Exercise 1: Probability and Random Processes for Signals and Systems

Prof. Ashish Ranjan Hota
Department of Electrical Engineering, IIT Kharagpur

Q 1.1: Sigma Algebra

1. Let \mathcal{F} be a σ-algebra on Ω. Let $A, B \in \mathcal{F}$. Then show that $A \backslash B \in \mathcal{F}$. (Recall that $A \backslash B:=\{x \in \Omega \mid x \in A$ and $x \notin B\}$.
2. Let Ω be a set of outcomes. Let \mathcal{F}_{1} and \mathcal{F}_{2} be σ-algebras defined on Ω. Then show that $\mathcal{F}_{1} \cap \mathcal{F}_{2}$ is also a σ-algebra on Ω. Is $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ always a σ-algebra? If not, then give an example where it $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is not a σ-algebra.
3. Let Ω be a set. Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ be a countable collection of σ-algebras defined on Ω. Then show that $\bigcap_{i=1}^{\infty} \mathcal{F}_{i}$ is also a σ-algebra.

Q 1.2: Probability Measure

Let $B \in \mathcal{F}$ be an event with $\mathbb{P}(B) \neq 0$. Show that the conditional probability $\mathbb{P}(\cdot \mid B): \mathcal{F} \rightarrow[0,1]$ is a probability measure (i.e., it satisfied all three axioms).

Q 1.3: Borel Sigma Algebra

The Borel σ-algebra on the set of real numbers \mathbb{R} is defined as $\mathcal{B}(\mathbb{R}):=\sigma\{(-\infty, x] \mid x \in \mathbb{R}\}$. In other words, it is the σ-algebra generated by all sets of the form $(-\infty, x], x \in \mathbb{R}$. Then show that for any $a, b \in \mathbb{R}$, the intervals $(a, b),[a, b),(a, b]$ and $[a, b]$ lie in $\mathcal{B}(\mathbb{R})$, i.e., these intervals define valid events. Furthermore, the singleton $\{a\}$ is also an event.

Q 1.4: Conditional Probability

Let A, B, and C be events with $\mathbb{P}>0$. Show the following.

1. If $B \subset A$, then $\mathbb{P}(B \mid A) \geq \mathbb{P}(B)$.
2. If $A \subset B$, then $\mathbb{P}(B \mid A)=1$.
3. If $B \cap C=\phi$, then $\mathbb{P}(B \cup C \mid A)=\mathbb{P}(B \mid A)+\mathbb{P}(C \mid A)$.

Q 1.5: Conditional Probability

Consider a disease that affects one out of every 1000 individuals. There is a test that detects the disease with 99% accuracy, that is, it classifies a healthy individual as having the disease with 1% chance, and a sick individual as healthy with 1% chance. Then,

1. What is the probability that a randomly chosen individual will test positive by the test?
2. Given that a person tests positive, what is the probability that he or she has the disease?

Q 1.6: Conditional Probability

Consider two events A and B with $\mathbb{P}(A)>0$ and $\mathbb{P}(B)>0$. Event B is said to be aligned with event A if $\mathbb{P}(A \mid B)>\mathbb{P}(A)$, that is, the occurrence of B implies that the occurrence of A is more likely. If B is aligned with A, then

1. is A aligned with B ?
2. is B^{c} not aligned with A, that is, is it true that $\mathbb{P}\left(A \mid B^{c}\right)<\mathbb{P}(A)$?

3 . is B^{c} aligned or not aligned with A^{c} ?

Q 1.7: Distribution Function

Let $\Omega=[0,1]$ and the σ-algebra $\mathcal{F}=\sigma\{[a, b]: 0 \leq a \leq b \leq 1\}$ which is the smallest σ-algebra generated by all intervals. Let the probability measure be defined as $\mathbb{P}([a, b])=\mathbb{P}([a, b))=$ $\mathbb{P}((a, b])=b-a$. We now define a random variable $X: \Omega \rightarrow \mathbb{R}$ such that

$$
X(\omega)= \begin{cases}\omega, & \omega \in[0,0.5] \\ 1, & \omega \in(0.5,0.75) \\ 2, & \omega=0.75 \\ 4 \omega, & \omega \in(0.75,1]\end{cases}
$$

Compute and sketch the C.D.F. of X.

Q 1.8: Continuous Random Variable

Let X be a continuous random variable with density $p_{X}(x)=C\left(x-x^{2}\right)$ where $x \in[a, b]$ and $C>0$. What are the possible values of a and b ? What is the value of C ? Compute the expectation and variance of X.

Q 1.9: Poisson Distribution

Let X be a Poisson random variable with parameter $\lambda>0$, that is, X takes integer values $0,1,2, \ldots$, with $\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$. Compute the mean and variance of X. Find the characteristic function of X.

Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be independent Poisson random variables with parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, respectively. Then show that the random variable $Y=\sum_{i=1}^{n} X_{i}$ is a Poisson random variable. (Hint: Try to compute the characteristic function of Y.)

Q 1.10: Collection of Random Variables

Let $\left\{X_{i}\right\}_{\{i=1,2, \ldots\}}$ be a sequence of independent discrete random variables. Each $X_{i} \in\{0,1\}$ with p.m.f. given by

$$
\mathbb{P}\left(X_{i}=1\right)=c^{i}, \quad \mathbb{P}\left(X_{i}=0\right)=1-c^{i}
$$

where c is a constant.
(a) What is the range of possible values of c ?
(b) Let $Y_{k}=\sum_{i=1}^{k} X_{i}$. Find $\mathbb{E}\left[Y_{k}\right]$ and $\lim _{k \rightarrow \infty} \mathbb{E}\left[Y_{k}\right]$.
(c) What is the variance of Y_{2} ?
(d) Let $\mathbb{E}\left[Y_{k}^{2}\right]=\rho_{k}$. Let $m>k$. Find $\mathbb{E}\left[Y_{k} Y_{m}\right]$ in terms of ρ_{k} and c.
(e) Find the characteristic function of Y_{k}.

Q 1.11: Expectation of Non-negative Random Variables

Show that the expectation of a discrete nonnegative random variable X is $\mathbb{E}[X]=\sum_{x=0}^{\infty} \mathbb{P}(X>$ $x)$. Similarly, $\mathbb{E}\left[X^{m}\right]=\sum_{x=0}^{\infty}\left((x+1)^{m}-x^{m}\right) \mathbb{P}(X>x)$ where m is an integer.

Q 1.12: Expectation and Moments

Let X and Y be two random variables with zero mean, and $\operatorname{var}(X)=64, \operatorname{var}(X+Y)=68$ and $\operatorname{var}(X-Y)=132$. Find the correlation $\mathbb{E}[X Y]$.

Q 1.13: Expectation and Moments

Let X_{0} and W_{0}, W_{1}, \ldots be random variables that are uncorrelated. Let $\mathbb{E}\left[X_{0}\right]=\mu, \mathbb{E}\left[W_{i}\right]=0$ and $\mathbb{E}\left[W_{i}^{2}\right]=\sigma_{w}$ for all $i \in\{0,1,2, \ldots\}$. Let

$$
X_{k+1}=a X_{k}+W_{k}, \quad k \in\{1,2, \ldots\}
$$

Determine $\mathbb{E}\left[X_{n}\right], \mathbb{E}\left[X_{n}^{2}\right]$ and $\mathbb{E}\left[X_{n} X_{m}\right]$ in terms of μ, σ_{w}, a, n and m.

Q 1.14: Expectation and Moments

Suppose two random variables X and Y have joint pdf

$$
f_{X Y}(x, y)= \begin{cases}4 x y, & x \in[0,1], y \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

Find $\mathbb{E}(X), \operatorname{var}(X), \mathbb{E}(Y), \operatorname{var}(Y)$ and $\operatorname{cov}(X, Y)$.

Q 1.15: Expectation and Moments

Let X and Y be independent random variables each uniformly distributed over the interval $[0,1]$. Let $Z=X Y$ (i.e., $Z(\omega)=X(\omega) \times Y(\omega)$ for all $\omega \in \Omega$). Calculate the mean, second moment and variance of Z.

Q 1.16: Expectation and Moments

Two random variables X and Y have mean zero and variances $\sigma_{X}^{2}=16$ and $\sigma_{Y}^{2}=36$. Find the variance of $X+Y$ if the correlation coefficient between X and Y is $0,0.5$ and -0.5 , respectively.

