Random Vectors

If $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian, then each X_{i} is Gaussian.

If each of $X_{1}, X_{2}, \ldots, X_{n}$ are individually Gaussian and independent, then the collection is jointly Gaussian.

If X is a Gaussian random vector, and $Y=A X+b$ where A is a given matrix and b is a given vector of suitable dimensions, then show that Y is a Gaussian random vector, and find its mean and covariance.

If a collection of jointly Gaussian random variables are uncorrelated, then they are independent.

Let X be a Gaussian random vector and V be another Gaussian random vector uncorrelated with X. Let $Y=A X+V$ where A is a given matrix. Find the mean and covariance of Y. Is Y Gaussian? Does the answer change when $\mathbb{E}[V]=0$.

Inequalities and Bounds

Union bound: If $A_{1}, A_{2} \ldots \ldots . A_{n}$ are events, $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$ (Equality holds when A_{i} are disjoint)

Markov's Inequality: Let X be a non negative r.v. Then, for any $\epsilon>0$,

$$
\mathbb{P}(X \geq \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}
$$

Note: This bound is useful for large values of ϵ. In particular, if $\epsilon<\frac{1}{\mathbb{E}[X]}$, then $\frac{\mathbb{E}[X]}{\epsilon}>1$ which is trivial.

Main idea: $Y \leq X \Rightarrow \mathbb{E}[Y] \leq \mathbb{E}[X]$. Define

$$
Y= \begin{cases}\epsilon, & \text { when } X \geq \epsilon \\ 0, & \text { otherwise }\end{cases}
$$

Is $Y \leq X ?, \quad \mathbb{E}[Y]=$?
Chebyshev's Inequality: For any random variable X, with $\mathbb{E}[X]=\mu$, and any $\epsilon>0$,

$$
\mathbb{P}[|X-\mu| \geq \epsilon] \leq \frac{\operatorname{var}(X)}{\epsilon^{2}}
$$

Proof: Apply Markov's inequality to $Y=(X-\mu)^{2}$
Application: $\lim _{n \rightarrow \infty} \mathbb{P}[|\bar{S}-\mu| \geq \epsilon] \leq \frac{\operatorname{var}(\bar{S})}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}=0$.

Inequalities and Bounds

Hoeffding Inequality: Let $X_{1}, X_{2}, \ldots . . X_{n}$ be independent random variables with $X_{i} \in\left[a_{i}, b_{i}\right]$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then,

$$
\begin{aligned}
& \mathbb{P}\left[S_{n}-\mathbb{E}\left[S_{n}\right] \geq \epsilon\right] \leq e^{-\frac{2 \epsilon^{2}}{\left.\sum_{i=1}^{N} \epsilon_{i}-a_{i}\right)^{2}}}, \\
& \mathbb{P}\left[S_{n}-\mathbb{E}\left[S_{n}\right] \leq-\epsilon\right] \leq e^{-\frac{2 \epsilon^{2}}{\left.\sum_{i=1}^{N} \epsilon_{i}-a_{i}\right)^{2}}}
\end{aligned}
$$

If X_{i} 's are i.i.d. with $a_{i}=0, b_{i}=1$, then

$$
\mathbb{P}\left[\left|\frac{S_{n}}{n}-\mathbb{E}\left[X_{1}\right]\right| \geq \epsilon\right] \leq 2 e^{-2 \epsilon^{2} n}
$$

Discuss: Confidence interval using Hoeffding and Chebyshev.

Cauchy Schwartz Inequality: For two random variables X and Y,

$$
(\mathbb{E}[X Y])^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]
$$

Proof: Define $Z=(s X+Y)^{2} \geq 0$. Then, for every $s \in \mathbb{R}$,

$$
\begin{aligned}
& \mathbb{E}[Z] \geq 0 \\
\Longrightarrow & \mathbb{E}\left[s^{2} X^{2}+2 s X Y+Y^{2}\right] \geq 0 \\
\Longrightarrow & s^{2} \mathbb{E}\left[X^{2}\right]+2 s \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right] \geq 0
\end{aligned}
$$

Define: $h(s):=s^{2} \mathbb{E}\left[X^{2}\right]+2 s \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]$. Since $h(s) \geq 0$ for all $s \in \mathbb{R}$, it does not have distinct real roots. From $b^{2}-4 a c \leq 0$ formula for quadratic functions, we obtain the inequality.

Corollary: Correlation coefficient lies in $[-1,1]$.

Chernoff Bound

Note that $\mathbb{P}(X \geq \epsilon)=\mathbb{P}\left(e^{t X} \geq e^{t \epsilon}\right) \quad$ for any $t>0$ since $x \geq y \Leftrightarrow e^{x} \geq e^{y}$. From Markov's inequality, we have

$$
\begin{aligned}
\mathbb{P}(X \geq \epsilon) & =\mathbb{P}\left(e^{t X} \geq e^{t \epsilon}\right) \\
& \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{t \epsilon}} \quad \text { for every } \quad t>0 \\
& \leq \min _{t>0}\left[e^{-t \epsilon} \mathbb{E}\left[e^{t X}\right]\right] \\
& =\min _{t>0}\left[e^{-t \epsilon} m_{X}(t)\right] \\
& =\min _{t>0}\left[e^{\log \left(m_{X}(t)-t \epsilon\right)}\right] \\
& =e^{-\left[\max _{t>0}\left(t \epsilon-\log \left(m_{X}(t)\right)\right]\right.}
\end{aligned}
$$

where $\mathbb{E}\left[e^{t X}\right]=m_{X}(t)$ is called the moment generating function of X.

Let $X \sim$ Binomial r.v (n, p) with probability mass function given by $\mathbb{P}(X=$ $k)=(n k) p^{k}(1-p)^{n-k}$, with $k=\{0,1,2 \ldots . n\}$. Find upper bounds on $\mathbb{P}(X \geq q)$ using Markov, Chebyshev and Chernoff bounds.

Homework: Plot the true probability and the bounds.

Distribution of sum of two random variables

Let X_{1} and X_{2} be two continuous random variables, Let us try to find distribution and density of $\underline{X_{1}+X_{2}}$ when

- X_{1}, X_{2} are arbitrary
- X_{1}, X_{2} are independent
- X_{1}, X_{2} are IID.

Convergence of Sequences

Definition 10. A sequence of real numbers $\left(x_{n}\right)_{n \in \mathbb{N}}:=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$ with each $x_{i} \in \mathbb{R}$, is said to converge to $x^{*} \in \mathbb{R}$ if of every $\epsilon>0$, there exists n_{ϵ} such that $\left|x_{n}-x^{*}\right|<\epsilon$ for every $x \geq n_{\epsilon}$. Then, we write $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Note: The above definition requires us to first conjecture a limit point x^{*}, which may not always be trivial.

Definition 11. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence if

$$
\lim _{n, m \rightarrow \infty}\left|x_{n}-x_{m}\right|=0 .
$$

Proposition: If a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, then it converges to some finite limit.

Example: Let $x_{n}=\frac{1}{n}$, i.e., the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}=\left(1, \frac{1}{2}, \frac{1}{3} \ldots\right)$. What is a possible value of x^{*} ? Is this sequence a Cauchy sequence?

Convergence of Random Variables:
Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega=[0,1]$, and $\mathbb{P}[[a, b]]=\mathbb{P}[(a, b)]=$ $b-a$ (uniform distribution). Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with

$$
X_{n}(\omega)=\omega^{n}, \quad \omega \in[0,1] .
$$

What do we mean by convergence of this sequence?

Almost Sure Convergence

Definition 12 (Almost Sure Convergence). A sequence of random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges almost surely to a random variable X^{*} if

$$
\mathbb{P}\left[\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X^{*}(\omega)\right\}\right]=1 .
$$

Equivalently, $\mathbb{P}\left[\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega) \neq X^{*}(\omega)\right\}\right]=0$.

Note: For a given outcome $\omega,\left(X_{n}(\omega)\right)$ is a sequence of real numbers.
Example: Does the sequence with $X_{n}(\omega)=\omega^{n}, \quad \omega \in[0,1]$ converge almost surely to some X^{*} ?

Example: Consider a sequence of random variables defined as:

$$
\begin{array}{ll}
X_{1}(\omega)=1, & \omega \in[0,1] \\
X_{2}(\omega)=1, & \omega \in[0,0.5], \\
X_{3}(\omega)=1, & \omega \in[0.5,1], \\
X_{4}(\omega)=1, & \omega \in[0,0.25], \\
X_{5}(\omega)=1, & \omega \in[0.25,0.5], \\
X_{6}(\omega)=1, & \omega \in[0,5,0.75], \quad \text { and so on. }
\end{array}
$$

Does this sequence converge almost surely to some X^{*} ?
Let us determine the following quantities.
$\mathbb{P}\left(X_{n} \neq 0\right)=$?
$\mathbb{E}\left[X_{n}\right]=$?
Both the above quantities define a sequence of real numbers. Do those sequence converge?

Convergence in Probability and in Mean Square Sense

Definition 13. A sequence of random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges to a r.v. X^{*} in probability, denoted $X_{n} \rightarrow^{P} X^{*}$, if

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\left|X_{n}-X^{*}\right| \geq \epsilon\right]=0 \quad \text { for every } \quad \epsilon>0
$$

Definition 14. A sequence of random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$, with $\mathbb{E}\left[X_{n}^{2}\right]<$ $\infty \quad \forall n$, converges to X^{*} in mean square sense if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(X_{n}-X^{*}\right)^{2}\right]=0
$$

This is denoted by $X_{n} \rightarrow{ }^{m . s} X^{*}$.

Example: Consider the following two sequence of random variables:
$X_{n}(\omega)= \begin{cases}1, & \omega \in\left[0, \frac{1}{n}\right] \\ 0, & \text { otherwise } .\end{cases}$
$Y_{n}(\omega)= \begin{cases}n, & \omega \in\left[0, \frac{1}{n}\right] \\ 0, & \text { otherwise } .\end{cases}$

Determine if the above sequences converge almost surely, in probability and in mean-square sense.

Convergence in Distribution

Definition 15. A sequence of random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges in distribution to r.v. X^{*} if either of the following are true.

- $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X^{*}}(x)$ at all points of continuity of $F_{X^{*}}$.
- $\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{i h X_{n}}\right]=\mathbb{E}\left[e^{i h X^{*}}\right]$ for all $h \in \mathbb{R}$.
- $\mathbb{E}\left[g\left(X_{n}\right)\right] \rightarrow \mathbb{E}\left[g\left(X^{*}\right)\right]$ for every bounded continuous function g.

Example
Let X be a r.v with CDF

$$
F_{X}(\alpha)= \begin{cases}\frac{\alpha}{\theta}, & \alpha \in[0, \theta] \\ 1, & \alpha \geq \theta \\ 0, & \alpha \leq 0\end{cases}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d with distribution F_{X}. Define a sequence

$$
Y_{k}=\max _{i \in\{1,2, \ldots k\}} X_{i} .
$$

Show that the sequence $\left(Y_{n}\right)_{n \in \mathbb{N}}$ converges in distribution to a random variable Y^{*} whose distribution is given by

$$
F_{Y^{*}}(\alpha)= \begin{cases}1, & \alpha \geq \theta \\ 0, & \text { otherwise }\end{cases}
$$

- Convergence in probability implies convergence in distribution.
- Mean-square convergence implies convergence in probability.
- Almost sure convergence implies convergence in probability.

Cauchy Criterion

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of r.v defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Then,

- X_{n} converges almost surely to some random variable if

$$
\mathbb{P}\left[\left\{\omega: \lim _{m, n \rightarrow \infty}\left|X_{m}(\omega)-X_{n}(\omega)\right|=0\right\}\right]=1 .
$$

- X_{n} converges in probability to some r.v if

$$
\lim _{m, n \rightarrow \infty} \mathbb{P}\left[\left|X_{m}-X_{n}\right|>\epsilon\right]=0 .
$$

- X_{n} converges in m.s sense to some r.v if

$$
\lim _{n, m \rightarrow \infty} \mathbb{E}\left[\left(X_{m}-X_{n}\right)^{2}\right]=0
$$

Limit Theorems

Theorem 1 (Law of Large Numbers). Let $X_{1}, X_{2} \ldots$. be a sequence of random variables. Each X_{i} has mean μ_{X}, i.e., $\mathbb{E}\left[X_{i}\right]=\mu_{X}$. Define $S_{n}:=\sum_{i=1}^{n} X_{i}$. Then,

- $\frac{S_{n}}{n} \rightarrow_{m . s}^{a . s} \mu_{X}$ if $\operatorname{var}\left(X_{i}\right) \leq C \quad \forall i \in \mathbb{N}$ and $\operatorname{cov}\left(X_{i}, X_{j}\right)=0 \quad \forall i \neq j$.
- If X_{1}, X_{2}, \ldots i.i.d, then $\frac{S_{n}}{n} \rightarrow^{p} \mu_{X}$ (Weak law of large numbers)
- If X_{1}, X_{2}, \ldots i.i.d, then $\frac{S_{n}}{n} \rightarrow^{a . s} \mu_{X}$ (Strong law of large numbers).

Note: What about the random variable $\frac{S_{n}}{n}-\mu_{X}$? What is its mean and variance?

Theorem 2 (Central Limit Theorem). Let each X_{i} be i.i.d, with $\mathbb{E}\left[X_{i}\right]=$ μ_{X} and $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Let $\mathcal{N}\left(\mu, \sigma^{2}\right)$ denote Gaussian distribution with mean μ and variance σ^{2}. Then,

- $\left(\frac{S_{n}-\mu_{X} n}{\sqrt{n}}\right) \rightarrow^{d} \mathcal{N}\left(0, \sigma^{2}\right)$,
- $\sqrt{n}\left(\frac{\frac{S_{n}}{n}-\mu_{X}}{\sigma}\right) \rightarrow^{d} \mathcal{N}(0,1)$,
- $\sqrt{n} \frac{S_{n}}{n}=\frac{S_{n}}{\sqrt{n}} \rightarrow^{d} \mathcal{N}\left(\mu_{X}, \sigma^{2}\right)$.

