

- Consider a continuous-time (autonomous) dynamical system: $\dot{x} = f(x)$ with initial state x_0 .
- Equilibrium point: \mathcal{X}^* is an equilibrium point if $f(\mathcal{X}) = 0$. • Stability of an equilibrium point: 2th is said to be stable if for every ε_{70} , there exists S_{q70} such that if $||x_0 - x^*||_2 \le S_{\varepsilon_7}$ 11 x + - x 112 52 for all + 210. then If $\lim_{t \to \infty} \chi(t) = \chi^*$, we say that χ^* is (globally). asymptotically stable. x' is unstable if there exists some & s.t. we cannot find any 870 satisfying the above property. • Lyapunov Stability Theorem: Lef V:R" -> R+ such that following (i) V(x) = 0(ii) V(x) > 0, for all $x \neq x'$. Applying chain sule, $d_x(x) = \sum_{i=1}^{n} \frac{\partial v}{\partial x_i} \frac{dx_i}{dt}$ conditions and satisfied: (iii) $\frac{d}{dt}v(x) < 0$, for all $\pi \neq \pi'$. = $\frac{2}{2} \frac{\partial v}{\partial \pi_i} \frac{f_i(\pi)}{f_i(\pi)}$ (iv) When $||\pi||_2 \rightarrow \infty$, then $v(\pi) \rightarrow \infty = \nabla_x v(x)^T f(x)$ Then, the equilibrium point 2° is globally asymptotically stable. we often choose $V(\pi) = (\chi - \pi^*)^T P(\chi - \pi^*)$, $P = p^T$ is a positive definite

XERN

• An autonomous LTI System is stated as $\dot{x} = Ax$ with initial state x_0 . Let us derive conditions under which x = 0 is globally asymptotically Stable (GAS). Let us choose $v(x) = x^T P x$ $\frac{d}{dt}v(n) = (n)^{T}Pn + n^{T}P(n)$ = (Ax) TPX + 2 P(Ax) = xT [ATPtPA] x x^* is GAS if $P=P^T > O$ (positive definite) $\overline{A}^T P+PA < O$ (negative definite). $\underbrace{\xi_{X}}_{Y}: \eta = 2, \quad P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} = \begin{array}{c} P_{11} & I & O \\ 0 & O \\ P_{12} & P_{22} \end{bmatrix} = \begin{array}{c} P_{11} & I & O \\ 0 & O \\ 0$ E3 $P > 0 \iff P_1 E_1 + P_2 E_2 + P_3 E_3 > 0$ AP+PA<O >> AT(ZPiEi) + (ZPiEi) A <O min 5 $s \cdot t$ $Z \not p_i E_i \land 0$ \Rightarrow $Z \not p_i (A^T E_i + E_i A) \land 0$. $Z \not p_i (A^T E_i + E_i A) \land 0$

Fo, Fi, - Fn: Known

Linear Matrix Inequalities

• Definition:
$$F_0 + \chi_1 F_1 + \chi_2 F_2 + \cdots + \chi_n F_n \neq 0$$

Consider the set $\left\{\chi \in \mathbb{R}^n \mid F_0 + \sum_{i=1}^n \chi_i F_i \neq 0\right\} = S \xrightarrow{(\sum_{i=0}^n i)} \right\}$
This set is a convex set.
Let $y, z \in S$, $F_0 + \sum_{i=1}^n (\lambda y_i + (1 - \lambda) z_i) F_i$
 $= F_0 + \lambda \sum_{i=1}^n y_i F_i + (1 - \lambda) \sum_{i=1}^n z_i F_i$
 $= \lambda F_0 + (1 - \lambda) F_0 + ()$
 $\chi_i = \lambda F_0 + (1 - \lambda) F_0 + ()$
 $= \lambda \left[F_0 + \sum_{i=1}^n y_i F_i\right] + (1 - \lambda) \left[F_0 + \sum_{i=1}^n z_i F_i\right]$
Consequently, the problem: $\sum_{i=1}^n z_i F_i$
 $is a convex optimization problem.
 $problem$.
Now, let us try b dereave the constraint k)
dual of the above problem.
For two matrices A, B, $(A, B) = trace(AB)$.
 $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, AB = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, AB = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

Primal and Dual forms of Optimization with LMI Constraints

We define the Lagrangian to be

$$L(x, Z) = CTx + \langle Z, Fo + \sum_{i=1}^{N} q_i F_i \rangle$$

$$= \frac{CTx}{2} + \langle Z, Fo \rangle + \sum_{i=1}^{N} q_i \langle Z, F_i \rangle$$
If we are able to find $Z \geq 0$ such that $\langle Z, F_i \rangle = -C_i + i$,
then $\sum_{i=1}^{N} x_i \langle Z, F_i \rangle = \sum_{i=1}^{N} q_i (-C_i) = -CTx$
When $Z \geq 0$, and x is feasible,
i.e., $Z \geq 0$ and $F_0 + \sum_{i=1}^{N} q_i F_i \leq 0$.
then $\langle Z, F_0 + \sum_{i=1}^{N} q_i F_i \rangle \leq 0$.
 $\Rightarrow \langle Z, F_0 + \sum_{i=1}^{N} q_i \langle Z, F_i \rangle = \sum_{i=1}^{N} q_i c_i = CTx$
Therefore, the dual optimization problem can be written as
 $\left(\max_{i=1}^{N} \langle Z, F_0 \rangle$
 $z \in S$
 $s.t. Z \geq 0$
 $\langle Z, F_i \rangle = -C_i , i = 1, 2 \dots n$.
This class of optimization problems are called
semidefinite programs (SDRs).

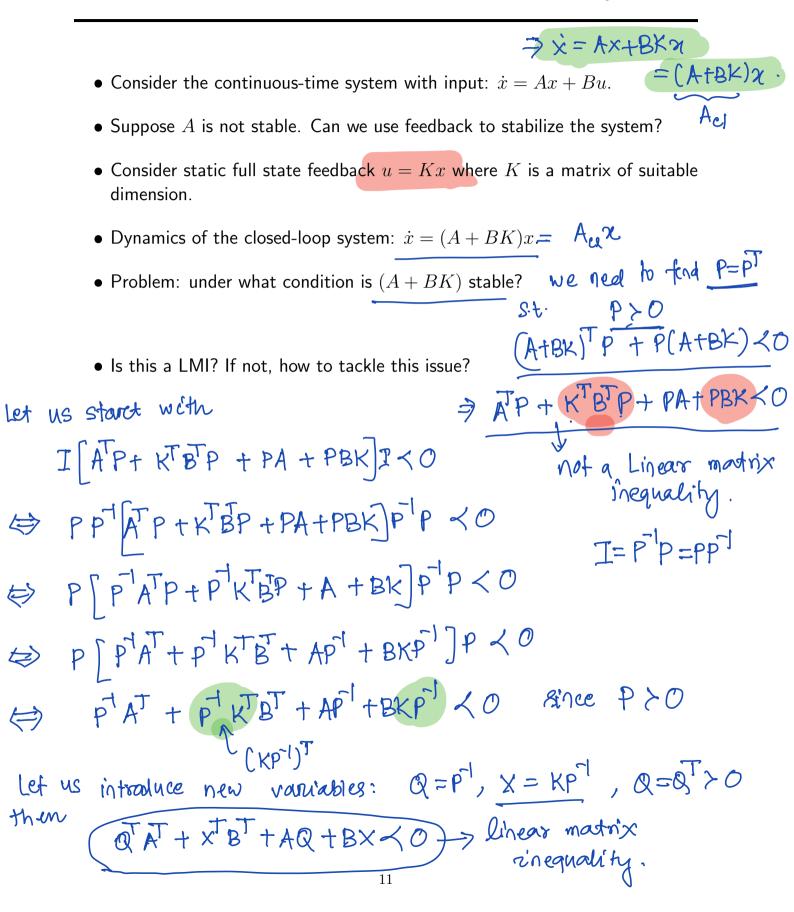
• An discrete-time autonomous LTI System is stated as $x_{k+1} = Ax_k$ with $\mathcal{K} \in \mathbb{Z}$. initial state x_0 . as before, define $V(x) = x^T P x$, where $P = P^T$ $V(x_{K+1}) - V(x_{K}) = (x_{K+1})^{T} P x_{K+1} - x_{K}^{T} P x_{K}$ = $(A_{\mathcal{X}_{\mathcal{K}}})^T P(A_{\mathcal{X}_{\mathcal{K}}}) - X_{\mathcal{X}_{\mathcal{K}}}^T P X_{\mathcal{K}}$ = $\chi_{k}^{T} \left[A^{T} P A - P \right] \chi_{k}$ $A^{T}(ZP_{i}E_{i})A - ZP_{i}E_{i} \longrightarrow Dotu define$ Detu define Detu defineFor 2=0 to be GAS, we need to find P>0 linear matrix Megnalities (LMIs). $= \sum_{i=1}^{n} P_i \left(A^T E_i A - E_i \right) \angle O$ PEE,I, for E,70 being a 2270 small constants APA-P - 2-27, In practice, we write to avoid situations where optimal solution may not be defined.

Lecture 25:6% March
Properties of LMIS.
F:
$$\mathbb{R}^{M} \Rightarrow g^{YV}$$

F(x) = F_0 + $\alpha_1F_1 + \alpha_2F_2 + \cdots + \pi_mF_m$
= F_0 + $\sum_{i=1}^{M} \alpha_i F_i$
ford π s.t. F(x) >0 (or \prec, \prec, \succ)
(A) combining multiple LMIS
Suppose we are given $F_1: \mathbb{R}^{M} \Rightarrow g^{MY}$, $F_2: \mathbb{R}^{M} \Rightarrow g^{M2}$
 $F_1(x) \leq 0, \quad E_2(x) \leq 0 \iff [F_1(x) \ 0] \leq 0$.
(A) combining multiple LMIS
Suppose we are given $F_1: \mathbb{R}^{M} \Rightarrow g^{MY}$, $F_2: \mathbb{R}^{M} \Rightarrow g^{M2}$
 $F_1(x) \leq 0, \quad E_2(x) \leq 0 \iff [F_1(x) \ 0] \leq 0$.
The above helds because the eigenvalues of a block diagonal
matrix are union af eigenvalues of the constituent
diagonal blocks.
(B) Schure complement Lemma
Consider a matrix $M = [A_1 + C_1^T]$, A and B are symmetric
 $\Rightarrow M$ is symmetric.
(i) $M \geq 0 \Rightarrow A \geq 0$ and
 $B - Ch^2 \geq 0$ (remember the
clock wise
movement
along the
block natrix)
(ii) $M \geq 0 \Rightarrow B \geq 0$, and $A - C^2B^2 \geq 0$ block natrix)
(iii) Suppose $A=0$. Then, $M \geq 0$ would require $B \geq 0$ and
 $C=0$.

applymg	Schur complement lemma, we can write $\begin{bmatrix} t^2T & A(x)^T \end{bmatrix} \geq 0$. A(x) I
	applying solver complement Lemma, we obtain $\begin{bmatrix} \pm T & A(n)^T \\ A(n) & \pm T \end{bmatrix} \succeq O$ as well as \pm
we can	now wreite min t XERM t>10
which is a optimizati	a convex S.t. $\begin{bmatrix} tI & A(x)^T \\ A(x) & tI \end{bmatrix} \ge 0$.

C. State Feedback for a Continuous-time LTI System



Thus, we need to find (Q,X) such that Q>O QTAT+XBT+AQ+BX <O Suppose we obtain (Q^*, X^*) satisfying the above LMIs. then $\chi^* = KQ^* \Rightarrow K^* = \chi^*Q^*\gamma^{-1}$ When we apply input $u = k^* x$, then origin is stable equilibrium of the closed loop system.

State Feedback for a Discrete-time LTI System

- An discrete-time LTI System is stated as $x_{k+1} = Ax_k + Bu_k$ with initial state x_0 . $u_k = K \chi_k$
- What is the condition for the closed-loop system $x_{k+1} = (A + BK)x_k$ to be stable? Is this a LMI? is need to find $P = P^T > 0$ 8.t.

 $\frac{(A+BK)^{T}P(A+BK)-P}{X=P^{-1}, Z=P}$

• Schur Complement Lemma: Consider three matrices $X \in \mathbb{S}^n, Y \in \mathbb{R}^{n \times m}, Z \in \mathbb{S}^m$. Then, the following are equivalent:

1.
$$\begin{bmatrix} X & Y \\ Y^{\top} & Z \end{bmatrix} \succ 0.$$

2. $X - YZ^{-1}Y^{\top} \succ 0$ and $Z \succ 0.$
3. $Z - Y^{\top}X^{-1}Y \succ 0$ and $X \succ 0.$
 $P - (A + BK)^{T}P(A + BK) \geq 0$

that is

Y = A + BK

Lef us examine

$$(A+BK)^{T}P(A+BK) - P \prec O$$

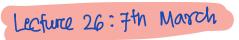
$$\Rightarrow P^{T}[(A+BK)^{T}P(A+BK) - P]P^{T} \prec O$$

$$\Rightarrow P^{T}(A+BK)^{T}P(A+BK)P^{T} - P^{T} \prec O$$

$$\Rightarrow P^{T}(A+BK)^{T}P(A+BK)P^{T} - P^{T} \prec O$$

$$\Rightarrow P^{T}(A+BK)P^{T}P(A+BK)P^{T} - P^{T} \land O$$

now introduce $Q=P^1$, $KP^1=X$, >0 LMP in Q and X Q AQ+BX (ARTBX) B once we solve it and obtain (\mathcal{Q}^*, X^*) , then $KQ^* = X^* \xrightarrow{\rightarrow} K = X^*(Q^*)^{-1}$



D. State Estimation of a Discrete-time LTI System

• An discrete-time autonomous LTI System is stated as
$$x_{k+1} = Ax_k^+$$
 with
initial state x_0 .
Suppose that the state vector is not known, itather we
observe autput $y_k^- (2\chi)$, C is not an identity matter.
The state estimation problem is to estimate the state χ_k
as a function of $(U_k, y_k)_{k \ge 0}$.
A simple way to estimate the state is to create an
auxiliary system $\hat{\chi}_{k+1} = A\hat{\chi}_k + Bu_k$ $\hat{\chi}_0$: picked
in and
 u_k orreginal y_k
 u_k orreginal χ_k
 u_k orreginal χ_k
 u_k orreginal χ_k
 u_k orrection term mannes.
 u_k orreginal χ_k
 u_k orrection term mannes.
 u_k orreginal u_k
 u_k orrection term mannes.
 u_k observer gain trut we
need to determine.
We define the estimation errors $e_k = \chi_k - \hat{\chi}_k$
 $e_{k+1} = \chi_{k+1} - \hat{\chi}_{k+1} = (A\chi_k + Bu_k) - (A\hat{\chi}_k + Bu_k + L(C\hat{\chi}_k - y_k))$
 $= A \chi_k - A\hat{\chi}_k - L(C\hat{\chi}_k - C\chi_k)$
 $= A \chi_k - A\hat{\chi}_k - L(C\hat{\chi}_k - C\chi_k)$
 $= (A + LC) e_k$
 u_k we would like to find L
 u_k we would like to find L
 u_k we would like to find L

We have alredly seen that for a DT system
$$\Re_{k+1} = \overline{A} \Re_{k-1}$$

orugin is GAS if $P = P^T > 0$ s.t. $\overline{A}^T P \overline{A} - P \prec 0$.
For the \Re_k dynamics: $P = P^T > 0$ s.t.
 $(A + L c)^T P(A + L c) - P \prec 0$
 $\Rightarrow PP^T P$
 $\Leftrightarrow (A + L c)^T P^T P(A + L c) - P \prec 0$
 $\Leftrightarrow P - (P(A + L c))^T P^T (PA + PL c) > 0$
 $\Leftrightarrow P - (P(A + L c))^T P^T (PA + PL c) > 0$
 $\Leftrightarrow P - (P(A + L c))^T P^T (PA + PL c) > 0$
 $\Leftrightarrow (P - (PA + PL c)^T = > 0$
 $P + (PA + PL c)^T = > 0$
 $P + (PA + PL c)^T = > 0$
 $P + (PA + PL c)^T = > 0$
 $P = (PA + PL c)^T = > 0$
 $P + (PA + PL c)^T = > 0$
 $P + (PA + PL c)^T = > 0$
 $P + (PA + PL c)^T = > 0$
 $P + (PA + X c)^T = P - (P, X)$, we can find L as
 $P^T L = X^* \Rightarrow [L = (P^*)^T X^*]$

Petersen's Lemma
Let
$$G_1=G_1^T$$
, and M,N be two othes matrices. Then
 $G_1 + M \Delta N + N^T \Delta^T M^T \leq O + ||\Delta ||_2 \leq 1$ --(1)
if and only if
there exists $E \in R$ s.t. $G_1 + EMM^T N^T \leq O$.
 $N - EP \leq O$.
Therefore, (*) is equivalent to
 $I = -EI \leq O$.
which is not LMI in E and P .
In order to tackle this,
 $P^T \left[A_{nom}^T P + PA_{nom} + \Delta^T P + PA \right] P^T \ll O$
 $\Rightarrow P^T A_{nom}^T + A_{nom}P^T + P^T A^T + AP^T \ll O - - - (2)$
Comparing (2) with (1), we obtain $G_1 = P^T A_{nom}^T + A_{nom}P^T$
 $M = I , N = P^T$.
then (2) is equivalent to
 $P^T A_{nom}^T + A_{nom}P^T + ET P^T \leq O$.
 $P^T = -ET = \int SO$.
 $P^T = -ET = \int SO$.

Robust State Feedback Controlles:
$$U=K_{\mathcal{R}}$$
,
Closed-loop System is $\hat{\chi} = (A_{num} + BK + \Delta(h))\chi$.
the problem of fording k such that origin is
quadredically stable can be written as:
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} BK)^{T} + (A_{nont} BK)Q + EP) = Q$
 $Q = Q^{T} \ge 0$ & $(Q(A_{nont} CA) + A_{K}) = (A_{nont} CA) = (A_{K})$
 $(A_{nont} D + P) = (A_{K}) \ge 0$ for $j = 1, 2 \dots K$
 $(A_{nont} A)^{T} P + P(A_{nont} A) < 0$ $(A = A_{K})$
 $(A_{nont} A)^{T} P + P(A_{nont} A) < 0$ $(A = A_{K})$
 $(A_{nont} A)^{T} P + P(A_{nont} A) < 0$ $(A = A_{K})$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{nont} + A_{E}^{T} P + PA_{E} < 0)$
 $(A_{nont} P + PA_{E} < 0)$
 $(A_{no}$