Discrete-time Kalman Filter

Instructor: Prof. Ashish R. Hota

In this note, we will formally derive the discrete-time Kalman filter for estimating the state of a linear dynamical system.

Consider the discrete-time linear dynamical system:

$$
\begin{align*}
x_{k+1} & =A_{k} x_{k}+w_{k}, \tag{1.1a}\\
y_{k} & =C_{k} x_{k}+v_{k}, \tag{1.1b}
\end{align*}
$$

where $x_{k} \in \mathbb{R}^{n}$ is the state of the system, $w_{k} \in \mathbb{R}^{n}$ is the process noise affecting the system dynamics, $v_{k} \in \mathbb{R}^{p}$ is the measurement noise affecting the observation process, and $y_{k} \in \mathbb{R}^{p}$ is the observed output at time k.
We assume that the system dynamics $\left(A_{k}\right)$, the observation matrix $\left(C_{k}\right)$ and the measurements or outputs (y_{k}) are known to us for $k \geq 0$.

Our goal is to estimate the state of the system from current and past observations under the following probabilistic assumptions on the initial state and the noise affecting the system.

Estimation in the absence of noise

In the absence of noise, we often design a class of observers, called Luenberger Observer, to estimate the states. Let the system be time-invariant. We start with an initial estimate \widehat{x}_{0} and recursively update our estimate as

$$
\begin{aligned}
\widehat{x}_{k+1} & =A \widehat{x}_{k}+L\left[y_{k}-C \widehat{x}_{k}\right] \\
\Longrightarrow \widehat{e}_{k+1} & =x_{k+1}-\widehat{x}_{k+1} \\
& =A x_{k}-A \widehat{x}_{k}-L\left[y_{k}-C \widehat{x}_{k}\right] \\
& =(A-L C) e_{k} .
\end{aligned}
$$

If L is chosen such that all the eigenvalues of $(A-L C)$ lie within the unit circle, then the estimation error asymptotically converges to 0 . The pair (C, A) for which such a matrix L can be found is called detectable.

Review of LMSE and Orthogonal Projection

Before introducing the Kalman filter, we first establish certain intermediate results. The first one is regarding certain properties of the linear mean square error (LMSE) estimators, and the second one shows the correlation between certain random variables.

Recall that the LMSE estimator of a random vector $X \in \mathbb{R}^{n}$ given another random vector $Y \in \mathbb{R}^{m}$ is

$$
\begin{equation*}
\Pi_{\mathcal{L}(Y)}(X):=\widehat{\mathbb{E}}[X \mid Y]:=\mathbb{E}[X]+\operatorname{Cov}(X, Y)^{\mathrm{T}} \operatorname{Cov}(Y)^{-1}[Y-\mathbb{E}[Y]] \tag{1.2}
\end{equation*}
$$

where $\mathcal{L}(Y)$ is the set of all random variables that are linear combinations of random variables in Y and $\Pi_{\mathcal{L}(Y)}(X)$ is the projection of X on the closed linear space $\mathcal{L}(Y)$.
Lemma 1 (Properties of projection). Let \mathcal{V} be a closed linear subspace of $\mathcal{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$. The projection has the following properties.

1. Linearity: $\quad \Pi_{\mathcal{V}}\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1} \Pi_{\mathcal{V}}\left(X_{1}\right)+a_{2} \Pi_{\mathcal{V}}\left(X_{2}\right), \quad \forall a_{1}, a_{2} \in \mathbb{R}$.
2. Orthogonal subspace projection: Let \mathcal{V}_{1} and \mathcal{V}_{2} be two closed linear subspaces such that $\mathbb{E}\left[Z_{1} Z_{2}\right]=0$ for every $Z_{1} \in \mathcal{V}_{1}$ and $Z_{2} \in \mathcal{V}_{2}$. Let $\mathcal{V}:=\left\{Z_{1}+Z_{2}: Z_{i} \in \mathcal{V}_{i}\right\}$ be the span of \mathcal{V}_{1} and \mathcal{V}_{2}. Then,

$$
\Pi_{\mathcal{V}}(X)=\Pi_{\mathcal{V}_{1}}(X)+\Pi_{\mathcal{V}_{2}}(X) .
$$

3. Uncorrelated random variables: Let X be a zero-mean random variable that is uncorrelated with Y. Then, $\Pi_{\mathcal{L}(Y)}(X)=\widehat{\mathbb{E}}[X \mid Y]=0$.

Proof. For the proof of the linearity property, see Proposition 3.3 in Hajek [2015]. For the proof of the second property, see Proposition 3.5 in Hajek [2015]. The third property is straightforward following equation (1.2) since $\operatorname{Cov}(X, Y)=0$ when X and Y are uncorrelated.

Estimation in presence of noise

Assumption 1. The process and measurement noise are zero mean, and are uncorrelated in time, and with each other. Furthermore, the initial state is uncorrelated with the noise processes. In particular, we assume that

$$
\begin{align*}
& \mathbb{E}\left[w_{k}\right]=\mathbb{E}\left[v_{k}\right]=0, \quad \mathbb{E}\left[w_{k} w_{k}^{\mathrm{T}}\right]=\Sigma_{w}, \quad \mathbb{E}\left[v_{k} v_{k}^{\mathrm{T}}\right]=\Sigma_{v}, \quad \forall k, \tag{1.3a}\\
& \mathbb{E}\left[w_{k} v_{m}^{\mathrm{T}}\right]=\mathbb{E}\left[x_{0} v_{m}^{\mathrm{T}}\right]=\mathbb{E}\left[x_{0} w_{k}^{\mathrm{T}}\right]=0, \quad \forall k, m, \tag{1.3b}\\
& \mathbb{E}\left[w_{k} w_{m}^{\mathrm{T}}\right]=\mathbb{E}\left[v_{k} v_{m}^{\mathrm{T}}\right]=0, \quad \forall k \neq m . \tag{1.3c}
\end{align*}
$$

Remark 1. Recall that if two random variables are independent, then they are uncorrelated. The converse only holds in case of Gaussian random variables. Therefore, the above assumptions are more general than assuming that the noise processes and the initial state are independent.

We now fix the required notation. Let

- $Y_{k}:=\left(y_{0}, y_{1}, \ldots, y_{k}\right)$ be the set of all observations till time instant k,
- $\widehat{x}_{m \mid k}$ be the estimate of the state x_{m} based on observations Y_{k},
- $\tilde{x}_{m \mid k}:=x_{m}-\widehat{x}_{m \mid k}$ be the estimation error, and
- $\Sigma_{m \mid k}:=\operatorname{Cov}\left(\tilde{x}_{m \mid k}\right)$ be the covariance of the estimation error.

When $m>k, \widehat{x}_{m \mid k}$ is often called the predicted value of x_{m} given Y_{k}, and when $m=k, \widehat{x}_{m \mid k}$ is called the estimate of x_{m} given Y_{k}.

Kalman filter is a recursive method to compute an estimate of the state x_{k} as a linear function of the observations Y_{k}. The recursive algorithm is shown below.

Discrete-time Kalman Filter

Initial condition: We define $\widehat{x}_{0 \mid-1}=\mathbb{E}\left[x_{0}\right]$ and $\Sigma_{0 \mid-1}=\Sigma_{0}=\operatorname{Cov}\left(x_{0}\right)$. System model $\left(A_{k}, C_{k}\right)_{k \geq 0}$ is known.
At time k : We know the previous estimate $\widehat{x}_{k-1 \mid k-1}$ and the error covariance $\Sigma_{k-1 \mid k-1}$.

Prediction Steps: Before observing y_{k}, we compute:

1. Prediction of current state: $\widehat{x}_{k \mid k-1}=A_{k-1} \widehat{x}_{k-1 \mid k-1}$
2. Prediction of current output: $\widehat{y}_{k \mid k-1}=C_{k} \widehat{x}_{k \mid k-1}$
3. Error covariance: $\Sigma_{k \mid k-1}=\operatorname{Cov}\left(x_{k}-\widehat{x}_{k \mid k-1}\right)=A_{k-1} \Sigma_{k-1 \mid k-1} A_{k-1}^{\mathrm{T}}+\Sigma_{w}$

Update Steps: After observing y_{k}, we compute:

1. Kalman gain: $L_{k}=\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}\left[C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}+\Sigma_{v}\right]^{-1}$
2. Estimate of current state:

$$
\begin{aligned}
\widehat{x}_{k \mid k} & =\widehat{x}_{k \mid k-1}+L_{k}\left(y_{k}-\widehat{y}_{k \mid k-1}\right) \\
& =A_{k-1} \widehat{x}_{k-1 \mid k-1}+L_{k}\left(y_{k}-C_{k} \widehat{x}_{k \mid k-1}\right)
\end{aligned}
$$

3. Error covariance: $\Sigma_{k \mid k}=\operatorname{Cov}\left(x_{k}-\widehat{x}_{k \mid k}\right)=\Sigma_{k \mid k-1}-L_{k}\left[C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}+\Sigma_{v}\right] L_{k}^{\mathrm{T}}$

Repeat at $k+1$.
Lemma 2 (Correlation of noise with estimation error). Under Assumption 1, we have

1. $x_{k} \in \mathcal{L}\left(x_{0}, w_{0}, w_{1}, \ldots, w_{k-1}\right)$.
2. $y_{k} \in \mathcal{L}\left(x_{0}, w_{0}, w_{1}, \ldots, w_{k-1}, v_{k}\right)$.
3. $\mathcal{L}\left(Y_{k-1}\right)=\mathcal{L}\left(y_{0}, y_{1}, \ldots, y_{k-1}\right)=\mathcal{L}\left(x_{0}, w_{0}, w_{1}, \ldots, w_{k-2}, v_{0}, v_{1}, \ldots, v_{k-1}\right)$.

As a consequence, we have

$$
\widehat{\mathbb{E}}\left[w_{k-1} \mid Y_{k-1}\right]=\widehat{\mathbb{E}}\left[v_{k} \mid Y_{k-1}\right]=\mathbb{E}\left[\widehat{x}_{k \mid k-1} v_{k}^{\mathrm{T}}\right]=\mathbb{E}\left[\tilde{x}_{k \mid k-1} v_{k}^{\mathrm{T}}\right]=\mathbb{E}\left[\tilde{x}_{k-1 \mid k-1} w_{k-1}^{\mathrm{T}}\right]=0,
$$

where $\widehat{x}_{k \mid k-1}=\widehat{\mathbb{E}}\left[x_{k} \mid Y_{k-1}\right], \tilde{x}_{k \mid k-1}=x_{k}-\widehat{x}_{k \mid k-1}$, and $\tilde{x}_{k-1 \mid k-1}=x_{k-1}-\widehat{x}_{k-1 \mid k-1}$.
Proof. Note that $x_{k}=A_{k-1} x_{k-1}+w_{k-1}$. Therefore, x_{k} is a linear combination of x_{k-1} and w_{k-1}. Similarly, x_{k-1} is a linear combination of x_{k-2} and w_{k-2}, and finally x_{1} is a linear combination of x_{0}
and w_{0}. Thus, $x_{k} \in \mathcal{L}\left(x_{0}, w_{0}, w_{1}, \ldots, w_{k-1}\right)$. Now observe that $y_{k}=C_{k} x_{k}+v_{k}$, and it does not depend on y_{k-1} or any of the past measurement noise. Thus, we have $y_{k} \in \mathcal{L}\left(x_{0}, w_{0}, w_{1}, \ldots, w_{k-1}, v_{k}\right)$. The third identity follows from this argument as well.
Recall from (1.2) that $\widehat{\mathbb{E}}\left[w_{k-1} \mid Y_{k-1}\right]=\Pi_{\mathcal{L}\left(Y_{k-1}\right)}\left(w_{k-1}\right)$. From the above discussion, w_{k-1} is zero-mean and uncorrelated with the constituent random variables of $\mathcal{L}\left(Y_{k-1}\right)=$ $\mathcal{L}\left(x_{0}, w_{0}, \ldots, w_{k-2}, v_{0}, v_{1}, \ldots, v_{k-1}\right)$. Therefore, following part 3 of Lemma 1 , we have $\widehat{\mathbb{E}}\left[w_{k-1} \mid Y_{k-1}\right]=0$.

Following an analogous argument, note that v_{k} is zero-mean and uncorrelated with the constituent random variables of $\mathcal{L}\left(Y_{k-1}\right)=\mathcal{L}\left(x_{0}, w_{0}, \ldots, w_{k-2}, v_{0}, v_{1}, \ldots, v_{k-1}\right)$. Thus, $\widehat{\mathbb{E}}\left[v_{k} \mid Y_{k-1}\right]=0$.
Note that $\widehat{x}_{k \mid k-1}=\widehat{\mathbb{E}}\left[x_{k} \mid Y_{k-1}\right]=\Pi_{\mathcal{L}\left(Y_{k-1}\right)}\left(x_{k}\right)$ is the projection of x_{k} on $\mathcal{L}\left(Y_{k-1}\right)$. Therefore, $\widehat{x}_{k \mid k-1} \in \mathcal{L}\left(Y_{k-1}\right)$, i.e., it is a linear combination of $\left\{x_{0}, w_{0}, \ldots, w_{k-2}, v_{0}, v_{1}, \ldots, v_{k-1}\right\}$. Thus, $\widehat{x}_{k \mid k-1}$ is uncorrelated with v_{k}, and we have $\mathbb{E}\left[\widehat{x}_{k \mid k-1} v_{k}^{\mathrm{T}}\right]=0$.

Similarly, note that x_{k} is a linear combination of $\left\{x_{0}, w_{0}, \ldots, w_{k-1}\right\}$, and thus, $\tilde{x}_{k \mid k-1}=x_{k}-\widehat{x}_{k \mid k-1}$ is a linear combination of $\left\{x_{0}, w_{0}, \ldots, w_{k-1}, v_{0}, v_{1}, \ldots, v_{k-1}\right\}$. Therefore, $\mathbb{E}\left[\tilde{x}_{k \mid k-1} v_{k}^{\mathrm{T}}\right]=0$.
Finally, $\tilde{x}_{k-1 \mid k-1}=x_{k-1}-\Pi_{\mathcal{L}\left(Y_{k-1}\right)}\left(x_{k-1}\right)$ where x_{k-1} is a linear combination of $\left\{x_{0}, w_{0}, \ldots, w_{k-2}\right\}$ and $\Pi_{\mathcal{L}\left(Y_{k-1}\right)}\left(x_{k-1}\right)$ is a linear combination of $\left\{x_{0}, w_{0}, \ldots, w_{k-2}, v_{0}, v_{1}, \ldots, v_{k-1}\right\}$. Thus, $\tilde{x}_{k-1 \mid k-1}$ is uncorrelated with w_{k-1} and $\mathbb{E}\left[\tilde{x}_{k-1 \mid k-1} w_{k-1}^{\mathrm{T}}\right]=0$.

Lemma 3 (Conditional expectation of Gaussian random vectors). Let X and Y be jointly Gaussian random vectors. Then, the conditional expectation $\mathbb{E}[X \mid Y]$ is an affine function of Y, i.e.,

$$
\begin{equation*}
\mathbb{E}[X \mid Y]=\widehat{\mathbb{E}}[X \mid Y]=\mathbb{E}[X]+\operatorname{Cov}(X, Y)^{\mathrm{T}} \operatorname{Cov}(Y)^{-1}[Y-\mathbb{E}[Y]] . \tag{1.4}
\end{equation*}
$$

In other words, the LMSE and the minimum mean square estimators coincide.
Proof. Refer to Proposition 3.9 in Hajek [2015].

The following theorem states the optimality property of the Kalman filter. The prediction and update steps are derived in the proof.

Theorem 1. Suppose Assumption 1 holds. The discrete-time Kalman filter shown above minimizes the mean square error $\mathbb{E}\left[\left\|x_{k}-\widehat{x}_{k \mid k}\right\|^{2}\right]$ among all linear estimators of x_{k} given Y_{k}. Furthermore, if x_{0}, w_{k} and v_{k} are Gaussian random vectors, then the Kalman filter minimizes the mean square error $\mathbb{E}\left[\left\|x_{k}-\widehat{x}_{k \mid k}\right\|^{2}\right]$ among all estimators of x_{k} given Y_{k}.

Proof. We first consider the case where $\mathbb{E}\left[x_{0}\right]=0$ to show that Kalman filter is the LMSE estimator, followed by the non-zero mean case. We then treat the case with Gaussian random vectors.

Case 1: $\mathbb{E}\left[x_{0}\right]=0$.
From the linearity of expectation, we have $\mathbb{E}\left[x_{k}\right]=\mathbb{E}\left[y_{k}\right]=0$. At time k, we assume that $\widehat{x}_{k-1 \mid k-1}$ and the error covariance $\Sigma_{k-1 \mid k-1}$ are known, and from this knowledge, we first derive the predicted
values of the state and output at time k. We compute

$$
\begin{aligned}
\widehat{x}_{k \mid k-1}=\widehat{\mathbb{E}}\left[x_{k} \mid Y_{k-1}\right] & =\widehat{\mathbb{E}}\left[A_{k-1} x_{k-1}+w_{k-1} \mid Y_{k-1}\right] \\
& =A_{k-1} \widehat{\mathbb{E}}\left[x_{k-1} \mid Y_{k-1}\right]+\widehat{\mathbb{E}}\left[w_{k-1} \mid Y_{k-1}\right] \\
& =A_{k-1} \widehat{x}_{k-1 \mid k-1},
\end{aligned}
$$

where the second equality holds because LMSE (being a projection) is a linear operator following Lemma 1, and the last equality holds because $\widehat{\mathbb{E}}\left[w_{k-1} \mid Y_{k-1}\right]=0$ from Lemma 2.

Following analogous arguments, we compute

$$
\begin{aligned}
\widehat{y}_{k \mid k-1}=\widehat{\mathbb{E}}\left[y_{k} \mid Y_{k-1}\right] & =\widehat{\mathbb{E}}\left[C_{k} x_{k}+v_{k} \mid Y_{k-1}\right] \\
& =C_{k} \widehat{\mathbb{E}}\left[x_{k} \mid Y_{k-1}\right]+\widehat{\mathbb{E}}\left[v_{k} \mid Y_{k-1}\right] \quad \text { (LMSE is a linear operator) } \\
& =C_{k} \widehat{x}_{k \mid k-1} \quad \text { (from Lemma 2). }
\end{aligned}
$$

Now, observe that

$$
\tilde{x}_{k \mid k-1}=x_{k}-\widehat{x}_{k \mid k-1}=A_{k-1} x_{k-1}+w_{k-1}-A_{k-1} \widehat{x}_{k-1 \mid k-1}=A_{k-1} \tilde{x}_{k-1 \mid k-1}+w_{k-1} .
$$

Therefore, we compute the covariance of the prediction error as

$$
\begin{aligned}
\Sigma_{k \mid k-1} & =\mathbb{E}\left[\left(A_{k-1} \tilde{x}_{k-1 \mid k-1}+w_{k-1}\right)\left(A_{k-1} \tilde{x}_{k-1 \mid k-1}+w_{k-1}\right)^{\mathrm{T}}\right] \\
& =A_{k-1} \mathbb{E}\left[\tilde{x}_{k-1 \mid k-1} \tilde{x}_{k-1 \mid k-1}^{\mathrm{T}}\right] A_{k-1}^{\mathrm{T}}+2 A_{k-1} \mathbb{E}\left[\tilde{x}_{k-1 \mid k-1} w_{k-1}^{\mathrm{T}}\right]+\mathbb{E}\left[w_{k-1} w_{k-1}^{\mathrm{T}}\right] \\
& =A_{k-1} \Sigma_{k-1 \mid k-1} A_{k-1}^{\mathrm{T}}+\Sigma_{w},
\end{aligned}
$$

as $\mathbb{E}\left[\tilde{x}_{k-1 \mid k-1} w_{k-1}^{\mathrm{T}}\right]=0$ following Lemma 2. Since all quantities have zero-mean, covariance equals correlation.

Thus far, we have derived all three steps of the prediction stage. Once we observe y_{k}, we first compute the innovation contained in it. In particular, we have

$$
\begin{equation*}
\tilde{y}_{k \mid k-1}=y_{k}-\widehat{y}_{k \mid k-1}=y_{k}-C_{k} \widehat{x}_{k \mid k-1}=C_{k}\left[x_{k}-\widehat{x}_{k \mid k-1}\right]+v_{k}=C_{k} \tilde{x}_{k \mid k-1}+v_{k} . \tag{1.7}
\end{equation*}
$$

Recall that $\widehat{y}_{k \mid k-1}=\Pi_{\mathcal{L}\left(Y_{k-1}\right)}\left(y_{k}\right)$ is the projection of y_{k} on the linear space spanned by random variables Y_{k-1}. Therefore, by the orthogonality property of projection, $\tilde{y}_{k \mid k-1}$ is orthogonal to every random variable that is a linear combination of random variables in Y_{k-1}. In particular, $\mathcal{L}\left(Y_{k-1}\right)$ is orthogonal to $\mathcal{L}\left(\tilde{y}_{k \mid k-1}\right)$. Therefore, following part 2 of Lemma 1 , we have

$$
\begin{align*}
\widehat{x}_{k \mid k}=\widehat{\mathbb{E}}\left[x_{k} \mid Y_{k}\right] & =\Pi_{\mathcal{L}\left(Y_{k-1}\right)}\left(x_{k}\right)+\Pi_{\mathcal{L}\left(\tilde{y}_{k \mid k-1}\right)}\left(x_{k}\right) \\
& =\widehat{x}_{k \mid k-1}+\mathbb{E}\left[x_{k} \widetilde{y}_{k \mid k-1}^{\mathrm{T}}\right] \mathbb{E}\left[\tilde{y}_{k \mid k-1} \tilde{y}_{k \mid k-1}^{\mathrm{T}}\right]^{-1} \tilde{y}_{k \mid k-1}, \tag{1.8}
\end{align*}
$$

since we have assumed that x_{0} and therefore all random variables including x_{k} and $\tilde{y}_{k \mid k-1}$ are zero-mean. From (1.7), we compute

$$
\begin{align*}
\mathbb{E}\left[x_{k} \tilde{y}_{k \mid k-1}^{\mathrm{T}}\right] & =\mathbb{E}\left[\left(\widehat{x}_{k \mid k-1}+\tilde{x}_{k \mid k-1}\right)\left(C_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)^{\mathrm{T}}\right] \\
& =\mathbb{E}\left[\widehat{x}_{k \mid k-1}\left(C_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)^{\mathrm{T}}\right]+\mathbb{E}\left[\tilde{x}_{k \mid k-1}\left(C_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)^{\mathrm{T}}\right] \\
& =0+\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}=\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}, \tag{1.9}
\end{align*}
$$

since $\widehat{x}_{k \mid k-1}$ is orthogonal with $\tilde{x}_{k \mid k-1}$ from the orthogonality property of projection, and both $\widehat{x}_{k \mid k-1}$ (being a function of random variables in Y_{k-1} and $\tilde{x}_{k \mid k-1}$ (being a function of x_{k} and $\widehat{x}_{k \mid k-1}$) are uncorrelated with v_{k} from Lemma 2. In an analogous manner, we compute

$$
\begin{align*}
\mathbb{E}\left[\tilde{y}_{k \mid k-1} \tilde{y}_{k \mid k-1}^{\mathrm{T}}\right] & =\mathbb{E}\left[\left(C_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)\left(C_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)^{\mathrm{T}}\right] \\
& =C_{k} \mathbb{E}\left[\tilde{x}_{k \mid k-1} \tilde{x}_{k \mid k-1}^{\mathrm{T}}\right] C_{k}^{\mathrm{T}}+\mathbb{E}\left[v_{k} v_{k}^{\mathrm{T}}\right] \\
& =C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}+\Sigma_{v}, \tag{1.10}
\end{align*}
$$

where we have again used the fact that $\tilde{x}_{k \mid k-1}$ is uncorrelated with v_{k}.
We now substitute (1.9) and (1.10) in (1.8), and obtain

$$
\begin{align*}
\widehat{x}_{k \mid k} & =\widehat{x}_{k \mid k-1}+\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}\left[C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}+\Sigma_{v}\right]^{-1} \tilde{y}_{k \mid k-1} \tag{1.11a}\\
& =: \widehat{x}_{k \mid k-1}+L_{k} \tilde{y}_{k \mid k-1} \tag{1.11b}\\
& =\widehat{x}_{k \mid k-1}+L_{k}\left(y_{k}-\widehat{y}_{k \mid k-1}\right), \tag{1.11c}
\end{align*}
$$

where $L_{k}:=\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}\left[C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}+\Sigma_{v}\right]^{-1}$ is the Kalman gain.
Thus, the estimate of x_{k} is a linear combination of the predicted value based on prior observations $\left(\widehat{x}_{k \mid k-1}\right)$ and a feedback term where the error between the observed output $\left(y_{k}\right)$ and the predicted value of the output ($\widehat{y}_{k \mid k-1}$) is multiplied by the Kalman gain L_{k}.

We now compute $\Sigma_{k \mid k}=\operatorname{Cov}\left(x_{k}-\widehat{x}_{k \mid k}\right)$ to complete the derivation. Note that

$$
\begin{aligned}
x_{k}-\widehat{x}_{k \mid k} & =x_{k}-\widehat{x}_{k \mid k-1}-L_{k}\left(C_{k} x_{k}+v_{k}-C_{k} \widehat{x}_{k \mid k-1}\right) \\
& =\left(I-L_{k} C_{k}\right) \tilde{x}_{k \mid k-1}-L_{k} v_{k},
\end{aligned}
$$

where I is the identity matrix of dimension n. Since $\tilde{x}_{k \mid k-1}$ is uncorrelated with v_{k}, we obtain

$$
\begin{aligned}
\Sigma_{k \mid k} & =\mathbb{E}\left[\left(\left(I-L_{k} C_{k}\right) \tilde{x}_{k \mid k-1}-L_{k} v_{k}\right)\left(\left(I-L_{k} C_{k}\right) \tilde{x}_{k \mid k-1}-L_{k} v_{k}\right)^{\mathrm{T}}\right] \\
& =\left(I-L_{k} C_{k}\right) \Sigma_{k \mid k-1}\left(I-L_{k} C_{k}\right)^{\mathrm{T}}+L_{k} \Sigma_{v} L_{k}^{\mathrm{T}} \\
& =\Sigma_{k \mid k-1}-L_{k} C_{k} \Sigma_{k \mid k-1}-\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}}+L_{k} C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}}+L_{k} \Sigma_{v} L_{k}^{\mathrm{T}} \\
& =\Sigma_{k \mid k-1}-L_{k} C_{k} \Sigma_{k \mid k-1}-\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}}+L_{k}\left[C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}+\Sigma_{v}\right] L_{k}^{\mathrm{T}} \\
& =\Sigma_{k \mid k-1}-L_{k} C_{k} \Sigma_{k \mid k-1}-\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}}+\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}} \\
& =\Sigma_{k \mid k-1}-L_{k} C_{k} \Sigma_{k \mid k-1} \\
& =\Sigma_{k \mid k-1}-\Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}\left[C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}}+\Sigma_{v}\right]^{-1} C_{k} \Sigma_{k \mid k-1} \\
& =\Sigma_{k \mid k-1}-L_{k}\left[C_{k} \Sigma_{k \mid k-1} C_{k}^{\mathrm{T}} L_{k}^{\mathrm{T}}+\Sigma_{v}\right] L_{k}^{\mathrm{T}},
\end{aligned}
$$

where any of the last three equalities can be used depending on the context. This concludes the derivation for the zero-mean case. The second equality above is often used to compute $\Sigma_{k \mid k}$ as it is more robust to numerical errors.

Case 2: $\mathbb{E}\left[x_{0}\right] \neq 0$.

In this case, we express the overall dynamics (1.1) as the sum of a deterministic or nominal component and a zero-mean stochastic component. In particular, we define

$$
x_{k}^{C}:=x_{k}-\mathbb{E}\left[x_{k}\right], \quad y_{k}^{C}:=y_{k}-\mathbb{E}\left[y_{k}\right] .
$$

Then,

$$
\begin{align*}
x_{k+1}^{C} & =x_{k+1}-\mathbb{E}\left[x_{k+1}\right]=A_{k} x_{k}+w_{k}-A_{k} \mathbb{E}\left[x_{k}\right]=A_{k} x_{k}^{C}+w_{k}, \tag{1.12a}\\
y_{k}^{C} & =y_{k}-\mathbb{E}\left[y_{k}\right]=C_{k} x_{k}+v_{k}-C_{k} \mathbb{E}\left[x_{k}\right]=C_{k} x_{k}^{C}+v_{k} . \tag{1.12b}
\end{align*}
$$

Thus, x_{k}^{C} follows a similar dynamics as (1.1) and all the state and output quantities are zero-mean. From the previous case of the derivation, we have

$$
\begin{aligned}
\widehat{x}_{k \mid k} & =\mathbb{E}\left[x_{k}\right]+\widehat{x}_{k \mid k}^{C}=\mathbb{E}\left[x_{k}\right]+\widehat{x}_{k \mid k-1}^{C}+L_{k}\left(y_{k}^{C}-\widehat{y}_{k \mid k-1}^{C}\right) \\
& =A_{k-1} \mathbb{E}\left[x_{k-1}\right]+A_{k-1} \widehat{x}_{k-1 \mid k-1}^{C}+L_{k}\left(y_{k}-\mathbb{E}\left[y_{k}\right]-C_{k} \widehat{x}_{k \mid k-1}^{C}\right) \\
& =A_{k-1} \widehat{x}_{k-1 \mid k-1}+L_{k}\left(y_{k}-\mathbb{E}\left[y_{k}\right]-C_{k} \widehat{x}_{k \mid k-1}+C_{k} \mathbb{E}\left[x_{k}\right]\right) \\
& =\widehat{x}_{k \mid k-1}+L_{k}\left(y_{k}-\widehat{y}_{k \mid k-1}\right) .
\end{aligned}
$$

Therefore, the same equations as in the zero-mean case holds.

Case 3: Gaussian random vectors.

When x_{0}, w_{k} and v_{k} are all Gaussian random vectors, then x_{k}, and y_{k} are also Gaussian random vectors for every k as we consider a linear dynamical system. Following Lemma 3, we note that for Gaussian random vectors X and $Y, \widehat{\mathbb{E}}[X \mid Y]=\mathbb{E}[X \mid Y]$, i.e., the LMSE and MMSE estimators coincide. Therefore, we can replace $\widehat{\mathbb{E}}$ by \mathbb{E} in all the steps in the derivation in Case 1 . As a result, the estimates minimize the mean square error.

The above theorem shows that the Kalman filter minimizes the mean square error among all linear estimators.

Steady-State Behavior

First we establish steady-state properties of the following system:

$$
x_{k+1}=A x_{k}+w_{k} .
$$

It is easy to see that the mean \bar{x}_{k} and the covariance Σ_{k}^{x} of the states evolve as

$$
\begin{aligned}
\bar{x}_{k+1} & =A \bar{x}_{k} \\
\Sigma_{k+1}^{x} & =A \Sigma_{k}^{x} A^{\top}+\Sigma_{w}
\end{aligned}
$$

The following theorem shows the asymptotic properties of the states.
Theorem 2. Let Σ_{w} be positive definite. The followings are equivalent:

- For any $\Sigma_{0}^{x}, \Sigma_{k+1}^{x}=A \Sigma_{k}^{x} A^{\top}+\Sigma_{w}$ is such that Σ_{k}^{x} converges to Σ^{\star} irrespective of choice of Σ_{0}^{x}.
- The Lyapunov equation $\Sigma=A \Sigma A^{\top}+\Sigma_{w}$ has a unique solution Σ^{\star}.
- The matrix A has all eigenvalues within the unit circle.

We now establish steady-state properties of the estimation error under Kalman filter for the timeinvariant system. First, we write the Kalman filter expressions in compact form as:

$$
\begin{aligned}
L_{k} & =\Sigma_{k \mid k-1} C^{\mathrm{T}}\left[C \Sigma_{k \mid k-1} C^{\mathrm{T}}+\Sigma_{v}\right]^{-1} \\
\widehat{x}_{k+1 \mid k} & =A \widehat{x}_{k \mid k}=A \widehat{x}_{k \mid k-1}+A L_{k}\left(y_{k}-\widehat{y}_{k \mid k-1}\right) \\
& =\left(A-A L_{k} C\right) \widehat{x}_{k \mid k-1}+A L_{k} y_{k} \\
\Sigma_{k+1 \mid k} & =A \Sigma_{k \mid k} A^{\top}+\Sigma_{w} \\
& =A\left(\Sigma_{k \mid k-1}-\Sigma_{k \mid k-1} C^{\mathrm{T}}\left[C \Sigma_{k \mid k-1} C^{\mathrm{T}}+\Sigma_{v}\right]^{-1} C \Sigma_{k \mid k-1}\right) A^{\top}+\Sigma_{w} \\
& =A \Sigma_{k \mid k-1} A^{\top}-A \Sigma_{k \mid k-1} C^{\mathrm{T}}\left[C \Sigma_{k \mid k-1} C^{\mathrm{T}}+\Sigma_{v}\right]^{-1} C \Sigma_{k \mid k-1} A^{\top}+\Sigma_{w}
\end{aligned}
$$

The following theorem shows the asymptotic properties of the error covariance.
Theorem 3. Let Σ_{w} be positive semidefinite, Σ_{v} be positive definite, (A, C) be detectable and $\left(A, \Sigma_{w}\right)$ be stabilizable. The followings are equivalent:

- The equation

$$
\Sigma=A \Sigma A^{\top}-A \Sigma C^{\mathrm{T}}\left[C \Sigma C^{\mathrm{T}}+\Sigma_{v}\right]^{-1} C \Sigma A^{\top}+\Sigma_{w}
$$

has a unique solution Σ^{\star} with Σ^{\star} being positive definite.

- For any Σ_{0}^{x}, under the Kalman filter update equation, $\Sigma_{k+1 \mid k}$ converges to Σ^{\star} irrespective of choice of Σ_{0}.
- The matrix $A-A L^{\star} C$ has all eigenvalues within the unit circle where

$$
L^{\star}=\Sigma^{\star} C^{\mathrm{T}}\left[C \Sigma^{\star} C^{\mathrm{T}}+\Sigma_{v}\right]^{-1} .
$$

The matrix L^{\star} is called steady-state Kalman gain.

References

Bruce Hajek. Random Processes for Engineers. Cambridge University Press, 2015.

