EE60039 - Autumn Semester 2023-24

Exercise 5: Probability and Random Processes for Signals and Systems

Prof. Ashish Ranjan Hota
Department of Electrical Engineering, IIT Kharagpur

Q 5.1: Estimation Task

Let X be a random variable with Exponential distribution with parameter Λ, and Λ itself is a discrete random variable with $\mathbb{P}(\Lambda=1)=\mathbb{P}(\Lambda=2)=0.5$. Find $\mathbb{E}[X]$. Suppose you observe that $X=1$. Find the maximum likelihood and maximum a-posteriori estimates of Λ.
Recall: the density of an exponential random variable X with parameter Λ is $f_{X}(x)=\Lambda e^{-\Lambda x}, x \geq$ 0 .

Q 5.2: ML Estimation Task

Suppose $\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{x}_{N}$ be N i.i.d. realizations of a random variable with density given by

$$
f(x, \theta)= \begin{cases}\theta x^{\theta-1}, & x \in(0,1) \\ 0, & \text { otherwise }\end{cases}
$$

Find the maximum likelihood estimator of θ.

Q 5.3: Simple Estimation Task

Let X and Y be a random variables with joint pdf:

$$
f_{X, Y}(x, y)= \begin{cases}x+y, & 0 \leq x \leq 1,0 \leq y \leq 1, \\ 0, & \text { otherwise. }\end{cases}
$$

1. Find the MAP estimator of X given $Y=y$.
2. Find the ML estimator of X given $Y=y$.
3. Find the MMSE estimator of X given $Y=y$.
4. Find the LMSE estimator of X given $Y=y$.

Q 5.4: Another Simple Estimation Task

Let X be a random variable (r.v.) that denotes the temperature of a room. X is a discrete r.v. that can takes values in the finite set $\{30,32,34\}$ where the value corresponds to the temperature in degree Celsius. Let Y be a random variable that indicates the comfort level of an occupant. $Y=1$ is the occupant is comfortable, $Y=-1$ otherwise. The following is known about the conditional probability of Y for different values of X.

$$
\begin{array}{ll}
p_{Y \mid X}(Y=1 \mid X=30)=0.8, & p_{Y \mid X}(Y=-1 \mid X=30)=1-0.8=0.2 \\
p_{Y \mid X}(Y=1 \mid X=32)=0.6, & p_{Y \mid X}(Y=-1 \mid X=32)=1-0.6=0.4 \\
p_{Y \mid X}(Y=1 \mid X=34)=0.2, & p_{Y \mid X}(Y=-1 \mid X=34)=1-0.8=0.8
\end{array}
$$

1. Suppose an occupant feels comfortable $(Y=1)$. Then, what the maximum likelihood estimate of the room temperature X ?

Suppose X has a prior distribution (p.m.f.) given by $p_{X}(X=30)=p_{X}(X=32)=0.5$, and $p_{X}(X=34)=0$. Then,
2. What is the posterior distribution of X if $Y=1$?
3. What is the MAP estimate of X if $Y=1$?
4. What is the MMSE estimate of X if $Y=1$?
5. Repeat the above questions when $Y=-1$.

Q 5.5: Yet Another Simple Estimation Task

Consider a variant of the above problem where the level of comfort Y is a continuous r.v. with conditional distributions are given by

$$
\begin{aligned}
& f_{Y \mid X}(y \mid X=30) \sim U[-1,0] \\
& f_{Y \mid X}(y \mid X=32) \sim U[-0.5,0.5] \\
& f_{Y \mid X}(y \mid X=34) \sim U[0,1]
\end{aligned}
$$

where $U[a, b]$ denotes the uniform distribution between a and b.

1. Suppose we observe that $Y=0.2$. Then, what the maximum likelihood estimate of the room temperature X ?

Suppose X has a prior distribution (p.m.f.) given by $p_{X}(X=30)=p_{X}(X=32)=0.5$, and $p_{X}(X=34)=0$ as before. Then,
2. What is the posterior distribution of X if $Y=0.2$?
3. What is the MAP estimate of X if $Y=0.2$?
4. What is the MMSE estimate of X if $Y=0.2$?
5. Repeat the above questions when the prior distribution of X is given by $p_{X}(X=30)=$ $p_{X}(X=32)=0.4$, and $p_{X}(X=34)=0.2$.

Q 5.6: Mean Square Estimation

Let $Y_{i}=X+V_{i}$, where X is a random variable we want to estimate, Y_{i} is the i-th observation, and V_{i} is a random variable which acts as measurement noise. Let X and V_{i} 's be zero-mean and independent random variables with variance of X being $\sigma_{X}^{2}=1$ and variance of V_{i} be $\sigma_{V}^{2}=1$.
(a) Suppose we make two noisy observations Y_{1} and Y_{2}. Find the linear mean-square estimator for X in terms of Y_{1} and Y_{2}.
(b) (Bonus) Suppose we make N noisy measurements $Y_{1}, Y_{2}, \ldots, Y_{N}$. Find the linear meansquare estimator for X in terms of $Y_{1}, Y_{2}, \ldots, Y_{N}$. Use the fact that $\left(I+a a^{\mathrm{T}}\right)^{-1}=I-$ $\frac{1}{N+1} a a^{\mathrm{T}}$, where I is the identity matrix of dimension N and $a=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]^{\mathrm{T}}$ is the column vector of length N with all entires 1 .

Q 5.7: Linear Mean Square Estimation

Assume that a zero-mean random variable $X=X_{c}+Z$ where Z is uncorrelated with the observation Y. Show that the LMSE of X given Y equals the LMSE of X_{c} given Y. In other words, $\widehat{\mathbb{E}}(X \mid Y)=\widehat{\mathbb{E}}\left(X_{c} \mid Y\right)$. This shows that LMSE does not give us any information about the component Z that is uncorrelated with the observation Y.

Q 5.8: Linear Mean Square Estimation

Let $Y=X+V$, where X and V are independent zero-mean Gaussian random variables with variances σ_{X}^{2} and σ_{V}^{2}, respectively. Show that the LMSE estimator of X^{2} given Y and Y^{2} is

$$
\hat{X}^{2}=\sigma_{X}^{2}+\frac{\sigma_{X}^{4}}{\sigma_{X}^{4}+2 \sigma_{X}^{2} \sigma_{V}^{2}+\sigma_{V}^{4}}\left(Y^{2}-\sigma_{X}^{2}-\sigma_{V}^{2}\right)
$$

Hint: Use the fact that if Z is a zero-mean Gaussian r.v. with variance σ_{Z}^{2}, then $\mathbb{E}\left[Z^{3}\right]=0$ and $\mathbb{E}\left[Z^{4}\right]=3 \sigma_{Z}^{4}$.

Q 5.9: Linear Mean Square Estimation

Let $Y_{1}=\left(X+W_{1}\right)^{2}, Y_{2}=W_{2} X$. Find the LMSE estimator of X in terms of Y_{1} and Y_{2} (treat $Y=\left[\begin{array}{ll}Y_{1} & Y_{2}\end{array}\right]^{\mathrm{T}}$ as a random vector and use the appropriate formula for $\widehat{\mathbb{E}}[X \mid Y]$). Use the following information: $\mathbb{E}\left[W_{1}\right]=0, \mathbb{E}\left[W_{1}^{2}\right]=1, \mathbb{E}\left[W_{2}\right]=2, \mathbb{E}\left[W_{2}^{2}\right]=1, \mathbb{E}[X]=1, \mathbb{E}\left[X^{2}\right]=$ $2, \mathbb{E}\left[X^{3}\right]=3, \mathbb{E}\left[X^{4}\right]=4$.

Q 5.10: Linear Mean Square Estimation

Let $y_{k}=v_{k}+v_{k-1}, k \geq 0$, where $v_{j}, j \geq-1$ is a zero-mean stationary white noise scalar process with unit variance. Show that

$$
\hat{y}_{k+1 \mid k}=\frac{k+1}{k+2}\left(y_{k}-\hat{y}_{k \mid k-1}\right)
$$

where $\hat{y}_{k \mid m}=\widehat{\mathbb{E}}\left[y_{k} \mid Y_{M}\right]$ is the LMSE estimator of y_{k} given $Y_{M}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$.

Q 5.11: Prediction and Interpolation

Consider a series of observations $y(0), y(1), \ldots$ where

$$
y(k)=a_{0} w(k)+a_{1} w(k-1)+\ldots+a_{N} w(k-N),
$$

where $w(-N), w(-N+1), \ldots$ are independent with $\mathbb{E}[w(l)]=0$ and $\mathbb{E}\left[w^{2}(l)\right]=\sigma_{w}$. The coefficients a_{0}, \ldots, a_{N} are known. Solve the following problems.

1. Prediction: Find the LMSE predictor of $y(k+1)$ based on $y(k)$ (based only on $y(k)$, not $y(k-1)$, etc).
2. Interpolation: Find the LMSE predictor of $y(k)$ based (only) on $y(k-1)$ and $y(k+1)$ for $k>1$.

Q 5.12: Mean Square Estimation

Let $s[n]$ be a discrete-time zero-mean wide sense stationary (WSS) signal with auto-covariance function given by

$$
C_{s s}[m]=\left\{\begin{array}{l}
15, \quad \text { for } m=0 \\
-4, \quad \text { for } m=1,-1, \\
5, \quad \text { for } m=2,-2 \\
0, \\
\text { for } \quad m \geq 3
\end{array}\right.
$$

Suppose we observe this signal with a time-delay and with some measurement noise $w[n] . w[n]$ is a zero-mean WSS signal uncorrelated with $s[n]$ and $C_{w w}[m]=3$ if $m=0$ and $C_{w w}[m]=0$ for $m \neq 0$. The received signal is given by

$$
r[n]=s[n-1]+w[n] .
$$

We would like to estimate $\hat{s}[n]$ that minimizes the mean square error (MSE) $\mathbb{E}\left[(s[n]-\hat{s}[n])^{2}\right]$.

1. Find the covariance functions $C_{r s}[m]$ and $C_{r r}[m]$ (in terms of $C_{s s}[m]$ and $C_{w w}[m]$).
2. If the estimator is to be of the form $\hat{s}[n]=a r[n]$, then find the value of a that minimizes the MSE.
3. If the estimator is to be of the form $\hat{s}[n]=a_{0} r[n]+a_{1} r[n-1]$, then find the values of a_{0} and a_{1} that minimizes the MSE.
4. If the estimator is to be of the form $\hat{s}[n]=\frac{1}{2} r\left[n-n_{0}\right]$ with the integer $n_{0} \geq 0$, then find the value of n_{0} that minimizes the MSE.

Q 5.13: Past End-Sem Exam Question

X is a three-dimensional random vector with $E[X]=0$ and autocorrelation matrix R_{X} with elements $r_{i j}=(-0.80)^{|i-j|}$. Use X_{1} and X_{2} to form a linear estimate of $X_{3}: \hat{X}_{3}=a_{1} X_{1}+a_{2} X_{2}$, i.e., determine a_{1} and a_{2} that minimizes mean-square error.

