
EE60039: Probability and Random Processes for Signals
and Systems

Instructor: Prof. Ashish R. Hota

Logistics:

� Class Timing: Monday: 12 noon - 12:55pm; Tuesday: 10am - 11:55am,

� Venue: NC 244

� Instructor Email: ashish.hota@ieee.org. Use EE60039 in Subject Line.

� Course Website: http://www.facweb.iitkgp.ac.in/∼ahota/prob.html

Syllabus:
Module A: Introduction to Probability and Random Variables. 4
Weeks. Main Reference: Chapters 1-5 of Wasserman.

1. Probability Space. Independence. Conditional Probability. [Chapter 1 of
Hajek, Chapter 2-5 of Chan, Chapter 1 of Gallager]

2. Random Variables and Vectors. Discrete and Continuous Distributions.
[Chapter 1 of Hajek, Chapter 2-5 of Chan, Chapter 1 of Gallager]

3. Expectation, Moments, Characteristic Functions. [Chapter 1 of Hajek, Chap-
ter 2-5 of Chan, Chapter 1 of Gallager]

4. Inequalities and Bounds. [Chapter 1-2 of Hajek, Chapter 6 of Chan, Chapter
1 of Gallager]

5. Convergence of Random Variables. Law of Large Numbers, Central Limit
Theorem. [Chapter 2 of Hajek, Chapter 6 of Chan, Chapter 1 of Gallager]

Module B: Random Processes. 4 Weeks.

1. Definition, Discrete-time and Continuous-time Random Processes [Chapter
4 of Hajek, Chapter 10 of Chan]

2. Stationarity, Power Spectral Density, Second order Theory [Chapter 4, 8 of
Hajek, Chapter 10 of Chan]
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3. Gaussian Process [Chapter 3 of Hajek, Chapter 3 of Gallager]

4. Markov Chain, Classification of States, Limiting Distributions [Chapter 4 of
Gallager]

Module C: Basics of Bayesian Estimation. 4 Weeks.

1. Maximum Likelihood, Maximum Aposteriori, Mean Square and Linear Mean
Square Estimation [Chapter 5 of Hajek, Chapter 8 of Chan]

2. Conditional Expectation and Orthogonality [Chapter 3 of Hajek, Chapter 10
of Gallager]

3. Kalman Filters [Chapter 3 of Hajek]

4. Hidden Markov Models [Chapter 5 of Hajek]

Module D: Information, Entropy, and Divergence, 1 Week

Reference:
The subject will closely follow the treatment in the following texts.

1. Larry Wasserman, All of Statistics, Springer Texts in Statistics, 2004.
Available at: https://link.springer.com/book/10.1007/978-0-387-21736-9

2. Bruce Hajek, Random Process For Engineers,
Cambridge University Press, 2015. Available at:
https://hajek.ece.illinois.edu/Papers/randomprocJuly14.pdf

3. Robert G. Gallager, Stochastic Processes: Theory for Applications,
Cambridge University Press, 2013.

4. Stanley H. Chan, Introduction to Probability for
Data Science, Michigan Publishing, 2021. Available at:
https://probability4datascience.com/index.html

5. Jason Speyer and Walter Chung, Stochastic Processes, Estimation
and Control, SIAM, 2008.

Evaluation Plan:

1. Midsem: 30%

2. Endsem: 50%

3. Homework and Class Performance: 20%

https://link.springer.com/book/10.1007/978-0-387-21736-9
https://hajek.ece.illinois.edu/Papers/randomprocJuly14.pdf
https://probability4datascience.com/index.html


Probability Space

Notations:

� N : set of natural numbers

� R : set of real numbers

� Z: set of integers

� Q : set of rational numbers

� R+ = {x ∈ R | x ≥ 0} and Z+ = {a ∈ Z | a ≥ 0}.

� For a set X, we denote the set of all its subsets by P(X)

Definition 1. Probability spaces are triplets of (Ω,F ,P(·)) consisting

� Sample space: A set Ω that contains all possible outcomes.

� Events F : This is a set consisting of subsets of Ω satisfying:

a. Ω ∈ F ,

b. Closed under complement: E ∈ F implies Ec ∈ F , and

c. Closed under countable union: for any countably many sub-
sets E1, . . . , Ek, . . . ∈ F , we have ∪∞

k=1Ek ∈ F .

� Probability measure P(·): is a function from F to [0, 1] that satisfies:

i. P(Ω) = 1, and

ii. For countably many subsets {Ek} in F that are mutually disjoint
(i.e., Ei ∩ Ej = ∅ for all i ̸= j), we have

P(
∞⋃
k=1

Ek) =
∞∑
k=1

P(Ek).

Note

� Any F that satisfies the properties a,b, and c is called a σ-algebra over Ω,
and (Ω,F) is called a measurable space.
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Examples

� Toss of a coin: Ω = {H,T}

� Roll of a dice: Ω = {1, 2, 3, 4, 5, 6}

� Waiting time for the next bus: Ω = {t ≥ 0}

� Each event is a subset of Ω.

� Event is ”yes/no questions that can be answered after the experiment is
conducted and the outcome is known”

� Example of measurable space: Ω = {0, 1}, and F = {∅, {1}, {2}, {1, 2}}.

� Example of measurable space: In general, power set P(Ω) is a σ-algebra for
any Ω.

� Example of measurable space: {∅,Ω} is a σ-algebra for any Ω.

� What if Ω is uncountable such as Rn? Fortunately, for Rn there exists a
σ-algebra that we can define meaningful measures (such as uniform) in Rn,
namely the Borel σ-algebra.

� Probability measure P measures the size of a set (an event).

� Example: Does the following define a probability space?
Ω1 = {1, 2, 3},F1 = {ϕ,Ω, {1}, {2, 3}}
P1[ϕ] = 0.5,P1[{1}] = 0.3
P1[Ω] = 0.2,P1[{2, 3}] = 0.9.

� Countable Union: Example: (i) Ai =
[
−1, 1− 1

i

]
, i = 1, 2 . . .

Specifically, A1 = [−1, 0], A2 = [−1, 0.5], . . . , A10 = [−1, 0.9]⋃∞
i=1Ai = {a | a ∈ Ai for some finite i} = [−1, 1].

� Homework:
Bn[0, 1− 1

n),
⋂∞

n=1Bn = ?
Cn = [0, 1 + 1

n),
⋂∞

n=1Cn = ?
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Elementary Properties implied by probability axioms

Let A,B ∈ F . Then, the following properties are true.

1. A ⊆ B, then P(A) ≤ P(B).

2. P (Ac) = 1− P(A).

3. P(A ∪B) = P(A) + P(B)− P(A ∩B) ≤ P(A) + P(B).

4. P
(⋃N

i=1Ai

)
⩽

∑N
i=1 P (Ai) for every N , including N = ∞. (Union bound)
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Conditional Probability and Independence

Definition 2. Consider a probability space (Ω,F ,P). Consider events A and
B with P(B) > 0. The conditional probability of A given B is

P(A | B) :=
P(A ∩B)

P(B)
.

Definition 3. A countable collection of events {A1, A2, . . .} are said to be mu-
tually independent, if any finite collection from the above, {A′

1, A
′
2 . . . A

′
k}

satisfies
P (A′

1 ∩ A′
2 . . . ∩ A′

k) = P (A′
1) · P (A′

2) · · ·P (A′
k) .

Notes:

� If A,B are independent, P(B) > 0, then
P(A ∩B) = P(A) · P(B) ⇒ P(A | B) = P(A).
Knowledge that event B is true gives you no further information about
occurence of A.

� Suppose A and B are disjoint can they be independent?
No. Disjoint is the strongest form of dependence. Occurence of one event
rules out the occurence of the other.
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Baye’s Law

Proposition 1. Let Ω be the set of outcomes. Let {A1, A2, . . . , Ak} form a
partition of Ω, and let B be another event. Then,

� {A1 ∩B,A2 ∩B, . . . , Ak ∩B} also form a partition of B.

� Law of Total Probability:

P(B) =
k∑

i=1

P (Ai ∩B) =
k∑

i=1

P (B | Ai)P (Ai) .

� Baye’s Law:

P (Ai | B) =
P (Ai ∩B)

P(B)
=

P (B | Ai)P(Ai)∑k
j=1 P (B | Aj)P (Aj)

.

Problem: Consider a disease that affects one out of every 1000 individuals.
There is a test that detects the disease with 99% accuracy, that is, it clas-
sifies a healthy individual as having the disease with 1% chance, and a sick
individual as healthy with 1% chance. Then,

1. What is the probability that a randomly chosen individual will test pos-
itive by the test?

2. Given that a person tests positive, what is the probability that he or
she has the disease?

Homework: Repeat the above when detection accuracy is 99.9%, 99.99% and
99.999%.
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Random Variable

Definition 4. Let (Ω,F ,P(·)) be a probability space. The mapping X :
Ω → R is called a random variable if the pre-image of any interval
(−∞, a] belongs to F , i.e.

X−1((−∞, a]) ∈ F for every a ∈ R, (1)

where

X−1(B) := {ω ∈ Ω | X(ω) ∈ B}.

Note: Functions that satisfy this property are called measurable functions. Mea-
surability is a property of the function X and the σ-algebra.

Example: Let Ω = {HH,TH,HT, TT}. Consider two σ-algebras defined on Ω.

� F1 = {ϕ,Ω, {HH}, {HT, TH, TT}}

� F2 = {ϕ,Ω, {TT}, {HH,HT, TH}}

Consider a function Y : Ω → R such that Y (HH) = 1, Y (TH) = 1, Y (HT ) = 1
and Y (TT ) = 0, i.e, Y = 1 when at least one win toss is head, and 0, otherwise.

� Is Y a random variable with respect to F1?

� Is Y a random variable with respect to F2?

A random variable is neither random, nor is it a variable. The
function X itself is deterministic. Randomness is due to uncertainty regard-
ing which outcome ω ∈ Ω is true. Once the outcome ω is determined, the
value X(ω) is also determined.
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(Important) Indicator Random Variable

Definition 5. (Indicator Function) For a set E ⊆ Ω, define the indicator
function of E as

1E(ω) =

{
1 if ω ∈ E,
0 if ω ̸∈ E.

Show that 1E(ω) is a random-variable if and only if (iff) E ∈ F .

Let us determine the pre-images for different a ∈ R. We have three cases;

1. if a < 0, 1−1
E ((−∞, a]) =?,

2. if 0 ≤ a < 1, then 1−1
E ((−∞, a]) =?, and

3. if 1 ≤ a, then 1−1
E ((−∞, a]) =?.

What do we conclude from here?
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Probability Distribution of a Random Variable

Definition 6. Consider a probability space (Ω,F ,P(·)) and a random
variable X : Ω → R defined on this space. The probability distribu-
tion function of X is a function FX : R → [0, 1] defined as

FX(α) := P({ω : X(ω) ≤ α}) := P(X−1(−∞, α]) := Prob(X ≤ α).

Example: Let Ω = {H,T},F = 2Ω,P{H} = P{T} = 1
2 . Consider two random

variables.

� Y1(H) = 1, Y1(T ) = 0.

� Y2(H) = 0, Y2(T ) = 1.

Find the distribution functions FY1
and FY2

.

Properties of Distribution Function:

1. FX is non-decreasing, i.e, if α1,≤ α2, FX(α1) ≤ FX(α2).

2. limα→∞ FX(α) = 1, limα→−∞ FX(α) = 0.

3. FX is right continuous, i.e., FX(α) = limϵ→0+ FX(α + ϵ).

FX is called the cumulative distribution function (CDF).
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Example

Let Ω = {1, 2, 3} and X : Ω → R such that X(1) = 0.5, X(2) = 0.7, X(3) =
0.7.

� Find the smallest σ-algebra on Ω such that X is a random variable.

� Let P({1}) = 0.3. Find the distribution FX .
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Random Vectors and Random Processes

� Random Vectors: Any mapping X : Ω → Rn with X(ω) =
(X1(ω), X2(ω), . . . , Xn(ω)) is called a random vector if Xi is a random
variable for all i = 1, . . . , n.

� Random Process: An infinitely indexed collection {Xα}α∈I of random vari-
ables on (Ω,F ,P) is called a random process.

� If the index set I is a discrete set (usually I = Z+), the random process is
called a discrete-time random process. When I = R or I = R+, the random
process is called a continuous-time random process.

More generally, a random variable X maps one probability space (Ω1,F1,P1)
to another (Ω2,F2,P2) in a systematic manner such that

� X : Ω1 → Ω2,

� for any event E2 ∈ F2, its pre-image {ω ∈ Ω1|X(ω) ∈ E2} ∈ F1, and

� for any event E2 ∈ F2, P2(E2) := P1({ω ∈ Ω1|X(ω) ∈ E2}) is called
the induced measure.

For a real-valued random variable X : Ω → R, the corresponding σ-algebra
on R is called the Borel σ-algebra and the induced measure gives rise to
the distribution function.
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Discussion on Random Variables

� When |Ω| is finite, we can define the collection of events F = 2Ω.

� However, then |Ω| is (uncountably) infinite, there are several technical diffi-
culties that arise in defining F = 2Ω.

� When Ω = R, we use a specific σ-algebra as the set of events.

Definition 7. The Borel σ- algebra, denoted B(R), is the smallest σ- algebra
that contains all sets of the form (−∞, α] for every α ∈ R.

� Define F := {(−∞, α]|α ∈ R}. Is F a σ- algebra ?

� B(R) = σ{F} is the σ- algebra generated by the sets contained in F .

� Thus, a real-valued random variable X : Ω → R is a mapping from an
arbitrary probability space (Ω,F ,P) to (R,B(R),PX) where the induced
measure PX is characterized in terms of the distribution function FX .
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Discrete Random Variable

� A random variable is discrete when X takes a finite or countable number
of values.

� Suppose X takes values in the set {x1, x2, ....xn}. Then,

P(X = x1) = P({ω ∈ Ω|X(ω) = x1}) =: pX(x1), . . .

P(X = xn) = P({ω ∈ Ω|X(ω) = xn}) =: pX(xn).

where pX is called the probability mass function.

� The quantities {pX(x1)....pX(xn)} satisfy pX(xi) ≥ 0 and
∑n

i=1 pX(xi) = 1.

� The distribution function FX is a stair case function.

� Example: Bernoulli Random variable (p):
X = 1 with probability p and X = 0 with probability 1− p.

� Binomial r.v (n, p):
Outcome of n coin tosses where each coin toss comes Head with probability
p.
Ω = {HH...H...T, ...THHT..., TT...T}
X : Ω → R gives the number of Heads in n coin tosses.
E.g., X(HH...H) = n, X(HTT...T ) = 1, and so on.
Can we express a Binomial r.v in terms of a collection of Bernoulli r.v.s?

� Homework: write a program to plot the pmf and distribution of a Binomial
r.v. for n = 25 and p ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.
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Continuous Random Variable

� A random variable X is continuous if there exists a function fX : R → [0,∞]
such that for every α ∈ R, we have

FX(α) = P({ω ∈ Ω|X(ω) ≤ α}) =
∫ α

−∞
fX(x)dx.

� fX : is called the probability density function (pdf) of r.v. X.

� If FX is differentiable at α, fX(α) =
dFX(x)

dx |x=α.

� Example: X is uniformly distributed between [a, b]. The pdf is given by

fX(α) =

{
1

b−a , when α ∈ [a, b],

0, otherwise.

Determine the distribution function FX .

� Example: Let X be a r.v which takes value 0 with probability 0.5. Otherwise,
it is uniformly dist. between 0.5 to 1.

1. Plot FX(α) for α ∈ R.
2. Find fX(x) such that

∫ α

−∞ fX(x)dx = FX(α).

� Exponential r.v. (λ > 0): The pdf is given by The pdf is given by

fX(α) =

{
λe−λα, when α ≥ 0,

0, otherwise.

Determine the distribution function FX .

� Gaussian r.v. (µ, σ > 0): The pdf fX(α) =
1√
2πσ

e(
−(α−µ)2

2σ2
) for α ∈ R.
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Properties of probability density function

For a continuous random variable X, its pdf satisfies the following properties.

1. fX(x) ≥ 0, for every x ∈ R.

2.
∫∞
−∞ fX(x)dx = FX(∞) = 1.

3. fX(x) is not a probability; if can be take values larger than 1 at some points.

4. FX(x+ ϵ)− FX(x) =
∫ x+ϵ

−∞ fX(x)dx−
∫ x

−∞ fX(x)dx =
∫ x+ϵ

x fX(x)dx.

5. P(a ≤ X ≤ b) = FX(b)− FX(a) =
∫ b

a fX(x)dx.

Note: If the CDF of a r.v. X is continuous at some α, then P(X = α) = 0.
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Expectation of a Random Variable

� A r.v. X is called a simple random variable if it takes finite number of
possible values, i.e.,

X(ω) =


a1, if ω ∈ A1

a2, if ω ∈ A2, . . .

an, if ω ∈ An.

For this simple r.v X, we define E[X] :=
∑n

i=1 aiP(Ai) ∈ R.

� Indicator r.v for event A is a simple random variable with E[1A] = P(A).

� For a non-negative random variable X,

– there exists a sequence of simple random variables {X1, X2, . . .} which
converges to X.

– the expectation of each simple r.v in the sequence {E[X1],E[X2], . . .}
can be computed as above, and this sequence of real number is conver-
gent,

– E[X] := limn→∞ E[Xn].

� For discrete r.v: E[X] =
∑n

i=1 xiP(X = xi) =
∑n

i=1 xipX(xi).

� For continuous r.v: E[X] =
∫∞
−∞ xfX(x)dx

� General notation: E[X] =
∫
xdFX(x) =

∫
ΩX(ω)dP(ω).

� Note: E[X] ∈ R, i.e., expectation of a random variable is a deterministic
scalar without any randomness in it.
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Properties of Expectation

Definition 8. For two random variables X and Y , we define

� X = Y almost surely (a.s.) if P [{ω ∈ Ω|X(ω) = Y (ω)}] = 1.

� X ≤ Y almost surely (a.s.) if P [{ω ∈ Ω|X(ω) ≤ Y (ω)}] = 1.

Properties of Expectation:

� Linearity: For two random variables X, and Y ,

E[αX + βY ] = αE[X] + βE[Y ] for any α, β ∈ R.

Equivalently, E[αX] = αE[X], & E[X + Y ] = E[X] + E[Y ].

� If X = Y a.s, then E[X] = E[Y ].

� If X ≤ Y a.s, then E[X] ≤ E[Y ].
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Function of random variables

� Let X be a random variable. Then Y = g(X) is a random variable if the
function g ismeasurable, i.e., for any α ∈ R, the inverse map Y −1

(
(−∞, α]

)
belongs to the Borel σ-algebra over R.

� All continuous functions are measurable. In fact, almost all functions we
encounter satisfies this property.

� Example: If X is a random variable, so are sin(X), log(X), Xk, and so on.

� Law of the unconscious statistician (LOTUS): If Y = g(X), then

E[Y ] =

∫
ydFY (y) =

∫ ∞

−∞
g(x)dFX(x).

There is no need to find the distribution of Y . Thus, for a continuous r.v.
X with density fX , we have

E[X2] =

∫ ∞

−∞
x2fX(x)dx

E[Xk] =

∫ ∞

−∞
xkfX(x)dx

E[sin(X)] =

∫ ∞

−∞
sin(x)fX(x)dx.

� E[Xk] is called the k-th moment of X.

� Variance of a r.v. X is defined as E[(X − E[X])2] = E[X2]− (E[X])2.
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Characteristic Function

Characteristic function of a r.v X is defined as

CX(h) = E[eihX ], where i =
√
−1.

� For a continuous r.v, CX(h) =
∫∞
−∞ eihXfX(x)dx.

� CX(0) = E[1] = 1.

�

dCX(h)
dh =

∫∞
−∞(ix)eihxfX(x)dx.

�

dCX(h)
dh |h=0 =

∫∞
−∞(ix)fX(x)dx = iE[X].

� How about higher order derivatives?
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Random Vector

� A random vector X =


X1

X2
...
Xn

 such that each Xi, 1 ≤ i ≤ n is a r.v..

� Joint distribution function (CDF) FX : Rn → [0, 1] is defined as

FX(c1, c2, ....cn) = P[{ω ∈ Ω|X1(ω) ≤ c1, X2(ω) ≤ c2, . . . , Xn(ω) ≤ cn}]
= P[∩n

i=1{ω ∈ Ω|Xi(ω) ≤ ci}].

� The random variables X1, X2, ....Xn are jointly continuous if there exists a
function fX : Rn → R≥0

FX(c1, c2, . . . , cn) =

∫ c1

−∞

∫ c2

−∞
. . .

∫ cn

−∞
fX(x1, x2, ....xn)dx1dx2....dxn.

� Random vector X = [X1, . . . , Xn]
⊤ is jointly discrete if each Xi is a joint

discrete random variable. Joint pmf is defined as

pX(c1, c2, ....cn) = P({ω ∈ Ω|Xi(ω) = ci, 1 ≤ i ≤ n}).

� Joint Characteristic Function: For a continuous random vector X,

CX(h1, h2, ...hn) = E[ei(h1X1+h2X2+....hnXn)]

=

∫ ∞

−∞

∫ ∞

−∞
....

∫ ∞

−∞
ei(h1x1+h2x2+...hnxn)fX(x1, x2, ....xn)dx1dx2dxn.

� Expectation: E[X] =


E[X1]
E[X2]

...
E[Xn]

 ∈ Rn.
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Computing Marginal Distributions

If joint distribution/ density/ mass function is given, we can compute the distri-
bution/ density/ PMF of each individual constituent random variable.

� Joint distribution FX(c1, c2, . . . , cn) = P[∩n
i=1{ω|Xi(ω) ≤ ci}].

� Marginal distribution of the second constituent random variable

FX2
(c2) = P[{ω ∈ Ω|X2(ω) ≤ c2}]

= P[∩n
i=1,i ̸=2{ω|Xi(ω) ≤ ∞} ∩ {ω ∈ Ω|X2(ω) ≤ c2}]

= lim
c1→∞

lim
c3→∞

. . . lim
cn→∞

FX(c1, c2, . . . , cn)

� Suppose joint density fX(c1, c2, . . . , cn) is given, Find fX2
(c2). Recall that

FX(c1, c2, . . . , cn) =

∫ c1

x1=−∞

∫ c2

x2=−∞
. . .

∫ cn

xn=−∞
fX(x1, x2, . . . , xn)dx1dx2 . . . dxn

FX2
(c2) = lim

ci→∞,i ̸=2
FX(c1, c2, . . . , cn)

=

∫ ∞

x1=−∞

∫ c2

x2=−∞
. . .

∫ ∞

xn=−∞
fX(x1, x2, . . . , xn)dx1dx2 . . . dxn

=

∫ c2

x2=−∞

[∫ ∞

x1=−∞
. . .

∫ ∞

xn=−∞
fX(x1 . . . xn)dx1dx3 . . . dxn

]
dx2

=:

∫ c2

x2=−∞
fX2

(x2)dx2
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Example

Consider a random vector

[
X
Y

]
with joint density

fXY (x, y) =

{
x+ cy2, x ∈ [0, 1], y ∈ [0, 1]

0, otherwise.

� Find the value of c.

� Find marginal densities fX(x) and fY (y).

� Find the cumulative distribution function FXY (c1, c2).

� Compute P[0 ≤ X ≤ 1
2 , 0 ≤ Y ≤ 1

2 ] using the density and the cumulative
distribution function.
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Independence of Random Variables

A collection of random variables {X1, X2, . . . , Xn} are said to be mu-
tually independent if for any collection of Borel subsets (events on R)
{A1, A2, . . . , An} the underlying events {ω ∈ Ω|X1(ω) ∈ A1}, {ω ∈
Ω|X2(ω) ∈ A2} . . . are mutually independent.

We have the following equivalent conditions that are easier to verify.

� Joint CDF satisfies the following property.

FX(c1, c2, . . . , cn) = P[∩n
i=1{ω|Xi(ω) ≤ ci}]

= Πn
i=1P[{ω|Xi(ω) ≤ c1}]

= FX1
(c1)× FX2

(c2)× . . .× FXn
(cn)

� For a discrete set of random variables, independence is equivalent to joint
pmf satisfying

pX(c1, . . . , cn) = pX1
(c1)× . . .× pXn

(cn).

� For a continuous set of random variables, independence is equivalent to joint
pdf satisfying

fX(c1, . . . , cn) = fX1
(c1)× . . .× fXn

(cn).

� Joint characteristic function satisfies

CX(h1, . . . , hn) = CX1
(h1)× . . .× CXn

(hn) ∀{h1h2 . . . hn}.

Only checking CX(h, h, . . . , h) = CX1
(h) × . . . × CXn

(h) is not enough to
conclude. that Xi’s are independent.

� E[X1X2 . . . Xn] = E[X1]× . . .× E[Xn].

� More generally, for any collection of bounded continuous functions {g1, g2, . . . , gn},
E[g1(X1)g2(X2) . . . gn(Xn)] = E[g1(X1)]× . . .× E[gn(Xn)].
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Practice Problems

Let X and Y have joint density

fXY (x, y) =

{
2e−(x+2y), ifx > 0, y > 0,

0, otherwise.

Determine whether X and Y are independent.

Consider a random variable X with cumulative distribution function given
by:

FX(x) =

{
1− 3−⌊x⌋, x ≥ 0,

0, otherwise,

where ⌊x⌋ is the floor of x, i.e., the largest integer smaller than or equal to
x. Is X a discrete or continuous random variable? Compute P[X = 2] and
P[X > 2].

Let X and Y be two independent random variables, each having uniform
distribution over the range [0, 1]. Let Z = max(X, Y ) andW = min(X, Y ).

1. Determine the CDF and expectation of Z.

2. Determine the CDF and expectation of W .

3. Determine the covariance cov(Z,W ).

23



Correlation and Covariance

Correlation between two random variables X and Y is defined as E[XY ].

Let X and Y be discrete random variables that take values as X ∈ {x1, x2.....xn}
and Y ∈ {y1, y2......ym}. Let the joint pmf be pij = P(X = xi, Y = yj). Then,

E[XY ] =
n∑

i=1

m∑
j=1

xiyjpij = xTPy, where,

x =


x1
x2
...
xn

 , y =


y1
y2
...
ym

 , P =


p11 p12 . . . p1m
p21 p22 . . . p2m

...
pn1 pn2 . . . pnm

 .

Covariance between two random variables X and Y is

cov(X, Y ) = E
[
(X − E[X])(Y − E[Y ])

]
= E

[
XY −XE[Y ]− Y E[X] + E[X]E[Y ]

]
= E[XY ]− E[X]E[Y ]

Correlation Coefficient

ρX,Y =
cov(X, Y )√

var(X)
√
var(Y )

, −1 ≤ ρXY ≤ 1.

Inner product interpretation

xTy =
n∑

i=1

xiyi = ||x|| ||y|| cos θ =⇒ cos θ =
xTy

||x|| ||y||
.

If Y = aX + b, then determine ρX,Y .
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Properties of Covariance

Covariance satisfies the following properties.

� cov(X,X) = var(X).

� cov(X, Y ) = cov(Y,X).

� cov(aX, Y ) = acov(X, Y ).

� cov(X + c, Y ) = cov(X, Y ).

� cov(X + Z, Y ) = cov(X, Y ) + cov(Z, Y ).

� More generally,

cov(
n∑

i=1

aiXi,

m∑
j=1

bjYj) =
n∑

i=1

m∑
j=1

bjaicov(Xi, Yj).

Two random variables X and Y are said to be uncorrelated if
cov(X, Y ) = 0. If X and Y are independent, then they are uncorrelated.
However, the converse is not true.
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Covariance Matrix of a Random Vector

For a random vector X =


X1

X2
...
Xn

, the covariance matrix contains the covariance

of each pair of constituent random variables.

cov(X,X) = cov(X) =

cov(X1) cov(X1, X2) . . . cov(X1, Xn)
...

cov(Xn, X1) cov(Xn, X2) . . . cov(Xn)

 ∈ Rn×n

= E


X1 − E[X1] (X1 − E[X1]) (X2 − E[X2]) . . . (Xn − E[Xn])
X2 − E[X2]

...
Xn − E[Xn]


= E[(X − E[X]) (X − E[X])⊤].

For two random vectors X =


X1

X2
...
Xn

, and Y =


Y1

Y2
...
Ym

, the (cross)-covariance

matrix is given by

cov(X, Y ) =

cov(X1, Y1) cov(X1, Y2) . . . cov(X1, Ym)
...

cov(Xn, Y1) cov(Xn, Y2) . . . cov(Xn, Ym)

 ∈ Rn×m

= E[(X − E[X]) (Y − E[Y ])⊤].
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Sum of IID Random Variables

� In many applications, we need to repeat the experiment to generate more
samples. The outcome of every experiment is random and the experiments
are independent.

� Let Xi be the random variable that represents the outcome of i-th experi-
ment.

� The collection {Xi}i=1,2,...,N is said to be independent and identically dis-
tributed (IID) is each Xi has the same distribution and the random variables
in the collection are mutually independent.

� Suppose E[Xi] = µ and var(Xi) = σ2. Let S =
∑n

i=1Xi. Determine the
expectation and variance of S.

� Determine the characteristic function of S from the characteristic function
of Xi.
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Solution

Let S =
∑n

i=1Xi and S̄ := 1
n

∑n
i=1Xi.

E[S] = E
[∑n

i=1Xi

]
=

∑n
i=1 E[Xi] = nµ.

E[S] = µ.

The variance of the sum is given by

var(S) = var
( n∑

i=1

Xi

)
= E

[
(S − E[S])2

]
= E

[
(

n∑
i=1

Xi − nµ)2
]

= E
[
(

n∑
i=1

(Xi − µ))2
]

= E
[ n∑

i=1

(Xi − µ)2 +
∑
i̸=j

(Xi − µ)(Xj − µ)
]

= nσ2,

since when two r.v.s Xi and Xj are independent,

E
[
(Xi − E[Xi])(Xj − E[Xj])

]
= E[(Xi − E[Xi])]× E[Xj − E[Xj]] = 0.

Now: var(S̄) = ( 1n)
2var(S) = σ2

n

More generally, if var(X) = σ2, then var(cX) = c2σ2.
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Gaussian Random Variable

A Gaussian random variable X is characterized by two parameters: mean (µ)
and variance σ2, and is denoted N (µ, σ2). The distribution is defined below.

� If σ = 0, then P[X = µ] = 1 and P[X ̸= µ] = 0.

� If σ > 0, it is a continuous random variable with density and CDF

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , Ψ(c) =

∫ c

−∞
fX(x)dx.

Consequently, ∫ ∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 = 1.

The characteristic function of X ∼ N (µ, σ2) is given by

ΦX(h) = eiµh−
h2σ2

2 .

Most derivations involving Gaussian random variables and vectors leverage char-
acteristic function.

Suppose X1, X2, . . . , Xn be a collection of Gaussian random variables and
are independent. Then, show that Z :=

∑n
i=1 aiXi is a Gaussian random

variable.
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Jointly Gaussian Random Variables

Definition 9. A collection of random variables (Xt)t∈T is called jointly
Gaussian if every finite linear combination is Gaussian. In particular,
X is a Gaussian random vector if its constituent random variables are
jointly Gaussian.

Two random vectors X =


X1

X2
...
Xn

 and Y =


Y1

Y2
...
Ym

 are jointly Gaussian if

the collection {X1, . . . , Xn, Y1, . . . , Ym} is jointly Gaussian.

A Gaussian random vector X =


X1

X2
...
Xn

 is characterized by two quantities:

mean: µX = E[X] =


E[X1]
E[X2]

...
E[Xn]

 ∈ Rn and

covariance matrix: CX ∈ Rn×n with (CX)i,j = cov(Xi, Xj).

Show that the joint characteristic function of Gaussian random vector X is
given by

ΦX(h) = eih
⊤µX−h⊤CXh

2 .
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Properties of Gaussian Random Vectors

If X1, X2, . . . , Xn are jointly Gaussian, then each Xi is Gaussian.

If each of X1, X2, . . . , Xn are individually Gaussian and independent, then
the collection is jointly Gaussian.

If X is a Gaussian random vector, and Y = AX + b where A is a given
matrix and b is a given vector of suitable dimensions, then show that Y is a
Gaussian random vector, and find its mean and covariance.

If a collection of jointly Gaussian random variables are uncorrelated, then
they are independent.

Let X be a Gaussian random vector and V be another Gaussian random
vector uncorrelated with X. Let Y = AX + V where A is a given matrix.
Find the mean and covariance of Y . Is Y Gaussian? Does the answer change
when E[V ] = 0.
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Inequalities and Bounds

Union bound: If A1, A2 ....... An are events, P(∪n
i=1Ai) ≤

∑n
i=1 P(Ai)

(Equality holds when Ai are disjoint)

Markov’s Inequality: Let X be a non negative r.v. Then, for any ϵ > 0,

P(X ≥ ϵ) ≤ E[X]

ϵ
.

Note: This bound is useful for large values of ϵ. In particular, if ϵ < 1
E[X] , then

E[X]
ϵ > 1 which is trivial.

Main idea: Y ≤ X ⇒ E[Y ] ≤ E[X]. Define

Y =

{
ϵ, when X ≥ ϵ,

0, otherwise.

Is Y ≤ X?, E[Y ] =?

Chebyshev’s Inequality: For any random variable X, with E[X] = µ, and
any ϵ > 0,

P[|X − µ| ≥ ϵ] ≤ var(X)

ϵ2
.

Proof: Apply Markov’s inequality to Y = (X − µ)2

Application: limn→∞ P[|S − µ| ≥ ϵ] ≤ var(S)
ϵ2 = σ2

nϵ2 = 0.
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Inequalities and Bounds

Hoeffding Inequality: Let X1, X2, .....Xn be independent random variables
with Xi ∈ [ai, bi]. Let Sn =

∑n
i=1Xi. Then,

P
[
Sn − E[Sn] ≥ ϵ

]
≤ e

− 2ϵ2∑N
i=1(bi−ai)

2 ,

P
[
Sn − E[Sn] ≤ −ϵ

]
≤ e

− 2ϵ2∑N
i=1(bi−ai)

2 .

If Xi’s are i.i.d. with ai = 0, bi = 1, then

P
[
| Sn

n
− E[X1] |≥ ϵ

]
≤ 2e−2ϵ2n.

Discuss: Confidence interval using Hoeffding and Chebyshev.

Cauchy Schwartz Inequality: For two random variables X and Y ,

(E[XY ])2 ≤ E[X2]E[Y 2]

Proof: Define Z = (sX + Y )2 ≥ 0. Then, for every s ∈ R,

E[Z] ≥ 0

=⇒ E[s2X2 + 2sXY + Y 2] ≥ 0

=⇒ s2E[X2] + 2sE[XY ] + E[Y 2] ≥ 0

Define: h(s) := s2E[X2] + 2sE[XY ] + E[Y 2]. Since h(s) ≥ 0 for all s ∈ R,
it does not have distinct real roots. From b2 − 4ac ≤ 0 formula for quadratic
functions, we obtain the inequality.

Corollary: Correlation coefficient lies in [−1, 1].
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Chernoff Bound

Note that P(X ≥ ϵ) = P(etX ≥ etϵ) for any t > 0 since x ≥ y ⇔ ex ≥ ey.
From Markov’s inequality, we have

P(X ≥ ϵ) = P(etX ≥ etϵ)

≤ E[etX ]
etϵ

for every t > 0

≤ min
t>0

[
e−tϵE[etX ]

]
= min

t>0

[
e−tϵmX(t)

]
= min

t>0

[
elog(mX(t)−tϵ)

]
= e−

[
maxt>0(tϵ−log(mX(t))

]
,

where E[etX ] = mX(t) is called the moment generating function of X.

Let X ∼ Binomial r.v (n,p) with probability mass function given by P(X =
k) = (nk)pk(1 − p)n−k, with k = {0, 1, 2.....n}. Find upper bounds on
P(X ≥ q) using Markov, Chebyshev and Chernoff bounds.

Homework: Plot the true probability and the bounds.
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Distribution of sum of two random variables

Let X1 and X2 be two continuous random variables,
Let us try to find distribution and density of X1 +X2 when

� X1, X2 are arbitrary

� X1, X2 are independent

� X1, X2 are IID.
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Convergence of Sequences

Definition 10. A sequence of real numbers (xn)n∈N := (x1, x2, . . . , xn, . . .)
with each xi ∈ R, is said to converge to x∗ ∈ R if of every ϵ > 0, there exists
nϵ such that |xn − x∗| < ϵ for every x ≥ nϵ. Then, we write limn→∞ xn = x∗.

Note: The above definition requires us to first conjecture a limit point x∗, which
may not always be trivial.

Definition 11. A sequence (xn)n∈N is a Cauchy sequence if

lim
n,m→∞

|xn − xm| = 0.

Proposition: If a sequence (xn)n∈N is a Cauchy sequence, then it converges to
some finite limit.

Example: Let xn = 1
n , i.e., the sequence (xn)n∈N = (1, 12 ,

1
3 . . .). What is a

possible value of x∗? Is this sequence a Cauchy sequence?

Convergence of Random Variables:
Consider a probability space (Ω,F ,P) with Ω = [0, 1], and P

[
[a, b]

]
= P

[
(a, b)

]
=

b− a (uniform distribution). Let (Xn)n∈N is a sequence of random variables de-
fined on (Ω,F ,P) with

Xn(ω) = ωn, ω ∈ [0, 1].

What do we mean by convergence of this sequence?
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Almost Sure Convergence

Definition 12 (Almost Sure Convergence). A sequence of random vari-
ables (Xn)n∈N converges almost surely to a random variable X∗ if

P
[
{ω : lim

n→∞
Xn(ω) = X∗(ω)}

]
= 1.

Equivalently, P
[
{ω : limn→∞Xn(ω) ̸= X∗(ω)}

]
= 0.

Note: For a given outcome ω,
(
Xn(ω)

)
is a sequence of real numbers.

Example: Does the sequence with Xn(ω) = ωn, ω ∈ [0, 1] converge almost
surely to some X∗?

Example: Consider a sequence of random variables defined as:

X1(ω) = 1, ω ∈ [0, 1],

X2(ω) = 1, ω ∈ [0, 0.5],

X3(ω) = 1, ω ∈ [0.5, 1],

X4(ω) = 1, ω ∈ [0, 0.25],

X5(ω) = 1, ω ∈ [0.25, 0.5],

X6(ω) = 1, ω ∈ [0, 5, 0.75], and so on.

Does this sequence converge almost surely to some X∗?

Let us determine the following quantities.
P(Xn ̸= 0) =?
E[Xn] =?
Both the above quantities define a sequence of real numbers. Do those sequence
converge?
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Convergence in Probability and in Mean Square Sense

Definition 13. A sequence of random variables (Xn)n∈N converges to a
r.v. X∗ in probability, denoted Xn →P X∗, if

lim
n→∞

P[|Xn −X∗| ≥ ϵ] = 0 for every ϵ > 0.

Definition 14. A sequence of random variables (Xn)n∈N, with E[X2
n] <

∞ ∀n, converges to X∗ in mean square sense if

lim
n→∞

E
[
(Xn −X∗)2

]
= 0.

This is denoted by Xn →m.s X∗.

Example: Consider the following two sequence of random variables:

Xn(ω) =

{
1, ω ∈ [0, 1n ]

0, otherwise.

Yn(ω) =

{
n, ω ∈ [0, 1n ]

0, otherwise.

Determine if the above sequences converge almost surely, in probability and in
mean-square sense.
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Convergence in Distribution

Definition 15. A sequence of random variables (Xn)n∈N converges in
distribution to r.v. X∗ if either of the following are true.

� limn→∞ FXn
(x) = FX∗(x) at all points of continuity of FX∗.

� limn→∞ E[eihXn] = E[eihX∗
] for all h ∈ R.

� E[g(Xn)] → E[g(X∗)] for every bounded continuous function g.

Example
Let X be a r.v with CDF

FX(α) =


α
θ , α ∈ [0, θ],

1, α ≥ θ,

0, α ≤ 0.

Let X1, X2, . . . , Xn be i.i.d with distribution FX . Define a sequence

Yk = maxi∈{1,2,...k}Xi.

Show that the sequence (Yn)n∈N converges in distribution to a random variable
Y ∗ whose distribution is given by

FY ∗(α) =

{
1, α ≥ θ

0, otherwise.

� Convergence in probability implies convergence in distribution.

� Mean-square convergence implies convergence in probability.

� Almost sure convergence implies convergence in probability.
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Cauchy Criterion

Let (Xn)n∈N be a sequence of r.v defined on (Ω,F ,P). Then,

� Xn converges almost surely to some random variable if

P[{ω : lim
m,n→∞

|Xm(ω)−Xn(ω)| = 0}] = 1.

� Xn converges in probability to some r.v if

lim
m,n→∞

P[|Xm −Xn| > ϵ] = 0.

� Xn converges in m.s sense to some r.v if

lim
n,m→∞

E[(Xm −Xn)
2] = 0.
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Limit Theorems

Theorem 1 (Law of Large Numbers). Let X1, X2..... be a sequence of
random variables. Each Xi has mean µX, i.e., E[Xi] = µX. Define
Sn :=

∑n
i=1Xi. Then,

�
Sn

n →a.s
m.s µX if var(Xi) ≤ C ∀i ∈ N and cov(Xi, Xj) = 0 ∀i ̸= j.

� If X1, X2, . . . i.i.d, then
Sn

n →p µX (Weak law of large numbers)

� If X1, X2, . . . i.i.d, then
Sn

n →a.s µX (Strong law of large numbers).

Note: What about the random variable Sn

n −µX? What is its mean and variance?

Theorem 2 (Central Limit Theorem). Let each Xi be i.i.d, with E[Xi] =
µX and var(Xi) = σ2. Let N (µ, σ2) denote Gaussian distribution with
mean µ and variance σ2. Then,

�

(
Sn−µXn√

n

)
→d N (0, σ2),

�

√
n
( Sn

n −µX

σ

)
→d N (0, 1),

�

√
nSn

n = Sn√
n
→d N (µX , σ

2).
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