
Module C: Algorithms for Optimization

Recall that an optimization problem in standard form is given by

min
x2Rn

f(x)

s.t. gi(x)  0, i 2 [m] := {1, 2, . . . ,m},

hj(x) = 0, j 2 [p].

Most algorithms generate a sequence x0, x1, x2, . . . by exploiting local information
collected on the path.

Zeroth Order: Only f(xt), gi(xt), hj(xt) available.

First Order: Gradients rf(xt),rgi(xt),rhj(xt) are used. Heavily used in
ML.

Second Order: Hessian information is used. Eg: Newton’s Method, etc.

Distributed Algorithms

Stochastic/Randomized Algorithms

1

Measure of progress

Let x? be the optimal solution. The iterative algorithms continue till any of the
following error metrics is su�ciently small.

errt := ||xt � x?||

errt := f(xt)� f(x?)

A solution x̄ is ✏-optimal when

f(x̄)  f(x?) + ✏.

We often run the algorithm till errt is smaller than a su�ciently small ✏ > 0.

In presence of constaints, we define

errt := max(f(xt)�f(x?), g1(xt), g2(xt), . . . , gm(xt), |h1(xt)|, . . . , |hp(xt)|).

2

First order methods: Gradient descent

Consider the unconstrained optimization problem: minx2Rn f(x)

Gradient Descent (GD): xt+1 = xt � ⌘trf(xt), t � 0 starting from an
initial guess x0 2 Rn.

The stationarity condition satisfies x⇤ = x⇤ � ⌘trf(x⇤) =) rf(x⇤) = 0.

Convergence rate depends on choice of step size ⌘t and characteristic of the
function.

Bounded Gradient: ||rf(x)||  G for all x 2 Rn.

Smooth: A di↵erentiable convex f is �-smooth if for any x, y, we have

f(y)  f(x) + hrf(x), y � xi+
�

2
||y � x||2.

We can obtain a quadratic upper bound on the function from local informa-
tion.

Strongly Convex: A di↵erentiable convex f is ↵-strongly convex if for any
x, y, we have

f(y) � f(x) + hrf(x), y � xi+
↵

2
||y � x||2.

We can obtain a quadratic lower bound on the function from local informa-
tion.

If f is twice di↵erentiable, then

– f is �-smooth if and only if r2f(x) � �I or �max(r2f(x))  � for all
x 2 Rn.

– f is ↵-strongly convex if and only if r2f(x) ⌫ ↵I or �min(r2f(x)) � ↵
for all x 2 Rn.

Determine � and ↵ for f(x) = ||Ax� b||22.

3

Gradient Descent with Bounded Gradient Assumption

Let x0, x1, . . . , xT�1 be the iterates generated by the GD algorithm.

For any t, we define bxt := 1
t

Pt�1
i=0 xi. Let x

? be the optimal solution.

Theorem 1: Convergence of Gradient Descent

Let the function f satisfy the ||rf(x)||  G for all x 2 Rn. Let ||x0�x?|| 
D. Then, for the choice of step size ⌘t =

D
G
p
T
, we have

f(bxT)� f(x?) 
DG
p
T
.

To find an ✏ optimal solution, choose T �
�
DG
✏

�2
and ⌘ = ✏

G2 .

Possible Limitation: Need to know G and D.

Proof: Define the following (potential) function:

�t :=
1

2⌘
||xt � x?||2.

We show that �t is decreasing in t. We compute �t+1 � �t as:

4

Proof

5

Gradient Descent with Smoothness Assumption

Recall that a di↵erentiable convex f is �-smooth if for any x, y, we have

f(y)  f(x) + hrf(x), y � xi+
�

2
||y � x||2.

Theorem 2

Let the function f be �-smooth. Let ||x0� x?||  D. Then, for the choice
of step size ⌘t =

1
� , we have

f(xT)� f(x?) 
�||x0 � x?||2

2T
.

Proof: Define the following (potential) function:

�t := t[f(xt)� f(x?)] +
�

2
||xt � x?||2.

We show that �t is decreasing in t. We compute �t+1 � �t as:

7

Proof

8

Gradient Descent with Smoothness and Strong Convexity

Recall that a di↵erentiable convex f is ↵-strongly convex if for any x, y, we have

f(y) � f(x) + hrf(x), y � xi+
↵

2
||y � x||2.

Theorem 3

Let the function f be �-smooth and ↵-strongly convex with ↵  �. Define
condition number  := �

↵ . Then, for the choice of step size ⌘t =
1
� , we have

f(xT)� f(x?)  e�
T
 (f(x0)� f(x?)).

Note: To obtain ✏-optimal solution, choose T = O
�
log(1✏)

�
.

Proof: Define the following (potential) function:

�t := (1 + �)t[f(xt)� f(x?)], where � =
1

� 1
=

↵

� � ↵
.

We need to show that �t+1  �t.

9

Proof

10

Summary of gradient descent convergence rates

Consider the unconstrained optimization problem: minx2Rn f(x)

Gradient Descent (GD): xt+1 = xt � ⌘trf(xt), t � 0 starting from an
initial guess x0 2 Rn.

Theorem 4: GD Convergence rates

Let ||x0 � x?||  D.

If ||rf(x)||  G for all x 2 Rn, then with ⌘t =
D

G
p
T
, f(bxT)�f(x?) 

DG
p
T
.

If f is �-smooth, for ⌘t =
1
� , f(xT)� f(x?)  �||x0�x?

||
2

2T .

If f is �-smooth and ↵-strongly convex, for ⌘t =
1
� , f(xT)� f(x?) 

e�
T
 (f(x0)� f(x?)) where  := �

↵ is the condition number.

12

Gradient descent: Constrained Case

Consider the unconstrained optimization problem: minx2X f(x) where X ✓ Rn

is a convex feasibility set.

Projected Gradient Descent (PGD): xt+1 = ⇧X [xt � ⌘trf(xt)], t � 0
starting from an initial guess x0 2 Rn where ⇧X(y) is the projection of y
on the set X.

Theorem 5

Let ||x0 � x?||  D.

If ||rf(x)||  G for all x 2 Rn, then with ⌘t =
D

G
p
T
, f(bxT)�f(x?) 

DG
p
T
.

If f is �-smooth, for ⌘t =
1
� , f(xT)� f(x?)  �||x0�x?

||
2

2T .

If f is �-smooth and ↵-strongly convex, for ⌘t =
1
� , f(xT)� f(x?) 

e�
T
 (f(0)� f(x?)) where  := �

↵ is the condition number.

Note: Convergence rates remain unchanged.

Note: Projection itself is another optimization problem!

Non-expansive Property which preserves the convergence rates:

||⇧X(y1)� ⇧X(y2)||  ||y1 � y2||.

13

When is Projection easy to find?

Note that ⇧X(y) = argminx2X ||y � x||2. Find closed form expression of the
projection for the following cases.

X = {x 2 Rn
|||x||2  r}.

X = {x 2 Rn
|xl  x  xu}.

X = {x 2 Rn
|Ax = b}.

X = {x 2 Rn
|x � 0,

Pn
i=1 xi  1}.

14

Accelerated Gradient Descent

Start with x0 = y0 = z0 2 Rn. At every time-step t,

yt+1 = xt �
1

�
rf(xt)

zt+1 = zt � ⌘trf(xt)

xt+1 = (1� ⌧t+1)yt+1 + ⌧t+1zt+1

Theorem 6

Let f be �-smooth, ⌘t =
t+1
2� and ⌧t =

2
t+2 . Then, we have

f(yT)� f(x?) 
2�||x0 � x⇤||2

T (T + 1)
.

Proof: Define �t = t(t + 1)(f(yt) � f(x⇤)) + 2�||zt � x⇤||2 and show that
�t+1  �t.

15

Accelerated Gradient Descent 2

Start with x0 = y0. At every state t,

yt+1 = xt �
1

�
rf(xt)

xt+1 = (1 +

p
� 1

p
+ 1

)yt+1 �

p
� 1

p
+ 1

yt

Theorem 7

Let f be �-smooth, ↵-strongly convex with  = �
↵ and let � = 1

p
�1 . Then,

we have

f(yT)� f(x?)  (1 + �)�T
⇣↵ + �

2
||x0 � x⇤||2

⌘
.

Improvement upon the previous rate where we had � = 1
�1 .

16

Further details

AGD invented by Nesterov in a series of papers in the 80s and early 2000s,
later popularized by ML researchers

The convergence rates in the previous two theorems are the best possible
ones.

Book by Nesterov:
https://link.springer.com/book/10.1007/978-1-4419-8853-9

https://francisbach.com/continuized-acceleration/

https://www.nowpublishers.com/article/Details/OPT-036

17

https://link.springer.com/book/10.1007/978-1-4419-8853-9
https://francisbach.com/continuized-acceleration/
https://www.nowpublishers.com/article/Details/OPT-036

Finite Sum Setting

A large number of problems that arise in (supervised) ML can be written as

min
x2Rn

f(x) :=
1

N

NX

i=1

fi(x) =
1

N

NX

i=1

l(x, ⇠i).

Example: Regression/Least Squares, SVM, NN Training

The above problem can also be viewed as sample average approximation
of a stochastic optimization problem

f(x) = E[l(x, ⇠)]

involving uncertain parameter or random variable ⇠.

Challenge: N (number of samples) or n (dimension of decision variable)
both may be large. Samples may be located in di↵erent servers.

18

Gradient Descent vs. Stochastic Gradient Descent

Gradient Descent (GD) xt+1 = xt � ⌘trf(xt) = xt �

⌘t
1
N

PN
i=1rfi(xt), t � 0 starting from an initial guess x0 2 Rn.

Each step requires N gradient computations.

Stochastic Gradient Descent (SGD) At every time step t,

Pick an index (sample) it uniformly at random from the set
{1, 2, . . . , N}.

Set xt+1 = xt � ⌘trfit(xt).

Each step requires 1 gradient computation, which is a noisy version of the true
gradient of the cost function at xt.

19

Key result for SGD convergence

Under the following assumptions

Convexity: each fi is convex,

Bounded variance: E[||rfit(x)||
2]  �2 for some � for all x,

Unbiased gradient estimate: E[rfit(x)] = rf(x) for all x,

the solutions generated by SGD algorithm satisfies

T�1X

t=0

⌘t[E[f(xt)]� f(x?)] 
1

2
||x0 � x?||2 +

�2

2

T�1X

t=0

⌘2t

=) E[f(bxT)]� f(x?) 
||x0 � x?||2

2
PT�1

t=0 ⌘t
+

�2

2

PT�1
t=0 ⌘2tPT�1
t=0 ⌘t

,

where bxT = 1PT�1
t=0 ⌘t

PT�1
t=0 ⌘txt.

20

Proof Continues

21

Choice of stepsize

Constant step-size will not give us convergence. For convergence, we need to
choose step sizes that are diminishing and square-summable, i.e.,

lim
T!1

T�1X

t=0

⌘t = 1, lim
T!1

T�1X

t=0

⌘2t < 1.

If ⌘t := 1
c
p
t+1

, then E[f(bxT)] � f(x?)  O

⇣
log T
p
T

⌘
. This rate does not

improve when the function is smooth.

When the function is smooth, then for ⌘t := ⌘ chosen appropriately, then

R.H.S. will be of order O
⇣

1
⌘T

⌘
+O(⌘).

23

Analysis for Smooth and Strongly Convex Functions

When the function f is �-smooth and ↵-strongly convex, we have the following
guarantees for SGD after T iterations.

If ⌘t :=
1
ct for a suitable constant c, then error bound is O

⇣
log T
T

⌘
. Can be

improved to O
�
1
T

�
.

If ⌘t := ⌘, then error bound

E[||xT � x?||2]  (1� ⌘↵)T ||x0 � x?||2 +
⌘��2

2↵
.

With constant step-size ⌘ < 1
↵ , convergence is quick to a neighborhood of the

optimal solution.

24

Extension: Mini-Batch

25

Extension: Stochastic Averaging

26

Further Reading

SAG: Schmidt, Mark, Nicolas Le Roux, and Francis Bach. “Minimizing finite
sums with the stochastic average gradient.” Mathematical Programming
162 (2017): 83-112.

SAGA: Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien. “SAGA:
A fast incremental gradient method with support for non-strongly convex
composite objectives.” Advances in neural information processing systems
27 (2014).

Recent Review: Gower, Robert M., Mark Schmidt, Francis Bach, and Peter
Richtárik. “Variance-reduced methods for machine learning.” Proceedings
of the IEEE 108, no. 11 (2020): 1968-1983.

Allen-Zhu, Zeyuan. “Katyusha: The First Direct Acceleration of Stochastic
Gradient Methods.” Journal of Machine Learning Research 18 (2018): 1-51.

Varre, Aditya, and Nicolas Flammarion. “Accelerated SGD for non-strongly-
convex least squares.” In Conference on Learning Theory, pp. 2062-2126.
PMLR, 2022.

Hanzely, Filip, Konstantin Mishchenko, and Peter Richtárik. ”SEGA: Vari-
ance reduction via gradient sketching.” Advances in Neural Information Pro-
cessing Systems 31 (2018).

27

Extension: Adaptive Step-sizes

AdaGrad Duchi, John, Elad Hazan, and Yoram Singer. ”Adaptive subgra-
dient methods for online learning and stochastic optimization.” Journal of
machine learning research 12, no. 7 (2011).

Adam Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980 (2014).

28

