EE60039 - Autumn Semester 2023-24

Exercise 4: Probability and Random Processes for Signals and Systems

Prof. Ashish Ranjan Hota
Department of Electrical Engineering, IIT Kharagpur

Q 4.1: Markov Chain: Classification of States and Limiting Distribution

For the following transition probability matrices with state space $S \subseteq\{1,2,3,4,5,6\}$, determine

- all the communicating classes
- whether each communicating class is recurrent or transient
- the period of each communicating class
- whether a stationary distribution exists and is unique
- the stationary distribution when it is unique
- $\lim _{n \rightarrow \infty} P^{n}$ when it exists
- numerically simulate a trajectory of the Markov chain for initial state 1 and find the proportion of time it spends in each state from $n=0$ to 50 .
- numerically simulate 20 trajectories of the Markov chain for initial state 1 and find the proportion of time it is at each state when $n=5$. Compare this with the first row of P^{5}.

1. $P_{1}=\left[\begin{array}{cccccc}\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
2. $P_{2}=\left[\begin{array}{ccccc}0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0\end{array}\right]$
graph structure?
3. $P_{3}=\left[\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right]$ for some $a, b \in(0,1)$.
4. $P_{4}=\left[\begin{array}{ccccc}\frac{1}{5} & \frac{4}{5} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3}\end{array}\right]$
5. $P_{5}=\left[\begin{array}{ccccc}\frac{1}{5} & \frac{4}{5} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$
6. $P_{6}=\left[\begin{array}{ccccc}\frac{1}{5} & \frac{4}{5} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$

Q 4.2: Markov Chain

Consider the integers $1,2,3,4$ to be marked on the real line. Let X_{n} be a Markov chain that moves to the right with probability $\frac{2}{3}$ and to the left with probability $\frac{1}{3}$, subject to the rule that if X_{n} tries to go to the left from 1 or to the right from 4 it stays put. Find the transition probability matrix for the chain, and the limiting amount of time the chain spends at each integer.

Q 4.3: Markov Chain

Show that if P is the transition matrix of an irreducible chain with finitely many states, then $Q:=\frac{1}{2}(I+P)$ is the transition matrix of an irreducible and aperiodic chain where I is the identity matrix. Show that P and Q have the same stationary distributions. Discuss, physically, how the two chains are related.

Q 4.4: Markov Chain

Consider i.i.d. coin tosses with probability of head being p. Let $X_{i}=1$ if the i-th coin toss is head and $X_{i}=0$ otherwise. Let $Y_{0}=0$ and $Y_{n}=\sum_{i=0}^{n-1} X_{i}$. Is $\left\{Y_{n}\right\}_{n=\{1,2, \ldots, N\}}$ a Markov Chain? Find the state space, transition probability matrix and the underlying graph when $N=6$. Determine the recurrent and transient states.

