

Module C: Algorithms for Optimization

Recall that an optimization problem in standard form is given by

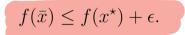
$$\begin{split} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.t.} & g_i(x) \leq 0, i \in [m] := \{1, 2, \dots, m\}, \\ & h_j(x) = 0, j \in [p]. \end{split}$$

Most algorithms generate a sequence x_0, x_1, x_2, \ldots by exploiting local information collected on the path. $\chi_{t} \rightarrow \chi_{t}$

- Zeroth Order: Only $f(x_t), g_i(x_t), h_j(x_t)$ available.
- First Order: Gradients $\nabla f(x_t), \nabla g_i(x_t), \nabla h_j(x_t)$ are used. Heavily used in ML.
- Second Order: Hessian information is used. Eg: Newton's Method, etc.
- Distributed Algorithms
- Stochastic/Randomized Algorithms

Let x^* be the optimal solution. The iterative algorithms continue till any of the following error metrics is sufficiently small.

- $\operatorname{err}_t := ||x_t x^\star||$
- $\operatorname{err}_t := f(x_t) f(x^\star)$
- A solution \bar{x} is ϵ -optimal when



We often run the algorithm till err_t is smaller than a sufficiently small $\epsilon > 0$.

• In presence of constaints, we define

$$\mathtt{err}_t := \max(f(x_t) - f(x^\star), g_1(x_t), g_2(x_t), \dots, g_m(x_t), |h_1(x_t)|, \dots, |h_p(x_t)|).$$

Consider the unconstrained optimization problem: $\min_{x \in \mathbb{R}^n} f(x)$

Gradient Descent (GD): $x_{t+1} = x_t - \eta_t \nabla f(x_t), \quad t \ge 0$ starting from an initial guess $x_0 \in \mathbb{R}^n$. $\chi_1 = \chi_0 - \eta_1 \nabla f(\chi_0), \quad \chi_2 = \chi_1 - \eta_1 \nabla f(\chi_1), \quad - - \eta_1 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1), \quad - - \eta_1 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1), \quad - - \eta_1 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1), \quad - - \eta_1 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1), \quad - - \eta_1 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1), \quad - - \eta_1 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1), \quad - - \eta_1 \nabla f(\chi_1), \quad - - \eta_2 \nabla f(\chi_1),$

The stationarity condition satisfies $x^* = x^* - \eta_t \nabla f(x^*) \implies \nabla f(x^*) = 0.$

Convergence rate depends on choice of step size η_t and characteristic of the function.

- Bounded Gradient: $||\nabla f(x)|| \leq G$ for all $x \in \mathbb{R}^n$.
- Smooth: A differentiable convex f is β -smooth if for any x, y, we have

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\beta}{2} ||y - x||^2 = \Im(y) : \operatorname{quadratic}(y) = \operatorname$$

We can obtain a quadratic upper bound on the function from local information.

• Strongly Convex: A differentiable convex f is α -strongly convex if for any x, y, we have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2.$$

We can obtain a quadratic lower bound on the function from local information.

- If f is twice differentiable, then
 - f is β -smooth if and only if $\nabla^2 f(x) \preceq \beta I$ or $\lambda_{\max}(\nabla^2 f(x)) \leq \beta$ for all $x \in \mathbb{R}^n$.

- f is α -strongly convex if and only if $\nabla^2 f(x) \succeq \alpha I$ or $\lambda_{\min}(\nabla^2 f(x)) \ge \alpha$ for all $x \in \mathbb{R}^n$.

3

• Determine β and α for $f(x) = ||Ax - b||_2^2$.

Gradient Descent with Bounded Gradient Assumption

Let $x_0, x_1, \ldots, x_{T-1}$ be the iterates generated by the GD algorithm. For any t, we define $\hat{x}_t := \frac{1}{t} \sum_{i=0}^{t-1} x_i$. Let x^* be the optimal solution.

Theorem 1: Convergence of Gradient Descent

Let the function f satisfy the $||\nabla f(x)|| \leq G$ for all $x \in \mathbb{R}^n$. Let $||x_0 - x^*|| \leq D$. Then, for the choice of step size $\eta_t = \frac{D}{G\sqrt{T}}$, we have $f(\widehat{x}_T) - f(x^*) \le \frac{DG}{\sqrt{T}} = \underbrace{\mathcal{E}}_{-} \xrightarrow{\rightarrow} DG = \sqrt{\mathcal{T}} \underbrace{\mathcal{E}}_{-} \xrightarrow{\rightarrow} \mathcal{T} = \underbrace{\mathcal{D}}_{-} \underbrace{\mathcal{D}}_{-} \underbrace{\mathcal{D}}_{-} \xrightarrow{\rightarrow} \mathcal{T} = \underbrace{\mathcal{D}}_{-} \underbrace{\mathcal{D}}_{-}$

To find an ϵ optimal solution, choose $T \ge \left(\frac{DG}{\epsilon}\right)^2$ and $\eta = \frac{\epsilon}{G^2}$. Possible Limitation: Need to know G and D. $X_{t+1} = X_t - \eta \nabla f(x_t)$

Proof: Define the following (potential) function:

$$\Phi_t := \frac{1}{2\eta} ||x_t - x^\star||^2 \qquad \Rightarrow \Phi_0 = \frac{D^2}{2\eta}$$

We show that Φ_t is decreasing in t. We compute $\Phi_{t+1} - \Phi_t$ as:

$$\begin{split} \Phi_{tm1} - \Phi_{t} &= \frac{1}{2\eta} \left[\| x_{t+1} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] = \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} + x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} , x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} , x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} , x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} , x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} , x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} , x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} , x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t+1} - x_{t} + x_{t} - x^{*} \right\rangle + \| x_{t} - x^{*} \|_{2}^{2} - \| x_{t} - x^{*} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t} \|_{2}^{2} + 2 \left\langle x_{t} \|_{2}^{2} + x_{t} + x_{t} - x^{*} \right\rangle + \| x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} \right] \\ &= \frac{1}{2\eta} \left[\| x_{t+1} - x_{t} \|_{2}^{2} + 2 \left\langle x_{t} \|_{2}^{2} + x_{t} \|_{2}^{2} + x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} + x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} + x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} + x_{t} \|_{2}^{2} + \| x_{t} \|_{2}^{2} + x_{t} \|_{2}^{2} +$$

Proof

Thus, we obtain

$$\begin{aligned}
\varphi_{tt} - \varphi_{t} \leq \frac{\eta}{2}G^{2} - \left[f(\pi_{t}) - f(n^{4})\right] \\
\Rightarrow f(\pi_{t}) - \frac{f(n^{4})}{2} + \frac{\varphi_{t+1}}{2}\varphi_{t} \leq \frac{\eta}{2}G^{2} \\
adding the above equation from to the above equation from the above equation from the equation from t$$

Recall that a differentiable convex
$$f$$
 is β -smooth if for any x, y , we have

$$\begin{aligned} y &\in \mathbb{X}_{t+1} \mid x &\in \mathbb{X}_{t} \\ f(y) &\leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\beta}{2} ||y - x||^{2}. \end{aligned}$$
Theorem 2
Let the function f be β -smooth. Let $||x_{0} - x^{*}|| \leq D$. Then, for the choice of step size $\eta_{t} = \frac{1}{\beta}$, we have

$$\begin{aligned} f(x_{1}) - f(x^{*}) &\leq \frac{\beta(x_{0} - x^{*})|^{2}}{2T} = \frac{\beta y^{2}}{2T} \end{aligned}$$
Proof: Define the following (potential) function:

$$\begin{aligned} \frac{\Phi_{t}}{2} := (ff(x_{t}) - f(x^{*})] + \frac{\beta}{2} ||x_{t} - x^{*}||^{2}. \end{aligned}$$
We show that Φ_{t} is decreasing in t . We compute $\Phi_{t+1} - \Phi_{t}$ as:

$$\begin{aligned} p_{t} & \text{we can show that} \qquad (\Phi_{T} \leq \Phi_{O}) \\ \Rightarrow (T) f(x_{T}) - f(x^{*}) f(x^{*}) f(x^{*}) f(x_{T}) + (\Omega n St) \leq \frac{\beta}{2} ||x_{0} - x^{*}||^{2} \\ \Rightarrow \int f(x_{T}) - f(x^{*}) f(x^{*}) f(x^{*}) f(x_{T}) - f(x^{*}) f(x^{*}) \\ \Rightarrow hav mat \qquad \Phi_{t+1} \leq \Phi_{t} \quad \forall t \\ Show that \qquad \Phi_{t+1} \leq \Phi_{t} \quad \forall t \\ f(x_{T}) - f(x^{*}) f(x_{T}) - f(x^{*}) f(x_{T}) - x^{*} ||^{2} \\ - t [f(x_{t}) - f(x^{*})] - \frac{\beta}{2} ||x_{t} - x^{*}||^{2} \end{aligned}$$

$$= \frac{(t+1)}{[f(x_{t+1}) - f(x_{t})] - (t+1)} \frac{[f(x_{t}) - f(x_{t})] + f(x_{t}) - f(x_{t})}{+ \frac{p}{2}} \frac{[||x_{t+1} - x^{+}||^{2} - ||x_{t} - x^{+}||^{2}]}{Proof}$$

$$\leq (t+1) \frac{[f(x_{t+1}) - f(x_{t})] + [f(x_{t}) - f(x^{+})]}{+ \frac{1}{2p}} \frac{(following the earlier proof)}{Proof}$$

$$= (t+1) \frac{[f(x_{t+1}) - f(x_{t})] + \frac{1}{2p}}{[||\nabla f(x_{t})||_{2}^{2}} - \frac{[f(x_{t}) - f(x^{+})]}{Proof} \frac{earlier}{Proof}$$

$$\leq (t+1) \frac{[\nabla f(x_{t}), x_{t+1} - x_{t}] + \frac{1}{2p}}{[||\nabla f(x_{t})||_{2}^{2}} + \frac{1}{2p} \frac{[|\nabla f(x_{t})||_{2}^{2}}{Proof} \frac{t+1}{2p} \frac{[|\nabla f(x_{t})$$

 $= -\frac{1}{2\beta} \|\nabla f(X_{t})\|_{2}^{2} \leq 0.$

$$\begin{aligned} f(x) = \frac{1}{k^{2}} \frac{1}{100x_{z}^{2}} & \text{Lecture } 28 : 20^{th} \operatorname{March} & x_{0} = (100,100) \\ y_{1}^{2} (x_{0}) = \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} - \int_{100}^{x_{1}} \frac{1}{100x_{z}} & x_{1} = \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} - \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{bmatrix} + \begin{bmatrix} 100 \\ 1$$

 $\sim \sim$

$$\leq (ltr) \begin{pmatrix} -1 \\ 2\beta \end{pmatrix} \parallel \nabla f(x_{t}) \parallel_{2}^{2} + \gamma \left[f(x_{t}) - f(x_{t}) \right]$$

_

Proof

5

Summary of gradient descent convergence rates

Consider the unconstrained optimization problem: $\min_{x \in \mathbb{R}^n} f(x)$

Gradient Descent (GD): $x_{t+1} = x_t - \eta_t \nabla f(x_t)$, $t \ge 0$ starting from an initial guess $x_0 \in \mathbb{R}^n$.

Theorem 4: GD Convergence rates

Let
$$||x_0 - x^*|| \le D$$
.
• If $||\nabla f(x)|| \le G$ for all $x \in \mathbb{R}^n$, then with $\eta_t = \frac{D}{G\sqrt{T}}$, $f(\hat{x}_T) - f(x^*) \le \frac{DG}{\sqrt{T}} \le \mathcal{L}$
• If f is β -smooth, for $\eta_t = \frac{1}{\beta}$, $f(x_T) - f(x^*) \le \frac{\beta ||x_0 - x^*||^2}{2T}$.
• If f is β -smooth and α -strongly convex, for $\eta_t = \frac{1}{\beta}$, $f(x_T) - f(x^*) \le e^{-\frac{T}{\kappa}}(f(x_0) - f(x^*))$ where $\kappa := \frac{\beta}{\alpha}$ is the condition number.

To obtain an $\overline{\varepsilon}$ -optimal solution, we can choose T as follows. (1) $\frac{DG}{\sqrt{T}} \leq \varepsilon \Rightarrow T >, \frac{D^2G^2}{\varepsilon^2}$ (2) $\frac{BD^2}{2T} \leq \varepsilon \Rightarrow T >, \frac{BD^2}{2\varepsilon}$ (3) $e^{T_K}C \leq \varepsilon \Rightarrow e^{T_K} >, \zeta \Rightarrow T >, KOn(\zeta)$ Consider the unconstrained optimization problem: $\min_{x \in X} f(x)$ where $X \subseteq \mathbb{R}^n$ is a convex feasibility set.

Projected Gradient Descent (PGD): $x_{t+1} = \prod_X [x_t - \eta_t \nabla f(x_t)], \quad t \ge 0$ starting from an initial guess $x_0 \in \mathbb{R}^n$ where $\prod_X(y)$ is the projection of yon the set X.

Theorem 5

Let $||x_0 - x^*|| \le D$.

• If $||\nabla f(x)|| \leq G$ for all $x \in \mathbb{R}^n$, then with $\eta_t = \frac{D}{G\sqrt{T}}$, $f(\widehat{x}_T) - f(x^*) \leq \frac{DG}{\sqrt{T}}$.

• If
$$f$$
 is β -smooth, for $\eta_t = \frac{1}{\beta}$, $f(x_T) - f(x^*) \le \frac{\beta ||x_0 - x^*||^2}{2T}$.

• If f is β -smooth and α -strongly convex, for $\eta_t = \frac{1}{\beta}$, $f(x_T) - f(x^*) \le e^{-\frac{T}{\kappa}}(f(0) - f(x^*))$ where $\kappa := \frac{\beta}{\alpha}$ is the condition number.

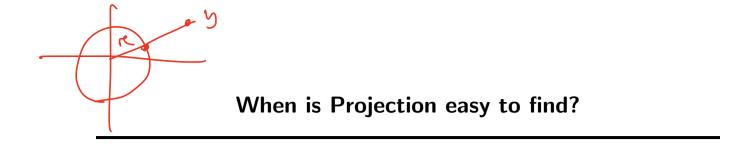
Note: Convergence rates remain unchanged.

Note: Projection itself is another optimization problem!

Non-expansive Property which preserves the convergence rates:

$$\begin{aligned} ||\Pi_X(y_1) - \Pi_X(y_2)|| \le ||y_1 - y_2||. \end{aligned}$$

• •



Note that $\Pi_X(y) = \operatorname{argmin}_{x \in X} ||y - x||^2$. Find closed form expression of the projection for the following cases.

•
$$X_{l} = \{x \in \mathbb{R}^{n} | ||x||_{2} \le r\}$$
.
• $X_{1} = \{x \in \mathbb{R}^{n} | x_{l} \le x_{l}\}$.
• $X_{2} = \{x \in \mathbb{R}^{n} | x_{l} \le x_{l}\}$.
• $X_{2} = \{x \in \mathbb{R}^{n} | Ax = b\}$.
• $X_{3} = \{x \in \mathbb{R}^{n} | Ax = b\}$.
• Homework 2

•
$$X_{i=1} \{ x \in \mathbb{R}^n | x \ge 0, \sum_{i=1}^n x_i \le 1 \}.$$

Start with $x_0 = y_0 = z_0 \in \mathbb{R}^n$. At every time-step t,

$$y_{t+1} = x_t - \frac{1}{\beta} \nabla f(x_t)$$

$$z_{t+1} = z_t - \eta_t \nabla f(x_t)$$

$$x_{t+1} = (1 - \tau_{t+1})y_{t+1} + \tau_{t+1}z_{t+1}$$

Theorem 6

Let
$$f$$
 be β -smooth, $\eta_t = \frac{t+1}{2\beta}$ and $\tau_t = \frac{2}{t+2}$. Then, we have

$$f(y_T) - f(x^*) \le \frac{2\beta ||x_0 - x^*||^2}{T(T+1)}.$$

Proof: Define $\phi_t = t(t+1)(f(y_t) - f(x^*)) + 2\beta ||z_t - x^*||^2$ and show that $\phi_{t+1} \leq \phi_t$.

Start with $x_0 = y_0$. At every state t,

$$\underbrace{y_{t+1}}_{x_{t+1}} = \underbrace{x_t - \frac{1}{\beta} \nabla f(x_t)}_{(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1})y_{t+1}} - \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}y_t$$

Theorem 7

Let
$$f$$
 be β -smooth, α -strongly convex with $\kappa = \frac{\beta}{\alpha}$ and let $\gamma = \frac{1}{\sqrt{\kappa}-1}$. Then, we have
$$f(y_T) - f(x^*) \leq (1+\gamma)^{-T} \left(\frac{\alpha+\beta}{2}||x_0-x^*||^2\right).$$

Improvement upon the previous rate where we had $\gamma = \frac{1}{\kappa - 1}$.

- AGD invented by Nesterov in a series of papers in the 80s and early 2000s, later popularized by ML researchers
- The convergence rates in the previous two theorems are the best possible ones. during the initial stage of the algorithm.
- Book by Nesterov: https://link.springer.com/book/10.1007/978-1-4419-8853-9
- https://francisbach.com/continuized-acceleration/
- https://www.nowpublishers.com/article/Details/OPT-036

Programming Tutonial
Let
$$x \in \mathbb{R}^{d}$$
, c: is a positive scalar, [write code treating c & d as
 $f(x) = (cx_{1}^{2} + \int_{j=2}^{d} x_{j}^{2}) \times \frac{1}{2}$ [write code treating c & d as
 $raviables, so that trey can be varied)$
Let $x_{0} = \begin{pmatrix} 100\\ 100\\ 100\\ 100 \end{pmatrix}$. Determine \mathcal{X}_{T} following GD & AGD with suitable
 $step-size,$
and $T = 100$.
 $\frac{1}{2} + \frac{1}{2} + \frac{1}$

• A large number of problems that arise in (supervised) ML can be written as

$$\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{N} \sum_{i=1}^N f_i(x) = \frac{1}{N} \sum_{i=1}^N l(x, \xi_i).$$
 it has a point

- Example: Regression/Least Squares, SVM, NN Training
- The above problem can also be viewed as *sample average approximation* of a stochastic optimization problem

$$f(x) = \mathbb{E}[l(x,\xi)]$$

involving uncertain parameter or random variable ξ .

• Challenge: N (number of samples) or n (dimension of decision variable) both may be large. Samples may be located in different servers.

$$\nabla f(\mathbf{x}_{t}) = \prod_{N \in \mathcal{I}} \nabla l(\mathbf{x}_{t}, \boldsymbol{\xi}_{t})$$

Gradient Descent vs. Stochastic Gradient Descent

Gradient Descent (GD) $x_{t+1} = x_t - \eta_t \nabla f(x_t) = x_t - \eta_t \sum_{i=1}^N \nabla f_i(x_i), \quad t \ge 0$ starting from an initial guess $x_0 \in \mathbb{R}^n$.

Each step requires N gradient computations.

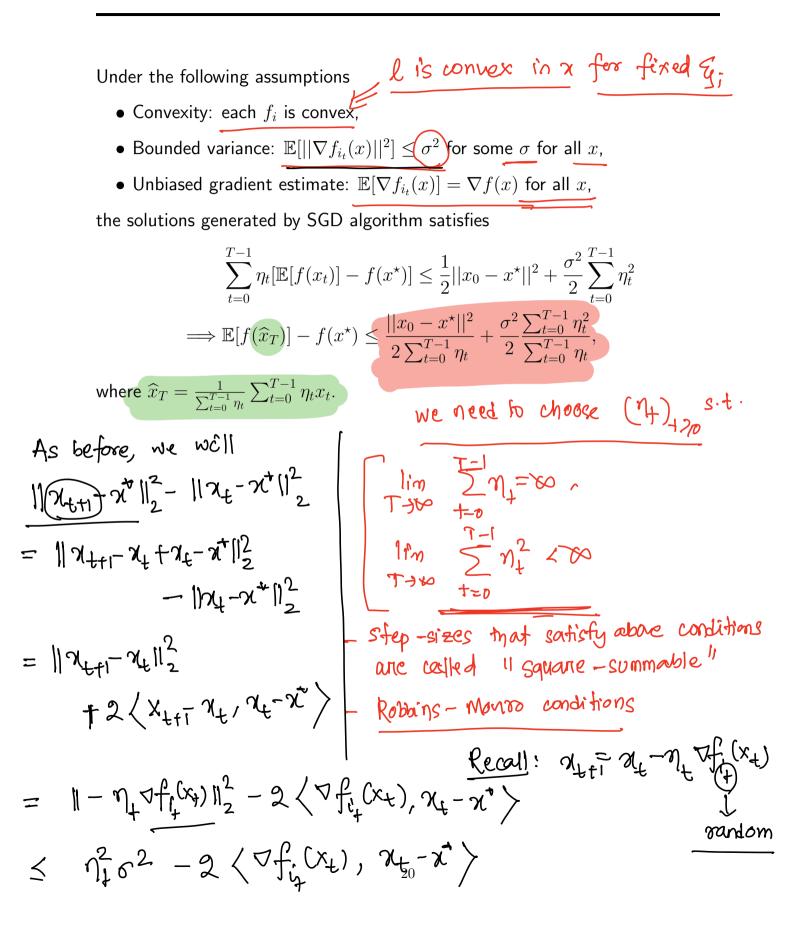
Stochastic Gradient Descent (SGD) At every time step t, • Pick an index (sample) i_t uniformly at random from the set $\{1, 2, \dots, N\}$. • Set $x_{t+1} = x_t - \eta_t \nabla f_{i_t}(x_t)$.

Each step requires 1 gradient computation, which is a noisy version of the true gradient of the cost function at x_t .

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}),$$

in earlier notation, filx) = l(x, gi)

Key result for SGD convergence



taking expectation on both sides,

Proof Continues

$$\begin{split} \mathbb{E}\Big[\|X_{t+1} - x^{*}\|_{2}^{2} - \|X_{t} - x^{*}\|_{2}^{2} |X_{t}] &\leq \eta_{1}^{2} \sigma^{2} - 2 \left\langle \mathbb{E}\left[\nabla f_{t}^{(x)}|X_{t}\right] \right\rangle \\ \Rightarrow \mathbb{E}\Big[\|X_{t+1} - x^{*}\|_{2}^{2} |X_{t}] - \|x_{t} - x^{*}\|_{2}^{2} &\leq \eta_{1}^{2} \sigma^{2} - 2 \left\langle \nabla f(X_{t}), \eta_{t} - \hat{x} \right\rangle \\ &= \nabla f(X_{t}) (X_{t} - \hat{x}) &\geq f(X_{t}) - f(X_{t}) \\ \Rightarrow \nabla f(X_{t}) (X_{t} - \hat{x}) &\geq f(X_{t}) - f(X_{t}) \\ \Rightarrow - \left[\nabla f(X_{t}) (X_{t} - \hat{x})\right] &\leq f(X_{t}) - f(X_{t}) \\ \text{We can add both } \mathbb{H}S \ \mathbb{R} \ \mathbb{R$$

We divide
$$2\sum_{t=0}^{T} \eta_{t}$$
 on both sides to obtain
 $\frac{1}{t=0}$ $\sum_{t=0}^{T} f(u_{t}) - \frac{T}{2t} f(u_{t}) \leq \frac{R HS}{2t}$
 $\frac{1}{2t} \eta_{t}$ $\frac{T}{t=0}$ $\frac{f(u_{t})}{2t} - \frac{T}{2t} \eta_{t}$
 $\frac{1}{2t} \eta_{t}$ $\frac{1}{t=0}$ $\frac{T}{2t} \eta_{t}$
 $\frac{1}{2t} \eta_{t}$ $\frac{T}{t=0}$ $\frac{T}{2t} \eta_{t}$
 $\frac{T}{2t} \eta_{t}$ $\frac{T}{t=0}$ $\frac{T}{2t} \eta_{t}$
 $\frac{T}{2t} \eta_{t}$ $\frac{T}{2t} \eta_{t}$

Constant step-size will not give us convergence. For convergence, we need to choose step sizes that are diminishing and square-summable, i.e.,

$$\lim_{T \to \infty} \sum_{t=0}^{T-1} \eta_t = \infty, \qquad \lim_{T \to \infty} \sum_{t=0}^{T-1} \eta_t^2 < \infty.$$
• If $\eta_t := \frac{1}{c\sqrt{t+1}}$, then $\mathbb{E}[f(\hat{x}_T)] - f(x^*) \leq \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$. This rate does not improve when the function is smooth.

• When the function is smooth, then for $\eta_t := \eta$ chosen appropriately, then R.H.S. will be of order $\mathcal{O}\left(\frac{1}{\eta T}\right) + \mathcal{O}(\eta)$.

When the function f is β -smooth and α -strongly convex, we have the following guarantees for SGD after T iterations.

- If $\eta_t := \frac{1}{ct}$ for a suitable constant c, then error bound is $\mathcal{O}\left(\frac{\log T}{T}\right)$. Can be improved to $\mathcal{O}\left(\frac{1}{T}\right)$.
- If $\eta_t := \eta$, then error bound

$$\underbrace{\mathbb{E}[||x_T - x^{\star}||^2]}_{\cdot} \underbrace{(1 - \eta\alpha)^T}_{\cdot} ||x_0 - x^{\star}||^2 \underbrace{\frac{\eta\beta\sigma^2}{2\alpha}}_{\cdot}.$$

With constant step-size $\eta < \frac{1}{\alpha}$, convergence is quick to a neighborhood of the optimal solution.

- at any given time t, pick a set of indices
$$I_{t} \subseteq \{1/2 \dots N\}$$

Uniformly at random such that
 $|[J_{t}| = b$
 $b = N \Rightarrow GD$
 $\Rightarrow \chi_{t+1} = \chi_{t} - \eta_{t} \cdot \frac{1}{b} \sum \nabla f_{j}(\chi_{t})$
 $\rightarrow \chi_{t+1} = \chi_{t} - \eta_{t} \cdot \frac{1}{b} \sum \nabla f_{j}(\chi_{t})$
 $\Rightarrow Convergence reate established on $\# [f(\hat{x}_{T})]$ or
 $\# [|[\chi_{T} - \eta^{*}]|^{2}]$
remain unchanged, but the
Varuiance reduces by a factor b.$

Extension: Stochastic Averaging
- at time 0, define
$$g^{0} = \frac{1}{N} \sum_{i=1}^{N} f_{i}(x_{0}), g_{i}^{0} = f_{i}(x_{0})$$

- at time t,
- at time t,
- pick index i_{t} at random
- $\frac{g_{i}^{t}}{g_{i}^{t}} = \int \frac{g_{i}^{t-1}}{y_{i}^{t}}$ if $i \neq i_{t}$
 $\sqrt{f_{i_{t}}(x_{t})}$ if $i = i_{t}$
- $\chi_{t+1} = \chi_{t} - \eta_{t} + \frac{1}{N} \sum_{i=1}^{N} g_{i}^{t}$

- This scheme enjoys considerable advantages compared to SGD. SAG: Schmidt, Mark, Nicolas Le Roux, and Francis Bach. "Minimizing finite sums with the stochastic average gradient." Mathematical Programming 162 (2017): 83-112.

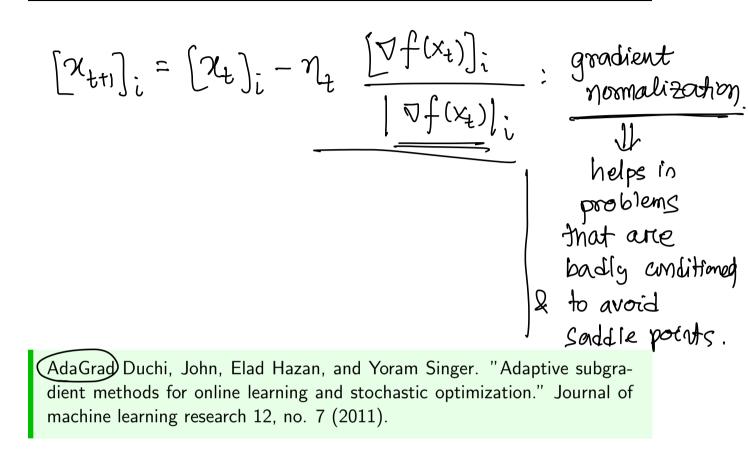
SAGA: Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien. "SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives." Advances in neural information processing systems 27 (2014).

Recent Review: Gower, Robert M., Mark Schmidt, Francis Bach, and Peter Richtárik. "Variance-reduced methods for machine learning." Proceedings of the IEEE 108, no. 11 (2020): 1968-1983.

Allen-Zhu, Zeyuan. "Katyusha: The First Direct Acceleration of Stochastic Gradient Methods." Journal of Machine Learning Research 18 (2018): 1-51.

Varre, Aditya, and Nicolas Flammarion. "Accelerated SGD for non-stronglyconvex least squares." In Conference on Learning Theory, pp. 2062-2126. PMLR, 2022.

Hanzely, Filip, Konstantin Mishchenko, and Peter Richtárik. "SEGA: Variance reduction via gradient sketching." Advances in Neural Information Processing Systems 31 (2018).



Adam Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).