, Inursday: 6pm-7pm	LECTURE -8:	15th Jan. 2025
Gextoa class		

Some Properties of Convex Functions

The following properties are true for convex functions.

- If f: ℝⁿ → ℝ is a convex function, then it is continuous over the interior of dom(f). Moreover, f is Lipschitz over every compact subset of the interior of dom(f).
- If f and g are strictly convex functions, then f + g is strictly convex as well.
- If f is a strongly convex function and g is a convex function, then f + g is strongly convex as well.

Definition 15. For any $\alpha \in \mathbb{R}$ the level set of function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ at level α is defined as $\underbrace{|ev_{\alpha}(f)|}_{\alpha} := \{x \in dom(f) | f(x) \leq \alpha\}.$ To establish Proposition 15, pick $\pi, y \in ev_{\alpha}(f)$. $\Rightarrow f(x) \leq \alpha, f(y) \leq \alpha$ We need to show $\lambda + (1-\lambda)y \in ev_{\alpha}(f)$ when $\lambda \in [0,1]$. Proposition 15. If a function f is a convex function, then every level set of f is a convex set. We Evaluate $f(\lambda + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$ $\leq \lambda \alpha + (1-\lambda)\alpha = \alpha$ Therefore $ev_{\alpha}(f)$ is a convex set. In other words, if we can find some α for which $ev_{\alpha}(f)$ is not a convex set, the

function f is not a convex function. $f(x) = \sqrt{x}$, over x > 0Converse is not true. A function is called quasi-convex if its domain and all level sets are convex sets.

HW: Give an example of a function which is quasi-convex but not convex.

Restriction of a Convex Function on a Line

Proposition 16. If a function f is convex if and only if for any $x, h \in \mathbb{R}^n$, the function $\phi(t) = f(x + th)$ is a convex function on \mathbb{R} . $s \cdot t \cdot \chi + th \in dom(f)$

If we know how to check convexity of functions defined on \mathbb{R} , then we can check convexity of functions defined on \mathbb{R}^n .

 $\exists \lim_{x \to 0^{-1}} (LHS) = \nabla f(y)^{-1} (x - y) \leq f(x) - f(y)$

$$=) \quad f(x) > f(y) + \nabla f(y)^T (x - y)$$

Second Order Condition

Proposition 18. If a function f is twice differentiable, then it is convex if and only if dom(f) is a convex set and $\nabla^2 f(y) \succeq 0$ for every $y \in dom(f)$.

- The function f is strongly convex if and only if $\nabla^2 f(y) \succeq mI$ for some m > 0 for every $y \in \operatorname{dom}(f)$. Here I is the identity matrix of appropriate dimension.
- If $\nabla^2 f(y) \succ 0$ for every $y \in \text{dom}(f)$, then the function is strictly convex. The converse is not true.
- f is concave if and only if $\nabla^2 f(y) \preceq 0$ for every $y \in \operatorname{dom}(f)$.

$$f(x) = -\log(x), \quad f'(x) = -\frac{1}{x}, \quad \frac{f''(x) = \frac{1}{x^2} > 0}{x^2 > 0}$$
Example: $f(x) = x^2, -\log(x), ||Ax - b||^2$, and so on.

$$f''(x) = 2 > 0 \implies x^2 \text{ is a convex function}$$

$$f_3(x) = ||Ax - b||_2^2, \quad \nabla^2 f_3(x) = 2A^T A \qquad \nabla^T A^T A v = 1|Av||_2^2 > 0$$

$$\Rightarrow \text{ always convex} \qquad \Rightarrow \text{ always convex} \qquad \Rightarrow \text{ always convex} \quad y = 2A^T A \qquad y = 1|Av||_2^2 > 0$$

$$\Rightarrow \text{ always convex} \qquad \Rightarrow \text{ always convex} \quad y = 2A^T A \qquad y = 1|Av||_2^2 > 0$$

Examples of Convex Functions

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \chi \in \mathbb{R}^{N}, \ y \in \mathbb{R}_{+} & \sqrt{2} \int_{1} \ell \, (\mathbb{R}^{N+1) \times (N+1)} \\ \end{array} \\ \begin{array}{c} & f_{1}(x,y) = \frac{x^{1} \cdot x}{y} \ \text{if } y \geq 0 \ \text{and } +\infty \ \text{if } y \leq 0 \ \text{(square to linear function)}. \\ \end{array} \\ \begin{array}{c} & f_{1}(x,y) = \frac{x^{1} \cdot x}{y} \ \text{if } y \geq 0 \ \text{(add the expected of the$$

Examples of Convex Functions

$$f(\mathbf{x}) = -\log |\mathbf{x}|, \quad \mathbf{x} \in S_{t+}^{n}, \quad \text{let } \mathbf{x} = \mathbf{x}^{1/2} \mathbf{x}^{1/2}, \quad \mathbf{x}^{1/2} \mathbf{y} \mathbf{y}$$

$$g(t) = f(\mathbf{x} t + \mathbf{v}), \quad t \in \mathbb{R}, \quad \mathbf{v} \in S^{n}, \quad \mathbf{x} + t + \mathbf{v} \in S_{t+1}^{n}$$

$$= -\log |\mathbf{x} + t + \mathbf{v}|$$

$$= -\log |\mathbf{x}^{1/2}(\mathbf{I} + t \mathbf{x}^{1/2} \vee \mathbf{x}^{1/2}) \mathbf{x}^{1/2}|$$

$$= -\log [|\mathbf{x}^{1/2}| |\mathbf{I} + t \mathbf{x}^{1/2} \vee \mathbf{x}^{1/2}|]$$

$$= -\log [|\mathbf{x}| \cdot |\mathbf{I} + t \mathbf{x}^{1/2} \vee \mathbf{x}^{1/2}|]$$

$$= -\log |\mathbf{x}| - \log [|\mathbf{I} + t \mathbf{x}^{1/2} \vee \mathbf{x}^{1/2}|]$$

$$= -\log |\mathbf{x}| - \log [|\mathbf{I} + t \mathbf{x}^{1/2} \vee \mathbf{x}^{1/2}|]$$

$$= -\log |\mathbf{x}| - \log [|\mathbf{I} + t \mathbf{x}^{1/2} \vee \mathbf{x}^{1/2}|]$$

$$= \log |\mathbf{x}| - \log [|\mathbf{I} + t \mathbf{x}^{1/2} \vee \mathbf{x}^{1/2}|] = 1 + t A_{t}, \quad \text{where } A_{t} \text{ are eigenvalues of } t = -\log |\mathbf{x}| - \log (\prod_{t=1}^{m} (1 + t A_{t}))$$

$$= -\log |\mathbf{x}| - \log (\prod_{t=1}^{m} (1 + t A_{t}))$$

$$= \frac{g(t)}{g(t)} = -\log |\mathbf{x}| + \sum_{t=1}^{m} - \log (1 + t A_{t})$$

$$= f(\mathbf{x}) = -\log |\mathbf{x}| \text{ is a convex function } f f(\mathbf{x}) = -\log |\mathbf{x}| \text{ is a convex } f for \text{ ordinon } f(\mathbf{x}) = -\log |\mathbf{x}| \text{ is a convex } f for \text{ ordinon } f(\mathbf{x}) = -\log |\mathbf{x}| \text{ is a convex } f for \mathbf{x}| \mathbf{x}| = -\frac{1}{(1 + t c)^{2}}, c^{2} > 0$$

dom $g = \bigcap_{i \in \Gamma} dom(f_i)$. Sin	ice dom(fi) is a convex set for all i, and intersection of convex
	ig Operations sets is a convex set,
$E_{X}: X^{2} + 5e^{X} + () + ()$	dom g is also a convex set.
Proposition 19 (Conic Combination). L vex functions and let $\alpha_i \ge 0$ for all $i \in I$ convex function.	et $\{f_i(x)\}_{i \in I}$ be a collection of con- . Then, $g(x) := \sum_{i \in I} \alpha_i f_i(x)$ is a
$g(\lambda x_1 + (1 - \lambda) x_2) = \sum_{i \in I} \alpha_i$	$f_i(\lambda y + (1-\lambda)x_2)$
$\bigwedge \qquad \qquad$	$\left(\lambda f_{i}(x_{1}) + (1 - \lambda)f_{i}(x_{2})\right)$
$= \lambda g(x_1) + (1 - \lambda) g(x_2) = \lambda z_1$	$d_{i}f_{i}(x_{1}) \neq (1-A) \sum d_{i}f_{i}(x_{2})$
Proposition 20 (Affine Composition). If then $g(x) := f(Ax + b)$ is also a convex fu	$f: \mathbb{R}^m \to \mathbb{R} \text{ is a convex function,} $ inction where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.
$\xi x: e^{X} \rightarrow e^{aT_{X+b}}$	$g(\lambda \alpha_1 + (1 - \lambda) \alpha_2)$
$\ \times \ _{2}^{2} \rightarrow \ A \times F b \ _{2}^{2}$	$= f(A(\lambda_1 + (1 - \lambda))) + b)$
XE dong (=) Axtbe donf	$= f(A(Ax_{1}+b)+(1-A)(Ax_{2}+b))$
dong is inverse applie map of dom f , hence	$(Ax_{1}+b) + (1-A) + (Ax_{2}+b)$
convex.	$= \Im g(x_1) + (1 - A)g(x_2).$
Example: $a(x) = Ax + b ^2$ $h(x) = \sum^n$	$\log(a^{\top}x + b)$

Example: $g(x) = ||Ax + b||^2, h(x) = -\sum_{i=1}^n \log(a_i^{\top}x + b).$

Example: Largest singular value of a matrix $X \quad f: \mathbb{R}^{n \times n} \to \mathbb{R}$ $f(X) = \sigma_{\max}(X) = \max_{v:||v||_2 = 1} ||Xv||_2.$

Proposition 22 (Pointwise Supremum). Let $f(x, \omega)$ is convex in x for any $\omega \in \Omega$, then $g(x) := \sup_{\omega \in \Omega} f(x, \omega)$ is convex in x.

Convexity Preserving Operations

Proposition 23 (Partial Minimization). If
$$f(x, y)$$
 is convex in (x, y) , and
Y is a convex set, then $g(x) := \inf_{y \in Y} f(x, y)$ is a convex function.
(Strictly)
Example: Schur Complement Lemma
Suppose we are given a matrix $S = \begin{bmatrix} A & B \\ B^{T} & C \end{bmatrix} \in S^{(n+m)\times(n+m)}$
and $A \geq 0$. Then
 $\begin{bmatrix} S \text{ is positive Semidefinik if and only if } A - BC^{T}B^{T} \geq 0$.
 $and A \geq 0$. Then
 $\begin{bmatrix} S \text{ is positive Semidefinik if and only if } A - BC^{T}B^{T} \geq 0$.
 $and S \geq 0 \in S \subset > 0 \notin C - BA^{T}B \geq 0$.
 $S \geq 0 [x^{T} : Y^{T}] \begin{bmatrix} A & B \\ B^{T} & C \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} \geq 0$
 $g(x) = \inf_{x} f^{T}(x, y)$
 $g(x) = \inf_{x} f^{T}(x, y)$
 $g(x) = 2Bx + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}By + y^{T}Cy} = 2Bx + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax + 2a^{T}B + 2cy = 0$
 $g(x) = a^{T}Ax +$

Proposition 25 (Vector Composition). Let $\{g_i\}_{i \in \{1,2,\dots k\}}$ are convex functions on \mathbb{R}^n , and $h: \mathbb{R}^k \to \mathbb{R}$ is convex and non-decreasing in each argument, then the function f(x) = h(g(x)) is convex.

Other scalar composition rules can also be directly extended to the vector case.

Examples:

- If g is convex, then e^{g(x)} is also convex.
 If g is concave and positive, then 1/g(x) is convex.
 If g_i are convex, then log(∑^k_{i=1} e^{g_i(x)}) is convex.

Recall: Optimization Problem

Goal:

• Find $x^* \in X$ that minimizes the cost function, i.e., $f(x^*) \leq f(x)$ for every $x \in X$.

• Optimal value:
$$f^* := \inf_{x \in X} f(x)$$

• Optimal solution: $x^* \in X$ if $f(x^*) = f^*$.

Often, we write optimization problems in standard form as:

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{subject to} & g_i(x) \leq 0, & i \in \{1, 2, \dots, m\} \\ & h_j(x) = 0, & j \in \{1, 2, \dots, p\}. \end{array} \\ \\ X = \left\{ \begin{array}{ll} \chi \in \mathbb{R}^{\mathcal{N}} & \left| \begin{array}{c} g_i(\chi) \leq \mathcal{O} \\ g_i(\chi) \leq \mathcal{O} \end{array}, \begin{array}{c} h_j(\chi) = \mathcal{O} \\ h_j(\chi) = \mathcal{O} \\ & j \in \{1, 2, \dots, p\}. \end{array} \right. \end{array} \right\} \\ \\ \end{array}$$

Recall

- The problem is infeasible when X is an empty set. In this case, $f^* := +\infty$.
- The problem is unbounded when $f^* = -\infty$.

Definition 16. Recall that

- a feasible solution x^{*} ∈ X is a global optimum if f(x^{*}) ≤ f(x) for all x ∈ X. In this case, f^{*} = f(x^{*}),
- the set of global optima: $\operatorname{argmin}_{x \in X} f(x) := \{z \in X | f(z) = f^*\},\$
- a feasible solution $x^* \in X$ is a local optimum if $f(x^*) \leq f(x)$ for all $x \in B(x^*, r)$ for some r > 0.

Theorem: Weierstrass Theorem

If the cost function f is continuous and the feasible region X is compact (closed and bounded), then (at least one global) optimal solution x^* exists.

Goal: Find $x \in \mathbb{R}^n$ which satisfies a collection of inequality and equality constraints.

$$\begin{array}{ccc} \min_{x \in \mathbb{R}^n} & \mathbf{0} \\ \text{subject to} & g_i(x) \leq 0, & i \in \{1, 2, \dots, m\} \\ & h_j(x) = 0, & j \in \{1, 2, \dots, p\}. \end{array}$$

 $f^* = 0$ if a feasible solution exists. Otherwise, $f^* = +\infty$.

An optimization problem in abstract form

$$\min_{x \in X} f(x), \tag{3}$$

is convex when the feasibility set X is a convex set and the cost function f(x) is a convex function.

An optimization problem in standard form

$$\begin{array}{c} \underset{x \in \mathbb{R}^n}{\min} f(x) \\ \text{subject to } g_i(x) \leq 0, \\ h_j(x) = 0, \end{array} & i \in \{1, 2, \dots, m\} \\ j \in \{1, 2, \dots, p\}, \end{array} \\ \text{is convex when} & \\ f \text{ and } g_i \text{ are convex functions.} & \\ h_j(x) \leq 0 \\ h_j \text{ are affine functions.} & \\ h_j(x) \leq 0 \\ \hline \{x \in \mathbb{R}^n\} \begin{array}{c} \chi_1^2 \in \chi_2^2 = 1 \\ i \leq n \geq 4 \\ convex \leq t \end{array} \\ \end{array} \\ \end{array}$$

Min Xer s.t.	(5-2)2 270	- convex,		max f	(x) min	(- f(x)
max Xeir s.t.	log 2 275	_ convex,	as -los	px is a (onvex	fonch.
min nern	max ie{1,2K3	[qiztbi]	=:g(x).is Hc	a conve nce conve	x func x opt·	tion. prople
min XER s.t	$(-e^{-\chi})$ $(\langle\chi\langle 5\rangle)$	-> not a con	-ex, noblem.	f'(n) = e f''(n) = -	-7, -E ² 20	0
min Xeir s.t.	x2. (log(x) <u>4</u> 2		(a) <u>2</u> 2	€) <u>~ </u>	e ²	Convex
min Xer s.t.	$c^{T}x$ $ x ^{2}z^{2}$	>) > not a convex prob	copt. Iem)

2. Uniqueness under Strict Convexity

Theorem: Uniqueness under Strict Convexity

Consider the optimization problem $\min_{x \in X} f_0(x)$. If f_0 is a strictly convex function and X is a convex set, and x^* is an optimal solution to the problem, then, x^* is the unique optimal solution, i.e., $X_{opt} := \{x^*\}$.

Suppose
$$x, y \in X_{opt}$$
, $x \neq y = 2$

$$f(xx+(1-x)y) < x fox) + (1-x)f(y)$$

$$= xf^{*}+(1-x)f^{*} = f^{*}.$$
which violates the optimality of x and y .
thence $X_{opt} = \{x^{*}\}.$

3. Necessary and Sufficient Optimality Condition

Theorem: Necessary and Sufficient Optimality Condition

Consider the optimization problem $\min_{x \in X} f_0(x)$ where f_0 is a convex and differentiable function, and X is a convex set. Then, x^{\star} is optimal $\iff \nabla f_0(x^{\star})^{\top}(y - x^{\star}) \ge 0, \quad \forall y \in X.$ Sufficiency: Suppose à satisfies vfolut) [y-x) >0 + y ex. <u>First order condition</u>: $f(y) \neq f(x) + \forall f_0(x) + \forall y, x^* \in X$ $f_0(y) \neq f_0(x) + \forall f_0(x) + y, x^* \in X$ 7 = 0 $f_0(y) \neq f_0(x) + y \in X$ <u>Necessity</u>: we are given that x^* is an optimal solution. $\phi(t) = f_0(\vec{x} + t(y - \vec{x}))$ $\phi'(t) = \nabla_{f_0}(x + t(y - x))^T(y - x)$ $\phi'(t)|_{t=0} = \nabla f_0(x^*)^T (y - x^*).$ Since x* is an optimal solution, \$Gt) => >> 0. tyex.

Equivalent Optimization Problems

Consider the following two optimization problems:

$$\min_{x \in X} f(x). \tag{4}$$

$$\min g(y). \tag{5}$$

 $\min_{y \in Y} g(y). \tag{(1)}$

The above problems are equivalent if

- Given an optimal solution x^* of (4), we can find an optimal solution y^* of (5), and
- given an optimal solution y^* of (5), we can find an optimal solution x^* of (4).

Equivalence: Maximization

Equivalence: Epigraph Form

Equivalence: Slack Variables

(A) min $f(x)$ $x \in \mathbb{R}^{n}$ $s.t. g_{1}(x) \leq 0$ $g_{2}(x) \leq 0$ $g_{K}(x) \leq 0$	(B) 7 X S	nin CIRM CRK S.t.	f(x) = 0 $g_{1}(x) + S_{1} = 0$ $g_{2}(x) + S_{2} = 0$ $g_{k}(x) + S_{k} = 0$ $g_{k}(x) + S_{k} = 0$ $S_{1}, S_{2} - S_{k} \ge 0$
Can we construct optimal solv of If $\overline{\mathcal{X}} \in X^A$, is $(\overline{\mathcal{X}}, \overline{\mathcal{S}}) \in X$ Similarcly. If $(\overline{\mathcal{X}}, \overline{\mathcal{S}}) \in X^B$, $\widehat{\mathcal{X}}$	Св)? В?, уе СС Х ^А .	os: de	the $\overline{S}_{i} = \int 0 \ if \ g_{i}(\overline{x}) = 0$ $\int -g_{i}(\overline{x}) \ if \ g_{i}(\overline{x}) < 0$

Hence xt EX A => (xt, st) EXB & so on.

Equivalence: From Equality to Inequality Constraints

 $\begin{array}{c} \underset{\mathcal{X}}{\text{min}} & f(\mathbf{x}) \\ \mathcal{X} & h_1(\mathbf{x}) = 0 \end{array} \qquad \begin{bmatrix} h_1(\mathbf{x}) \leq 0 \\ h_1(\mathbf{x}) \geq 1/2 \\ \end{bmatrix} \qquad \begin{array}{c} \underset{\mathcal{X}}{\text{min}} & f(\mathbf{x}) \\ \mathcal{X} & f(\mathbf{x}) \\ \end{array} \\ \begin{array}{c} \text{s.t.} & h_1(\mathbf{x}) \leq 0 \\ h_2(\mathbf{x}) = 0 \\ \vdots \\ h_p(\mathbf{x}) = 0 \end{array} \qquad \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ -h_1(\mathbf{x}) \leq 0 \\ -h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{min}} & f(\mathbf{x}) \\ \end{array} \\ \begin{array}{c} \text{s.t.} & h_1(\mathbf{x}) \leq 0 \\ -h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{min}} & f(\mathbf{x}) \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{min}} & f(\mathbf{x}) \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \leq 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \underset{\mathcal{X}}{\text{s.t.}} & h_1(\mathbf{x}) \\ \end{array} \\ \end{array} \\ \begin{array}{c (A)

Equivalence: From Constrained to Unconstrained

(A) min fon)	(B) min $f(x) + I_{X}(x)$
s.t. xEX	
optimal solutions of both	problems are identical.

Equivalence: Scalar Multipliers and Constant Terms

min $\phi(f(x))$, xex (B)(A) min f(x) XERY s.t. Ø.(g;(x)) ≤0 +i 9.t. g:(x) <0. D: strictly monotonically increasing function. Both have the same optimal solution. define $y_i = \log(x_i)$ X:>0 $\log(x_0 x_1^{ab} x_2^{ab} - x_n^{ab}) = \log(x_0) + a_0^{b} \log(x_1) + - + a_0^{b} \log(x_n)$ $= \log(d_0) + q_0^2 y_1 + \cdots + q_0^n y_n$ $= \log(d_0) + a_0^T y$) <u><</u> log(Bj) 109 $\Rightarrow \log(a_j) + (a_j)^T y \leq \log(B_j)$

Equivalence: Monotone Transformations

 $\partial \chi^{\prime}$

Relaxation and Soft Constraints

