
Some Properties of Convex Functions

The following properties are true for convex functions.

If f : Rn ! R is a convex function, then it is continuous over the interior of
dom(f). Moreover, f is Lipschitz over every compact subset of the interior
of dom(f).

If f and g are strictly convex functions, then f + g is strictly convex as well.

If f is a strongly convex function and g is a convex function, then f + g is
strongly convex as well.
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Level-set Characterization

Definition 15. For any ↵ 2 R, the level set of function f : Rn ! R̄ at level
↵ is defined as

lev↵(f) := {x 2 dom(f)|f(x)  ↵}.

Proposition 15. If a function f is a convex function, then every level set
of f is a convex set.

In other words, if we can find some ↵ for which lev↵(f) is not a convex set, the
function f is not a convex function.

Converse is not true. A function is called quasi-convex if its domain and all level
sets are convex sets.

HW: Give an example of a function which is quasi-convex but not convex.
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Restriction of a Convex Function on a Line

Proposition 16. If a function f is convex if and only if for any x, h 2 Rn,
the function �(t) = f(x+ th) is a convex function on R.

If we know how to check convexity of functions defined on R, then we can check
convexity of functions defined on Rn.
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First Order Condition

Proposition 17. If a function f is di↵erentiable, then it is convex if and
only if dom(f) is a convex set and for any x, y 2 dom(f), we have

f(y) � f(x) +rf(x)>(y � x).

A global lower bound on the function can be obtained at any point based on local
information (f(x),rf(x)).
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Second Order Condition

Proposition 18. If a function f is twice di↵erentiable, then it is convex if
and only if dom(f) is a convex set and r2

f(y) ⌫ 0 for every y 2 dom(f).

The function f is strongly convex if and only if r2
f(y) ⌫ mI for some

m > 0 for every y 2 dom(f). Here I is the identity matrix of appropriate
dimension.

If r2
f(y) � 0 for every y 2 dom(f), then the function is strictly convex.

The converse is not true.

f is concave if and only if r2
f(y) � 0 for every y 2 dom(f).

Example: f(x) = x
2
,� log(x), ||Ax� b||2, and so on.
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Examples of Convex Functions

f1(x, y) =
x>x
y if y > 0 and +1 if y  0 (square to linear function).

f2(x) = log(
Pn

i=1 e
xi) (log-sum-exp function).

f3(X) = � log det(X) where X 2 S++
n (log-determinant function).
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Examples of Convex Functions
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Convexity Preserving Operations

Proposition 19 (Conic Combination). Let {fi(x)}i2I be a collection of con-
vex functions and let ↵i � 0 for all i 2 I. Then, g(x) :=

P
i2I ↵ifi(x) is a

convex function.

Proposition 20 (A�ne Composition). If f : Rm ! R is a convex function,
then g(x) := f(Ax+ b) is also a convex function where A 2 Rm⇥n

, b 2 Rm.

Example: g(x) = ||Ax+ b||2, h(x) = �
Pn

i=1 log(a
>
i x+ b).
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Convexity Preserving Operations

Proposition 21 (Pointwise Maximum). Let {fi(x)}i2I is a collection of con-
vex functions, then g(x) := maxi2I fi(x) is a convex function.

The set I need not be a finite set.

Example: Largest singular value of a matrix X

f(X) = �max(X) = max
v:||v||2=1

||Xv||2.

Proposition 22 (Pointwise Supremum). Let f(x,!) is convex in x for any
! 2 ⌦, then g(x) := sup!2⌦ f(x,!) is convex in x.
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Convexity Preserving Operations

Proposition 23 (Partial Minimization). If f(x, y) is convex in (x, y), and
Y is a convex set, then g(x) := infy2Y f(x, y) is a convex function.

Example: Schur Complement Lemma
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Convexity Preserving Operations

Proposition 24 (Scalar Composition). Let f(x) := h(g(x)) where g : R ! R
and h : R ! R. Then, f is convex if

g is convex and h is convex non-decreasing

g is concave and h is convex non-increasing.

f is concave if

g is convex and h is concave non-increasing

g is concave and h is concave non-decreasing.

The conditions do not necessarily hold in the reverse direction.
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Convexity Preserving Operations

Proposition 25 (Vector Composition). Let {gi}i2{1,2,...k} are convex func-
tions on Rn, and h : Rk ! R is convex and non-decreasing in each argument,
then the function f(x) = h(g(x)) is convex.

Other scalar composition rules can also be directly extended to the vector case.

Examples:

If g is convex, then e
g(x) is also convex.

If g is concave and positive, then 1
g(x) is convex.

If gi are convex, then log(
Pk

i=1 e
gi(x)) is convex.
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Recall: Optimization Problem

An optimization problem can be stated (in abstract form) as

min
x2X

f(x), (2)

where

x decision variable, often a vector in Rn

X set of feasible solutions, often a subset of Rn

f : Rn ! R cost function

Goal:

Find x
⇤ 2 X that minimizes the cost function, i.e., f(x⇤)  f(x) for every

x 2 X.

Optimal value: f ⇤ := infx2X f(x)

Optimal solution: x⇤ 2 X if f(x⇤) = f
⇤.

Often, we write optimization problems in standard form as:

min
x2Rn

f(x)

subject to gi(x)  0, i 2 {1, 2, . . . ,m}
hj(x) = 0, j 2 {1, 2, . . . , p}.
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Recall

The problem is infeasible when X is an empty set. In this case, f ⇤ := +1.

The problem is unbounded when f
⇤ = �1.

Definition 16. Recall that

a feasible solution x
⇤ 2 X is a global optimum if f(x⇤)  f(x) for all

x 2 X. In this case, f ⇤ = f(x⇤),

the set of global optima: argminx2X f(x) := {z 2 X|f(z) = f
⇤},

a feasible solution x
⇤ 2 X is a local optimum if f(x⇤)  f(x) for all

x 2 B(x⇤, r) for some r > 0.

Theorem: Weierstrass Theorem

If the cost function f is continuous and the feasible region X is compact
(closed and bounded), then (at least one global) optimal solution x

⇤ exists.
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Feasibility Problem

Goal: Find x 2 Rn which satisfies a collection of inequality and equality con-
straints.

min
x2Rn

0

subject to gi(x)  0, i 2 {1, 2, . . . ,m}
hj(x) = 0, j 2 {1, 2, . . . , p}.

f
⇤ = 0 if a feasible solution exists. Otherwise, f ⇤ = +1.
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Convex Optimization Problems

An optimization problem in abstract form

min
x2X

f(x), (3)

is convex when the feasibility set X is a convex set and the cost function f(x)
is a convex function.

An optimization problem in standard form

min
x2Rn

f(x)

subject to gi(x)  0, i 2 {1, 2, . . . ,m}
hj(x) = 0, j 2 {1, 2, . . . , p},

is convex when

f and gi are convex functions.

hj are a�ne functions.
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Simple Examples of Convex Functions
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1. Local Optimum is Global

Theorem: Local and Global Optima

Consider the optimization problem minx2X f0(x). If f0 is a convex function
and X is a convex set, then any locally optimal solution is also globally
optimal. Moreover, the set of optimal solutions Xopt := argminx2X f0(x)
is a convex set.
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2. Uniqueness under Strict Convexity

Theorem: Uniqueness under Strict Convexity

Consider the optimization problem minx2X f0(x). If f0 is a strictly convex
function and X is a convex set, and x? is an optimal solution to the problem,
then, x? is the unique optimal solution, i.e., Xopt := {x?}.
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3. Necessary and Su�cient Optimality Condition

Theorem: Necessary and Su�cient Optimality Condition

Consider the optimization problem minx2X f0(x) where f0 is a convex and
di↵erentiable function, and X is a convex set. Then,

x
? is optimal () rf0(x

?)>(y � x
?) � 0, 8y 2 X.
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Equivalent Optimization Problems

Consider the following two optimization problems:

min
x2X

f(x). (4)

min
y2Y

g(y). (5)

The above problems are equivalent if

Given an optimal solution x
⇤ of (4), we can find an optimal solution y

⇤ of
(5), and

given an optimal solution y
⇤ of (5), we can find an optimal solution x

⇤ of
(4).
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Equivalence: Maximization
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Equivalence: Epigraph Form
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Equivalence: Slack Variables
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Equivalence: From Equality to Inequality Constraints
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Equivalence: From Constrained to Unconstrained
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Equivalence: Scalar Multipliers and Constant Terms
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Equivalence: Monotone Transformations
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Inner Approximation
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Relaxation and Soft Constraints
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