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Discrete-time Kalman Filter

Instructor: Prof. Ashish R. Hota

In this note, we will formally derive the discrete-time Kalman filter for estimating the state of a
linear dynamical system.

Consider the discrete-time linear dynamical system:

xk+1 = Akxk + wk, (1.1a)

yk = Ckxk + vk, (1.1b)

where xk ∈ Rn is the state of the system, wk ∈ Rn is the process noise affecting the system
dynamics, vk ∈ Rp is the measurement noise affecting the observation process, and yk ∈ Rp is the
observed output at time k.

We assume that the system dynamics (Ak), the observation matrix (Ck) and the measurements or
outputs (yk) are known to us for k ≥ 0.

Our goal is to estimate the state of the system from current and past observations under the
following probabilistic assumptions on the initial state and the noise affecting the system.

Estimation in the absence of noise

In the absence of noise, we often design a class of observers, called Luenberger Observer, to
estimate the states. Let the system be time-invariant. We start with an initial estimate x̂0 and
recursively update our estimate as

x̂k+1 = Ax̂k + L[yk − Cx̂k]

=⇒ êk+1 = xk+1 − x̂k+1

= Axk −Ax̂k − L[yk − Cx̂k]

= (A− LC)ek.

If L is chosen such that all the eigenvalues of (A−LC) lie within the unit circle, then the estimation
error asymptotically converges to 0. The pair (C,A) for which such a matrix L can be found is
called detectable.

Review of LMSE and Orthogonal Projection

Before introducing the Kalman filter, we first establish certain intermediate results. The first one
is regarding certain properties of the linear mean square error (LMSE) estimators, and the second
one shows the correlation between certain random variables.
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Recall that the LMSE estimator of a random vector X ∈ Rn given another random vector Y ∈ Rm

is
ΠL(Y )(X) := Ê[X|Y ] := E[X] + Cov(X,Y )TCov(Y )−1[Y − E[Y ]], (1.2)

where L(Y ) is the set of all random variables that are linear combinations of random variables in
Y and ΠL(Y )(X) is the projection of X on the closed linear space L(Y ).

Lemma 1 (Properties of projection). Let V be a closed linear subspace of L2(Ω,F ,P). The pro-
jection has the following properties.

1. Linearity: ΠV(a1X1 + a2X2) = a1ΠV(X1) + a2ΠV(X2), ∀a1, a2 ∈ R.

2. Orthogonal subspace projection: Let V1 and V2 be two closed linear subspaces such that
E[Z1Z2] = 0 for every Z1 ∈ V1 and Z2 ∈ V2. Let V := {Z1 + Z2 : Zi ∈ Vi} be the span
of V1 and V2. Then,

ΠV(X) = ΠV1(X) + ΠV2(X).

3. Uncorrelated random variables: Let X be a zero-mean random variable that is uncorrelated
with Y . Then, ΠL(Y )(X) = Ê[X|Y ] = 0.

Proof. For the proof of the linearity property, see Proposition 3.3 in Hajek [2015]. For the proof
of the second property, see Proposition 3.5 in Hajek [2015]. The third property is straightforward
following equation (1.2) since Cov(X,Y ) = 0 when X and Y are uncorrelated.

Estimation in presence of noise

Assumption 1. The process and measurement noise are zero mean, and are uncorrelated in time,
and with each other. Furthermore, the initial state is uncorrelated with the noise processes. In
particular, we assume that

E[wk] = E[vk] = 0, E[wkw
T
k] = Σw, E[vkvTk] = Σv, ∀k, (1.3a)

E[wkv
T
m] = E[x0vTm] = E[x0wT

k] = 0, ∀k,m, (1.3b)

E[wkw
T
m] = E[vkvTm] = 0, ∀k ̸= m. (1.3c)

Remark 1. Recall that if two random variables are independent, then they are uncorrelated. The
converse only holds in case of Gaussian random variables. Therefore, the above assumptions are
more general than assuming that the noise processes and the initial state are independent.

We now fix the required notation. Let

� Yk := (y0, y1, . . . , yk) be the set of all observations till time instant k,

� x̂m|k be the estimate of the state xm based on observations Yk,

� x̃m|k := xm − x̂m|k be the estimation error, and

� Σm|k := Cov(x̃m|k) be the covariance of the estimation error.
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When m > k, x̂m|k is often called the predicted value of xm given Yk, and when m = k, x̂m|k is
called the estimate of xm given Yk.

Kalman filter is a recursive method to compute an estimate of the state xk as a linear function of
the observations Yk. The recursive algorithm is shown below.

Discrete-time Kalman Filter

Initial condition: We define x̂0|−1 = E[x0] and Σ0|−1 = Σ0 = Cov(x0). System model
(Ak, Ck)k≥0 is known.

At time k: We know the previous estimate x̂k−1|k−1 and the error covariance Σk−1|k−1.

Prediction Steps: Before observing yk, we compute:

1. Prediction of current state: x̂k|k−1 = Ak−1x̂k−1|k−1

2. Prediction of current output: ŷk|k−1 = Ckx̂k|k−1

3. Error covariance: Σk|k−1 = Cov(xk − x̂k|k−1) = Ak−1Σk−1|k−1A
T
k−1 +Σw

Update Steps: After observing yk, we compute:

1. Kalman gain: Lk = Σk|k−1C
T
k

[
CkΣk|k−1C

T
k +Σv

]−1

2. Estimate of current state:

x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

= Ak−1x̂k−1|k−1 + Lk(yk − Ckx̂k|k−1)

3. Error covariance: Σk|k = Cov(xk − x̂k|k) = Σk|k−1 − Lk

[
CkΣk|k−1C

T
k +Σv

]
LT
k

Repeat at k + 1.

Lemma 2 (Correlation of noise with estimation error). Under Assumption 1, we have

1. xk ∈ L(x0, w0, w1, . . . , wk−1).

2. yk ∈ L(x0, w0, w1, . . . , wk−1, vk).

3. L(Yk−1) = L(y0, y1, . . . , yk−1) = L(x0, w0, w1, . . . , wk−2, v0, v1, . . . , vk−1).

As a consequence, we have

Ê[wk−1|Yk−1] = Ê[vk|Yk−1] = E[x̂k|k−1v
T
k] = E[x̃k|k−1v

T
k] = E[x̃k−1|k−1w

T
k−1] = 0,

where x̂k|k−1 = Ê[xk|Yk−1], x̃k|k−1 = xk − x̂k|k−1, and x̃k−1|k−1 = xk−1 − x̂k−1|k−1.

Proof. Note that xk = Ak−1xk−1 + wk−1. Therefore, xk is a linear combination of xk−1 and wk−1.
Similarly, xk−1 is a linear combination of xk−2 and wk−2, and finally x1 is a linear combination of x0
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and w0. Thus, xk ∈ L(x0, w0, w1, . . . , wk−1). Now observe that yk = Ckxk + vk, and it does not de-
pend on yk−1 or any of the past measurement noise. Thus, we have yk ∈ L(x0, w0, w1, . . . , wk−1, vk).
The third identity follows from this argument as well.

Recall from (1.2) that Ê[wk−1|Yk−1] = ΠL(Yk−1)(wk−1). From the above discussion,
wk−1 is zero-mean and uncorrelated with the constituent random variables of L(Yk−1) =
L(x0, w0, . . . , wk−2, v0, v1, . . . , vk−1). Therefore, following part 3 of Lemma 1, we have
Ê[wk−1|Yk−1] = 0.

Following an analogous argument, note that vk is zero-mean and uncorrelated with the constituent
random variables of L(Yk−1) = L(x0, w0, . . . , wk−2, v0, v1, . . . , vk−1). Thus, Ê[vk|Yk−1] = 0.

Note that x̂k|k−1 = Ê[xk|Yk−1] = ΠL(Yk−1)(xk) is the projection of xk on L(Yk−1). Therefore,
x̂k|k−1 ∈ L(Yk−1), i.e., it is a linear combination of {x0, w0, . . . , wk−2, v0, v1, . . . , vk−1}. Thus, x̂k|k−1

is uncorrelated with vk, and we have E[x̂k|k−1v
T
k] = 0.

Similarly, note that xk is a linear combination of {x0, w0, . . . , wk−1}, and thus, x̃k|k−1 = xk− x̂k|k−1

is a linear combination of {x0, w0, . . . , wk−1, v0, v1, . . . , vk−1}. Therefore, E[x̃k|k−1v
T
k] = 0.

Finally, x̃k−1|k−1 = xk−1−ΠL(Yk−1)(xk−1) where xk−1 is a linear combination of {x0, w0, . . . , wk−2}
and ΠL(Yk−1)(xk−1) is a linear combination of {x0, w0, . . . , wk−2, v0, v1, . . . , vk−1}. Thus, x̃k−1|k−1

is uncorrelated with wk−1 and E[x̃k−1|k−1w
T
k−1] = 0.

Lemma 3 (Conditional expectation of Gaussian random vectors). Let X and Y be jointly Gaussian
random vectors. Then, the conditional expectation E[X|Y ] is an affine function of Y , i.e.,

E[X|Y ] = Ê[X|Y ] = E[X] + Cov(X,Y )TCov(Y )−1[Y − E[Y ]]. (1.4)

In other words, the LMSE and the minimum mean square estimators coincide.

Proof. Refer to Proposition 3.9 in Hajek [2015].

The following theorem states the optimality property of the Kalman filter. The prediction and
update steps are derived in the proof.

Theorem 1. Suppose Assumption 1 holds. The discrete-time Kalman filter shown above minimizes
the mean square error E[||xk − x̂k|k||2] among all linear estimators of xk given Yk. Furthermore,
if x0, wk and vk are Gaussian random vectors, then the Kalman filter minimizes the mean square
error E[||xk − x̂k|k||2] among all estimators of xk given Yk.

Proof. We first consider the case where E[x0] = 0 to show that Kalman filter is the LMSE estimator,
followed by the non-zero mean case. We then treat the case with Gaussian random vectors.

Case 1: E[x0] = 0.

From the linearity of expectation, we have E[xk] = E[yk] = 0. At time k, we assume that x̂k−1|k−1

and the error covariance Σk−1|k−1 are known, and from this knowledge, we first derive the predicted
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values of the state and output at time k. We compute

x̂k|k−1 = Ê[xk|Yk−1] = Ê[Ak−1xk−1 + wk−1|Yk−1]

= Ak−1Ê[xk−1|Yk−1] + Ê[wk−1|Yk−1]

= Ak−1x̂k−1|k−1,

where the second equality holds because LMSE (being a projection) is a linear operator following
Lemma 1, and the last equality holds because Ê[wk−1|Yk−1] = 0 from Lemma 2.

Following analogous arguments, we compute

ŷk|k−1 = Ê[yk|Yk−1] = Ê[Ckxk + vk|Yk−1]

= CkÊ[xk|Yk−1] + Ê[vk|Yk−1] (LMSE is a linear operator)

= Ckx̂k|k−1 (from Lemma 2).

Now, observe that

x̃k|k−1 = xk − x̂k|k−1 = Ak−1xk−1 + wk−1 −Ak−1x̂k−1|k−1 = Ak−1x̃k−1|k−1 + wk−1.

Therefore, we compute the covariance of the prediction error as

Σk|k−1 = E[(Ak−1x̃k−1|k−1 + wk−1)(Ak−1x̃k−1|k−1 + wk−1)
T]

= Ak−1E[x̃k−1|k−1x̃
T
k−1|k−1]A

T
k−1 + 2Ak−1E[x̃k−1|k−1w

T
k−1] + E[wk−1w

T
k−1]

= Ak−1Σk−1|k−1A
T
k−1 +Σw,

as E[x̃k−1|k−1w
T
k−1] = 0 following Lemma 2. Since all quantities have zero-mean, covariance equals

correlation.

Thus far, we have derived all three steps of the prediction stage. Once we observe yk, we first
compute the innovation contained in it. In particular, we have

ỹk|k−1 = yk − ŷk|k−1 = yk − Ckx̂k|k−1 = Ck[xk − x̂k|k−1] + vk = Ckx̃k|k−1 + vk. (1.7)

Recall that ŷk|k−1 = ΠL(Yk−1)(yk) is the projection of yk on the linear space spanned by random
variables Yk−1. Therefore, by the orthogonality property of projection, ỹk|k−1 is orthogonal to every
random variable that is a linear combination of random variables in Yk−1. In particular, L(Yk−1)
is orthogonal to L(ỹk|k−1). Therefore, following part 2 of Lemma 1, we have

x̂k|k = Ê[xk|Yk] = ΠL(Yk−1)(xk) + ΠL(ỹk|k−1)(xk)

= x̂k|k−1 + E[xkỹTk|k−1]E[ỹk|k−1ỹ
T
k|k−1]

−1ỹk|k−1, (1.8)

since we have assumed that x0 and therefore all random variables including xk and ỹk|k−1 are
zero-mean. From (1.7), we compute

E[xkỹTk|k−1] = E[(x̂k|k−1 + x̃k|k−1)(Ckx̃k|k−1 + vk)
T]

= E[x̂k|k−1(Ckx̃k|k−1 + vk)
T] + E[x̃k|k−1(Ckx̃k|k−1 + vk)

T]

= 0 + Σk|k−1C
T
k = Σk|k−1C

T
k , (1.9)
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since x̂k|k−1 is orthogonal with x̃k|k−1 from the orthogonality property of projection, and both
x̂k|k−1 (being a function of random variables in Yk−1 and x̃k|k−1 (being a function of xk and x̂k|k−1)
are uncorrelated with vk from Lemma 2. In an analogous manner, we compute

E[ỹk|k−1ỹ
T
k|k−1] = E[(Ckx̃k|k−1 + vk)(Ckx̃k|k−1 + vk)

T]

= CkE[x̃k|k−1x̃
T
k|k−1]C

T
k + E[vkvTk]

= CkΣk|k−1C
T
k +Σv, (1.10)

where we have again used the fact that x̃k|k−1 is uncorrelated with vk.

We now substitute (1.9) and (1.10) in (1.8), and obtain

x̂k|k = x̂k|k−1 +Σk|k−1C
T
k

[
CkΣk|k−1C

T
k +Σv

]−1
ỹk|k−1 (1.11a)

=: x̂k|k−1 + Lkỹk|k−1 (1.11b)

= x̂k|k−1 + Lk(yk − ŷk|k−1), (1.11c)

where Lk := Σk|k−1C
T
k

[
CkΣk|k−1C

T
k +Σv

]−1
is the Kalman gain.

Thus, the estimate of xk is a linear combination of the predicted value based on prior observations
(x̂k|k−1) and a feedback term where the error between the observed output (yk) and the predicted
value of the output (ŷk|k−1) is multiplied by the Kalman gain Lk.

We now compute Σk|k = Cov(xk − x̂k|k) to complete the derivation. Note that

xk − x̂k|k = xk − x̂k|k−1 − Lk(Ckxk + vk − Ckx̂k|k−1)

= (I − LkCk)x̃k|k−1 − Lkvk,

where I is the identity matrix of dimension n. Since x̃k|k−1 is uncorrelated with vk, we obtain

Σk|k = E[((I − LkCk)x̃k|k−1 − Lkvk)((I − LkCk)x̃k|k−1 − Lkvk)
T]

= (I − LkCk)Σk|k−1(I − LkCk)
T + LkΣvL

T
k

= Σk|k−1 − LkCkΣk|k−1 − Σk|k−1C
T
kL

T
k + LkCkΣk|k−1C

T
kL

T
k + LkΣvL

T
k

= Σk|k−1 − LkCkΣk|k−1 − Σk|k−1C
T
kL

T
k + Lk

[
CkΣk|k−1C

T
k +Σv

]
LT
k

= Σk|k−1 − LkCkΣk|k−1 − Σk|k−1C
T
kL

T
k +Σk|k−1C

T
kL

T
k

= Σk|k−1 − LkCkΣk|k−1

= Σk|k−1 − Σk|k−1C
T
k

[
CkΣk|k−1C

T
k +Σv

]−1
CkΣk|k−1

= Σk|k−1 − Lk

[
CkΣk|k−1C

T
kL

T
k +Σv

]
LT
k,

where any of the last three equalities can be used depending on the context. This concludes the
derivation for the zero-mean case. The second equality above is often used to compute Σk|k as it is
more robust to numerical errors.

Case 2: E[x0] ̸= 0.
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In this case, we express the overall dynamics (1.1) as the sum of a deterministic or nominal com-
ponent and a zero-mean stochastic component. In particular, we define

xCk := xk − E[xk], yCk := yk − E[yk].

Then,

xCk+1 = xk+1 − E[xk+1] = Akxk + wk −AkE[xk] = Akx
C
k + wk, (1.12a)

yCk = yk − E[yk] = Ckxk + vk − CkE[xk] = Ckx
C
k + vk. (1.12b)

Thus, xCk follows a similar dynamics as (1.1) and all the state and output quantities are zero-mean.
From the previous case of the derivation, we have

x̂k|k = E[xk] + x̂Ck|k = E[xk] + x̂Ck|k−1 + Lk(y
C
k − ŷCk|k−1)

= Ak−1E[xk−1] +Ak−1x̂
C
k−1|k−1 + Lk(yk − E[yk]− Ckx̂

C
k|k−1)

= Ak−1x̂k−1|k−1 + Lk(yk − E[yk]− Ckx̂k|k−1 + CkE[xk])
= x̂k|k−1 + Lk(yk − ŷk|k−1).

Therefore, the same equations as in the zero-mean case holds.

Case 3: Gaussian random vectors.

When x0, wk and vk are all Gaussian random vectors, then xk, and yk are also Gaussian random
vectors for every k as we consider a linear dynamical system. Following Lemma 3, we note that
for Gaussian random vectors X and Y , Ê[X|Y ] = E[X|Y ], i.e., the LMSE and MMSE estimators
coincide. Therefore, we can replace Ê by E in all the steps in the derivation in Case 1. As a result,
the estimates minimize the mean square error.

The above theorem shows that the Kalman filter minimizes the mean square error among all linear
estimators.

Steady-State Behavior

First we establish steady-state properties of the following system:

xk+1 = Axk + wk.

It is easy to see that the mean x̄k and the covariance Σx
k of the states evolve as

x̄k+1 = Ax̄k,

Σx
k+1 = AΣx

kA
⊤ +Σw.

The following theorem shows the asymptotic properties of the states.

Theorem 2. Let Σw be positive definite. The followings are equivalent:
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� For any Σx
0 , Σ

x
k+1 = AΣx

kA
⊤ + Σw is such that Σx

k converges to Σ⋆ irrespective of choice of
Σx
0 .

� The Lyapunov equation Σ = AΣA⊤ +Σw has a unique solution Σ⋆.

� The matrix A has all eigenvalues within the unit circle.

We now establish steady-state properties of the estimation error under Kalman filter for the time-
invariant system. First, we write the Kalman filter expressions in compact form as:

Lk = Σk|k−1C
T
[
CΣk|k−1C

T +Σv

]−1
,

x̂k+1|k = Ax̂k|k = Ax̂k|k−1 +ALk(yk − ŷk|k−1)

= (A−ALkC)x̂k|k−1 +ALkyk,

Σk+1|k = AΣk|kA
⊤ +Σw

= A(Σk|k−1 − Σk|k−1C
T
[
CΣk|k−1C

T +Σv

]−1
CΣk|k−1)A

⊤ +Σw

= AΣk|k−1A
⊤ −AΣk|k−1C

T
[
CΣk|k−1C

T +Σv

]−1
CΣk|k−1A

⊤ +Σw.

The following theorem shows the asymptotic properties of the error covariance.

Theorem 3. Let Σw be positive semidefinite, Σv be positive definite, (A,C) be detectable and
(A,Σw) be stabilizable. The followings are equivalent:

� The equation
Σ = AΣA⊤ −AΣCT

[
CΣCT +Σv

]−1
CΣA⊤ +Σw

has a unique solution Σ⋆ with Σ⋆ being positive definite.

� For any Σx
0 , under the Kalman filter update equation, Σk+1|k converges to Σ⋆ irrespective of

choice of Σ0.

� The matrix A−AL⋆C has all eigenvalues within the unit circle where

L⋆ = Σ⋆CT
[
CΣ⋆CT +Σv

]−1
.

The matrix L⋆ is called steady-state Kalman gain.

References

Bruce Hajek. Random Processes for Engineers. Cambridge University Press, 2015.


