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Analysis of von Kármán’s swirling flow on a rotating disc
in Bingham fluids

Abhijit Guhaa) and Sayantan Senguptab)

Mechanical Engineering Department, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

(Received 8 February 2015; accepted 13 November 2015; published online 6 January 2016)

In this article, the flow above a rotating disc, which was first studied by von
Kármán for a Newtonian fluid, has been investigated for a Bingham fluid in three
complementary but separate ways: by computational fluid dynamics (CFD), by a
semi-analytical approach based on a new transformation law, and by another semi-
analytical approach based on von Kármán’s transformation. The full equations, which
consist of a set of partial differential equations, are solved by CFD simulations. The
semi-analytical approach, in which a set of ordinary differential equations is solved,
is developed here by simplifying the full equations invoking several assumptions.
It is shown that the new transformation law performs better and reduces to von
Kármán’s transformation as a limiting case. The present paper provides a closed-form
expression for predicting the non-dimensional moment coefficient which works well
in comparison with values obtained by the full CFD simulations. Detailed variations
of tangential, axial, and radial components of the velocity field as a function of
Reynolds number (Re) and Bingham number (Bn) have been determined. Many
subtle flow physics and fluid dynamic issues are explored and critically explained
for the first time in this paper. It is shown how two opposing forces, viz., the
viscous and the inertial forces, determine certain important characteristics of the
axial-profiles of non-dimensional radial velocity (e.g., the decrease of maxima, the
shift of maxima, and the crossing over). It has been found that, at any Re, the
maximum value of the magnitude of non-dimensional axial velocity decreases with
an increase in Bn, thereby decreasing the net radial outflow. A comparison between
the streamline patterns in Newtonian and Bingham fluids shows that, for a Bingham
fluid, a streamline close to the disc-surface makes a higher number of complete
turns around the axis of rotation. The differences between the self-similarity in a
Newtonian fluid flow and the non-similarity in a Bingham fluid flow are expounded
with the help of a few compelling visual representations. Some major differences
and similarities between the flow of a Newtonian fluid above a rotating disc and that
of a Bingham fluid, deduced in the present investigation, are brought together in a
single table for ready reference. Two limiting cases, viz. Bn → 0 and Re → ∞, are
considered. The present results show that the Bingham fluid solution progressively
approaches the von Kármán’s solution for a Newtonian fluid as the Bingham number
is progressively reduced to zero (Bn → 0). It is also established here that, for finite
values of Bn, the Bingham fluid solution progressively approaches the von Kármán’s
solution for a Newtonian fluid as the non-dimensional radius and Reynolds number
increase. The higher the value of Bn, the higher is the required value of Re at which
convergence with the solution for Newtonian fluid occurs. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4937590]
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I. INTRODUCTION

The fluid dynamics of the flow above a rotating disc has been a topic of extensive research
for nearly a century. Other than its fundamental importance, the study of such flow is relevant
for many engineering devices such as turbomachinery or computer storage devices and for many
engineering applications such as spin-coating, lubrication and fabrication of computer memory. The
pioneering paper1 in this field was written by the great fluid dynamicist Theodore von Kármán. For
steady, laminar, and incompressible flow of a Newtonian fluid, von Kármán had given a similarity
solution considering infinite expanse of the fluid on either side of a rotating disc. The physical
process through which von Kármán’s steady flow field arises may be understood in the following
way. Initially, the fluid is stationary everywhere. As the rotating disc imparts rotational motion to
the quiescent fluid due to the no slip boundary condition, a boundary layer is developed near the
rotating disc. Inside the boundary layer, the fluid is pumped radially outward due to the effect of
centrifugal force. For this radial flow to sustain, the fluid flows axially towards the disc satisfying
the equation of continuity. Therefore, the velocity vectors inside the boundary layer have tangential,
radial, and axial components. The process of generating a steady radial efflux of the fluid is known
as the free disc pumping effect.2

After von Kármán, many researchers contributed in this field yielding various perspectives.
A comprehensive review containing some major investigations (up to 1987) on the flow of a
Newtonian fluid above a rotating disc is available in Ref. 3. Some of the recent developments
in this research-area can be found in Refs. 4–8. The effects of externally supplied mass flux on
the flow above a rotating disc can be found in Refs. 9–12. A description of the contribution of
famous fluid dynamicists like Batchelor,13 Ekman,14 and Stewartson,15 and, a good survey of related
work on rotational boundary layer in Newtonian fluids are provided by Guha and Sengupta.11 Re-
searchers have also extended von Kármán’s investigation to various non-Newtonian fluids. Berman
and Pasch16 experimentally investigated von Kármán’s flow in a polymer solution. Acrivos et al.,17

Andersson et al.,18 Ming et al.,19 etc. investigated von Kármán’s flow in a power-law fluid. Siddiqui
et al.20 studied von Kármán’s flow in a Jeffrey fluid. Detailed studies on von Kármán’s flow in
a viscoelastic fluid can be found in Refs. 21–23. However, the corresponding fluid dynamics in
a viscoplastic fluid has not been studied to any great extent. The present work therefore aims to
fill this gap by presenting a rigorous and thorough study of the von Kármán’s swirling flow in an
important category of viscoplastic fluid.

A viscoplastic fluid is a non-Newtonian fluid which evinces a threshold value of stress, known
as the yield stress. A viscoplastic fluid flows only when the applied stress exceeds the yield stress of
the fluid. Below the yield stress, a viscoplastic fluid behaves like a solid. Muds and clays, slurries
and suspensions, heavy oils, avalanches, cosmetic creams, hair gel, hand cream, liquid chocolate,
crystallizing lavas, certain polymer solutions, and some pastes are a few examples of viscoplas-
tic fluid.24,25 Balmforth et al.26 have shown the importance of the study of viscoplastic fluids to
understand various processes and applications in the natural and engineering sciences. An important
category of viscoplastic fluids is known as the Bingham fluid which obeys the Bingham model.27

The model is very popular for explaining the behaviour of many fluids exhibiting the yield-stress
phenomena.

The flow of a Bingham fluid over a rotating disc has attracted some attention in the recent
past. The mass transfer aspect in such flow has been investigated in Ref. 28 and a semi-analytical
approach for predicting von Kármán’s flow in a Bingham fluid, using von Kármán’s similarity
transformation for a Newtonian fluid, is presented in Ref. 29. In the present paper, a rigorous
and comprehensive analysis is presented on von Kármán’s swirling flow in a Bingham fluid. Two
complementary approaches have been developed—a semi-analytical formulation based on a newly
proposed transformation and computational fluid dynamic (CFD) simulations. Many subtle and
complex aspects of the flow-field have been revealed and discussed using both approaches. It is
shown how the new transformation reduces to von Kármán’s transformation as a limiting case, and
how the new solutions for a Bingham fluid reduce to the solutions for a Newtonian fluid in the limit
of zero Bingham number or infinitely large Reynolds number.
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It is believed that the paper contains the first CFD solutions for the flow of a Bingham fluid
above a rotating disc. The present CFD method is not restricted by some of the assumptions that
are considered for the development of the semi-analytical technique. Hence, the CFD method seems
to be more generic as compared to the semi-analytical technique. However, the semi-analytical
technique provides a set of ordinary differential equations (ODEs) by which it is easier to analyse
von Kármán’s swirling flow in a Bingham fluid. Therefore, the first objective of the present work
is to obtain rigorous and thorough solutions of the von Kármán’s swirling flow in a Bingham fluid,
using both analytical and computational methods. The second objective of the present study is to
provide new fluid dynamic understanding that is developed in course of the present investigation.
It has been shown here that von Kármán’s swirling flow in a Bingham fluid exhibits non-similarity.
Typical shapes of boundary layer surfaces for various Bingham numbers due to the non-similar
velocity distributions are shown for the first time in this article. The Newtonian limits (when either
Bn → 0 or Re → ∞) for the rotational boundary layer solutions in a Bingham fluid are introduced
in this paper. Some subtle fluid dynamic aspects for von Kármán’s swirling flow in a Bingham fluid
have been critically explained.

II. MATHEMATICAL FORMULATION

In this section, the governing differential equations for the flow of a Bingham fluid above
a rotating disc are provided. The equations are expressed in a cylindrical coordinate system.
Figure 1(a) shows a schematic of a rotating disc and a cylindrical coordinate system. r (radial), θ
(azimuthal), and z (axial) are the three coordinates and o is the origin of the cylindrical coordinate
system. The surface of the disc is located at z = 0 and, invoking symmetry, the solutions given in
this paper are for z ≥ 0.

In the present study, the flow is considered to be steady, axi-symmetric, laminar, incompress-
ible, and isothermal. Navier-Stokes equations in the cylindrical coordinate system under these
flow-conditions30 are as follows:

∂Vr

∂r
+

Vr

r
+
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∂
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(rτr z) + ∂τzz

∂z
. (4)

Equations (1)–(4) contain the partial derivatives of absolute tangential velocity Vθ, absolute radial
velocity Vr , absolute axial velocity Vz, pressure p, and components of stress tensor τi j.

The boundary conditions for obtaining von Kármán’s solutions31 are as follows:

at z = 0, Vr = 0, Vθ = rΩ, and Vz = 0 (5)
as z → ∞, Vr → 0, and Vθ → 0. (6)

In Equation (5),Ω denotes the rotational speed of a disc at a steady state.
The governing Equations (1)–(4) and the boundary conditions (5)-(6) are applicable for Newto-

nian as well as non-Newtonian fluids. The difference between the various types of fluids is reflected
in the expressions of the elements of the stress tensor τi j in Equations (2)–(4). von Kármán’s orig-
inal solution was obtained for a Newtonian fluid. In the present work, we want to develop a similar
analysis for a specific type of non-Newtonian fluid, viz. the Bingham fluid. The constitutive relation
for a Bingham fluid flow32 is given as follows:

τi j =
�
τy/γ̇ + µp

�
ei j = η(γ̇) ei j, for τ > τy,

ei j = 0, for τ ≤ τy,
(7)
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FIG. 1. Schematic diagram of a rotating disc and the computational flow domain. (a) A rotating disc and the cylindrical
coordinates; (b) a two-dimensional computational domain (ORBA) which is used to determine a three-dimensional, axi-
symmetric flow field. OR is the disc-surface, RB represents the ambient fluid at the edge of the disc, BA represents the
ambient fluid at the top of the disc, and AO is the axis of rotation.

where τy is the yield stress, ei j is the rate of deformation tensor, µp is the plastic dynamic vis-

cosity, η(γ̇) is the apparent viscosity, and γ̇ (γ̇ ≡


1
2

�
ei jei j

�
) is the second invariant of the rate of

deformation tensor. The physical significance of Equation (7) is that there is a threshold value of
the applied stress, known as the yield stress τy, below which a Bingham fluid does not exhibit any
deformation-rate. Above the yield stress τy, a Bingham fluid exhibits fluid-like behaviour such that
the effective viscosity is a non-linear function of the rate of deformation tensor itself. For von Kár-
mán’s swirling flows, the rotation of the disc causes the establishment of the stress field in the fluid.

A. Non-dimensional variables

The results, given in this paper, are presented in terms of a few non-dimensional variables
and parameters. Two important non-dimensional numbers for explaining the flow of Bingham fluid
above a rotating disc are the Bingham number Bn and the Reynolds number Re, given by the
following relations:

Bn ≡ τy/
�
Ωµp

�
, (8)

Re ≡
�
Ωr2� /νp. (9)

In Equation (9), νp denotes the plastic kinematic viscosity of a Bingham fluid. The Bingham num-
ber Bn represents the non-dimensional yield stress. The present theoretical study has been carried
out for a range of Bn (from 0 to 50). The characteristics of laminar and turbulent flows, and, the
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transition from laminar to turbulent flow depend on the value of the Reynolds number Re. For a
Newtonian fluid, the transition from laminar to turbulent flow occurs when Re is greater than 105.33

We could not find in the literature a similar limiting value as the critical Re for a Bingham fluid. In
the present paper, only laminar flow has been studied. The maximum Re used in the present study is
kept below 105.

For a particular Ω and νp, Re increases with radius r . Therefore, the following relation shows
that
√

Re, denoted asℜ, can be interpreted as a non-dimensional radius:

ℜ = r/

νp/Ω =

√
Re. (10)

The non-dimensional axial coordinate, ζ , is similarly defined by the relation

ζ = z/

νp/Ω. (11)

Three variables V̂r , V̂θ, and V̂z are used to denote the non-dimensional radial velocity, non-
dimensional tangential velocity, and non-dimensional axial velocity, respectively. The non-
dimensionalization for V̂r , V̂θ, and V̂z is performed as follows:

V̂r = Vr/ (rΩ) , V̂θ = Vθ/ (rΩ) , and V̂z = Vz/

νpΩ. (12)

III. CFD SIMULATION

Figure 1(a) shows the relevant fluid flow domain which is three dimensional. However, consid-
ering the axi-symmetry of the flow field, the present computation has been performed in a two
dimensional geometry with appropriate equations for axi-symmetric flow. The two dimensional
domain (i.e., OABR) for the computational study is represented in Figure 1(b). RO is the surface of
the disc. AB and BR represent fluid boundaries, respectively, at the top and at the edge of the disc.
OA is a part of the axis about which the disc is rotating at an angular speed Ω. Steady state solutions
are computed for fluids with various values of Bn.

A. Computational schemes

Equations (1)–(4) are solved by a commercially available CFD software Fluent 6.3.26. Two
dimensional, steady, double-precision, pressure based, implicit solver is used. The velocity formu-
lation is in the absolute frame of reference. Axi-symmetric swirl model34 is utilized to calculate the
tangential component of velocity Vθ. The SIMPLE algorithm, with second order upwind scheme
for momentum and ‘Standard’ scheme (pressure on the control-faces are obtained through interpo-
lation of their corresponding cell-centre pressure values) for discretizing the pressure equation, are
utilized. Under-relaxation factors for momentum (radial and axial components), swirl (tangential
component), pressure, density, and body force are chosen as 0.7, 0.9, 0.6, 1, and 1, respectively. The
convergence criterion for the maximum “scaled” residual34 is set as 10−7.

Equation (5), which is a no slip boundary condition, can be implemented directly in a CFD
simulation. Also, a non-zero rotational speed Ω is set on the disc-surface (which is at z = 0).
However, Equation (6) cannot be implemented directly in a CFD simulation. A sufficiently large
but finite value of z is used to represent z → ∞. Pressure outlet boundary condition is used on the
surface AB to represent the ambient condition where both Vr and Vθ asymptotically approach to
zero. In the CFD, two additional boundary conditions are required. The first is an axis boundary
condition which is set at AO of the computational domain OABR. The second is a pressure outlet
boundary condition which is set at BR of the computational domain OABR.

B. Modeling a Bingham fluid in CFD simulation

It is difficult to implement the constitutive relation for a Bingham fluid, as given by Equa-
tion (7), in a CFD simulation. Moreover, one is restricted to the available options in the software.
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The constitutive relation proposed by O’Donovan and Tanner35 is therefore used in the present
computations. According to O’Donovan and Tanner, the stress tensor τi j of a Bingham fluid can be
expressed as

τi j = µyei j, for |γ̇ | ≤ τy/µy

τi j = τy + µp

�
ei j − τy/µy

�
, for |γ̇ | > τy/µy.

(13)

Equation (13) represents a bi-viscosity model, where µp is the plastic dynamic viscosity and
µy is the yielding viscosity. A bi-viscosity model is a viscosity regularisation method. Many advan-
tages of a viscosity regularisation method are described in Ref. 36. However, in some cases, the
prediction of a regularized Bingham model may differ from that of the ideal Bingham model.
For example, Chatzimina et al.37 have shown the difference between the predictions of the ideal
and the regularized Bingham model in some particular situations of Couette and Poiseuille flows.
Thus, a careful implementation of the bi-viscosity model is necessary to achieve an accurate CFD
solution. Fluent 6.3.26 provides the Herschel–Bulkley fluid model38 which can be transformed into
Equation (13) by considering the power-law index of Herschel–Bulkley model to be unity. The ratio
µy/µp needs to be set at a large value. O’Donovan and Tanner,35 while solving a squeeze film
problem, had observed that for implementing Bingham fluid model effectively in a numerical study,
the yielding viscosity should be 1000 times the plastic viscosity. In their recent study, Turan et al.32

used the model of O’Donovan and Tanner35 for studying natural convection in a square enclosure.
The value of µy/µp used by Turan et al.32 is 10 000. The value of µy/µp is set at 50 000 for the
present study. The rationale for this choice is examined in the Appendix.

C. Geometry of the computational domain and grid independence test

The geometry of the computational domain and the computational grid are generated by the
commercially available software GAMBIT 2.4.6. All computations for the present study are carried
out in a particular computational domain. Theory2 shows that the non-dimensional boundary layer
thickness (δ̂ ≡ δ/


νp/Ω) for von Kármán swirling flow of a Newtonian fluid is 5.5. The present

computations show that δ̂ increases with Bn. Hence, the ζ value for the boundary AB of the compu-
tational domain should be sufficiently larger than 5.5. The maximum value of ζ is therefore taken
as 22. Similarly, the computational domain is extended to a sufficiently large value ofℜ so that the
Newtonian limits for various Bingham fluids can be captured (this can be understood after reading
the discussion of Section V F). However, an arbitrarily large value of ℜ cannot also be taken if
laminar flow is considered (Section II A). The computational resources and required computational
time also increase with increasingℜ. As a balance between these opposite demands, the maximum
value ofℜ is taken to be 270 in the present computations.

A grid independence test has been carried out (Table I showing a few pertinent details), and based
on this study, a total 52 272 (363 × 144) mapped, quadrilateral computational cells are used for the
results presented in this paper. The grids are distributed in the radial and axial directions in accordance
with the difference in the flow physics in the two directions. The grid distribution in the axial direction
is non-uniform with very small grid size close to the disc-surface (to capture the velocity gradient on
the surface accurately) and with progressively larger grid size towards the boundary AB. In course of
the present study, it has been found that, for a Bingham fluid, the flow field changes rapidly at small
ℜ and slowly at largeℜ (discussed in Section V). In order to capture this effect properly, the grids in
the radial direction are divided into two zones—non-uniform and uniform. Fromℜ = 0 toℜ = 163,
non-uniform grids are used. Within this radial span, 300 grids are distributed with a successive ratio
of 1.01. Forℜ > 163, the grid distribution in the radial direction is uniform and the grid size is equal
to the size of the last computational cell of the non-uniform zone.

All three non-dimensional velocity components (V̂r , V̂θ, and V̂z) asymptotically attain a constant
value for a sufficiently large value of ζ . At large ζ , both V̂r and V̂θ become zero; V̂z, on the other hand,
attains a constant negative value. This constant value for V̂z at a large ζ is denoted as V̂z(∞). Among
several output parameters of the CFD simulations, V̂z(∞) is selected as a testing parameter for the
grid independence test. The values of V̂z(∞) for various grid distributions are reported in Table I.
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TABLE I. Grid independence test (CFD data given at Re= 3000).

Grid
distribution

Number of
grids in r and
z directions

Total number of
grids

V̂z(∞) for Bn= 50
from CFD

V̂z(∞) for Bn= 0
from CFD

V̂z(∞) for Bn= 0
from numerical

solution39

Coarse (180 × 72) 12 960 −0.6202 −0.8879
−0.8845

Standard (363 × 144) 52 272 −0.6348 −0.8847
Fine (500 × 200) 100 000 −0.6373 −0.8847

D. Validation

CFD solutions, in general, need to be validated with respect to any experimental or authentic
theoretical results. Unfortunately, we could not find any reliable data in the literature for validating
the results corresponding to the flow of a Bingham fluid above a rotating disc. On the other hand,
for von Kármán’s flow in a Newtonian fluid, many authentic studies are available in the literature.
Among these available results, the numerical solution given by Owen and Rogers39 is utilized for
validating the present CFD solution in the limit Bn → 0. Figure 2 shows the axial variation of
non dimensional velocity components V̂r , V̂θ, and V̂z obtained from the present CFD simulations at
Bn → 0. It can be observed that present CFD solution at Bn → 0 agrees well with the numerical
solution given by Owen and Rogers.39 This proves that the computational methodology, used for
the present CFD simulations, is able to reproduce the classical solution of von Kármán swirling
flow. The same computational methodology is also used for a Bingham fluid (Bn > 0). The only
alternation required is in setting the properties of a Bingham fluid which are different from that of a
Newtonian fluid.

IV. SIMPLIFIED SEMI-ANALYTICAL APPROACHES

In Section II, the governing equations [Equation (1)–(4)] for the flow of a Bingham fluid above
a rotating disc are provided. A procedure to solve Equations (1)–(4) by using CFD is described in

FIG. 2. Non-dimensional velocity profiles for the steady flow of a Newtonian fluid (Bn= 0) above a rotating disc (von
Kármán’s swirling flow). [(——) Results obtained from the present CFD simulation at Bn= 0; (⃝) numerical solution of
Equations (17)–(19) as Bn→ 0; (•) numerical solution of Owen and Rogers.39]
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Section III. In this section, a simplified semi-analytical approach is presented. Additional assump-
tions regarding the fluid flow field are needed for the semi-analytical approach. These assumptions
are made by taking cue from von Kármán solution for a Newtonian fluid. It is assumed that, at
a particular radius r , separation of variables can be applied to express both radial velocity Vr and
tangential velocity Vθ (i.e., both Vr and Vθ can be expressed as a product of a radial function and
an axial function). Furthermore, at a particular radius r , the radial function describing Vθ is directly
proportional to r . The axial velocity Vz, at a particular radius r , is assumed to be a function only of z.
The variation of radial, tangential, and axial velocities can be mathematically expressed as follows:

Vr = rΩ e−yn F(ζ),
Vθ = rΩG(ζ),
Vz =


νpΩH(ζ),

(14)

where

yn =
Bn

Rem
= cmn. (15)

In Equation (15), the variable yn is introduced as a corrective yield number, the parameter m is a
function of Bn and Re (i.e., of radius r), and the parameters c and n are considered to be constant.
For this work, the most suitable values of c and n are determined by comparing the predictions
of the semi-analytical formulation with numerous CFD simulations at various Bn. On the basis of
such extensive comparison, the following values are recommended: c = 7.27 and n = 5. In Equa-
tion (14), the expressions of Vθ and Vz are the same as given by von Kármán.1 However, the radial
function in the expression of Vr (i.e., rΩ e−yn) is different from the radial function considered by
von Kármán (i.e., rΩ). For a Newtonian fluid (Bn = 0), Equation (15) shows that e−yn is equal to
one. Hence, for a Newtonian fluid, Equation (14) totally corresponds to von Kármán’s transfor-
mation that is Vr = rΩ F(ζ), Vθ = rΩG(ζ), and Vz =


νpΩH(ζ). Unlike von Kármán’s solution

method, however, the radial variations of the functions F, G, and H for a Bingham fluid (Bn > 0)
are to be determined, as described below.

The following relations for the non-dimensional velocity components V̂r , V̂θ, and V̂z can be
derived by using Equations (12) and (14),

V̂r = e−yn F,
V̂θ = G,

V̂z = H.

(16)

It is possible to transform partial differential equations (1)–(4) into ordinary differential equa-
tions by applying Equation (14). Considering the fluid to be inelastic, the term (τrr − τθθ)/r in
Equation (2) is neglected. Using Equation (16), these ordinary differential equations can be ex-
pressed in the following form:

2V̂r(1 + m ynΛ) + V̂ ′z = 0, (17)

(1 + 2m ynΛ) V̂ 2
r − V̂ 2

θ + V̂zV̂ ′r =

(1 + Bn/ ˆ̇γ)V̂ ′′r −
Bn V̂ ′r
2 ˆ̇γ3 χ1 +

2
Re

(1 + Bn/ ˆ̇γ)V̂r χ2 −
Bn

Re ˆ̇γ3 (1 + 2m ynΛ)V̂r χ3,
(18)

2V̂rV̂θ + V̂zV̂ ′θ = (1 + Bn/ ˆ̇γ)V̂ ′′θ −
Bn V̂ ′θ
2 ˆ̇γ3 χ1. (19)

In Equations (17)–(19), the superscripts, single prime and double prime, denote ∂/∂ζ and ∂2/∂ζ2,
respectively. Λ, ˆ̇γ (non-dimensional second invariant of the rate of deformation tensor), χ1, χ2, and
χ3 are as follows:

Λ =
n

n + m loge Re
, (20)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  203.110.246.23 On: Sun, 10 Jan 2016 14:27:14



013601-9 A. Guha and S. Sengupta Phys. Fluids 28, 013601 (2016)

ˆ̇γ = γ̇/Ω =


2V̂ 2

r

�
1 + (1 + 2m ynΛ)2	 + 2(V̂ ′z )2 + Re

�(V̂ ′r )2 + (V̂ ′θ)2
	
, (21)

χ1 = 4V̂rV̂ ′r
�
1 + (1 + 2m ynΛ)2	 + 4V̂ ′z V̂ ′′z + 2Re

�
V̂ ′r V̂ ′′r + V̂ ′θV̂ ′′θ

	
, (22)

χ2 = 2m ynΛ + 4m2yn2
Λ

2 − 4m2ynΛ2 + 2m ynΛ∗ + 2m∗ ynΛ, (23)

χ3 =8V̂ 2
r (1 + 2m ynΛ)(m∗ ynΛ + m ynΛ∗ − 2m2 ynΛ2)+

8m ynΛ V̂ 2
r

�
1 + (1 + 2m ynΛ)2	 + 2Re

�(V̂ ′r )2 + (V̂ ′θ)2
	
+ 4m ynΛRe(V̂ ′r )2. (24)

The expressions for m∗ and Λ∗ used in Equations (23) and (24) are given as

m∗ = r
dm
dr
= − 2m2

(n + mlogeRe) , (25)

Λ
∗ = r

dΛ
dr
= − n

(n + mlogeRe)2
�
m∗logeRe + 2m

�
. (26)

The ordinary differential equations for a Bingham fluid given above are based on Equation (14).
For Bn > 0, Equation (14) is different from von Kármán’s transformation. It will be interesting
to investigate what happens if one does not apply the factor exp(−yn) in Equation (14). The non
dimensional velocity components can then be expressed as follows:

V̂r = F(ζ),
V̂θ = G(ζ),
V̂z = H(ζ).

(27)

It is to be realized that although Equation (27) used in this limiting theory for a Bingham fluid
appears to be the same as that used by von Kármán for a Newtonian fluid, there is, however, an
important underlying difference. In von Kármán’s solution, the functions F, G, and H have the same
values at all ℜ. This is not true in the present case. The radial variations of the functions F, G,
and H are to be determined for a Bingham fluid as described below. To remind ourselves of this
difference, we would refer to Equation (27) as the modified von Kármán’s transformation in the rest
of the paper.

Using modified von Kármán’s transformation into the partial differential equations (1)–(4) and
considering the fluid to be inelastic, the following set of ordinary differential equations is obtained:

2V̂r + V̂ ′z = 0, (28)

V̂ 2
r − V̂ 2

θ + V̂zV̂ ′r =
(
1 +

Bn
ˆ̇γ

)
V̂ ′′r −

2Bn

ˆ̇γ3 V̂r

�(V̂ ′r )2 + (V̂ ′θ)2
	

− Bn

2 ˆ̇γ3 V̂ ′r
�
8V̂rV̂ ′r + 4V̂ ′z V̂ ′′z + 2Re

�
V̂ ′r V̂ ′′r + V̂ ′θV̂ ′′θ

	�
,

(29)

2V̂rV̂θ + V̂zV̂ ′θ =
(
1 +

Bn
ˆ̇γ

)
V̂ ′′θ −

Bn

2 ˆ̇γ3 V̂ ′θ
�
8V̂rV̂ ′r + 4V̂ ′z V̂ ′′z + 2Re

�
V̂ ′r V̂ ′′r + V̂ ′θV̂ ′′θ

	�
. (30)

The non-dimensional second invariant of the rate of deformation ˆ̇γ used in Equations (29) and (30)
can be expressed as follows:

ˆ̇γ = γ̇/Ω =


4V̂ 2

r + 2(V̂ ′z )2 + Re
�(V̂ ′r )2 + (V̂ ′θ)2

	
. (31)

Equations (28)–(30), which are obtained here as a limiting case (yn → 0) of our original
formulation [Equations (17)–(19)], are similar to those of Ahmadpour and Sadeghy;29 their solu-
tions however contain several errors (one example being that the quantitative values given in
their paper for the ζ-variation of the radial velocity at all non-zero Bingham numbers are erro-
neous; some of their equations also contain errors). The two sets of ODEs, Equations (17)–(19)
and (28)–(30), are solved numerically for particular values of Re and Bn by using the boundary
conditions as follows:

at ζ = 0, V̂r = 0, V̂θ = 1, and V̂z = 0, (32)
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as ζ → ∞, V̂r → 0, and V̂θ → 0. (33)

The following procedure is adopted for solving Equations (17)–(19) and (28)–(30). At first,
they are converted into a set of five first order ordinary differential equations involving V̂r , V̂θ, V̂z,
V̂ ′r , V̂ ′θ , and V̂ ′z . These five equations are then solved by the shooting method. In this numerical
technique, the values of V̂ ′r and V̂ ′θ at ζ = 0 are initially guessed. Then, the five first-order ODEs
are integrated numerically by fourth order Runge-Kutta method. The integrated values of V̂r and
V̂θ at ζ → ∞ are not in general equal to the actual boundary values as given in Equation (33).
Newton’s method for simultaneous non-linear equations40 is utilized for finding the roots of the
boundary residuals in order to obtain the next guess for V̂ ′r (0) and V̂ ′θ(0). This iterative procedure is
repeated until the residuals become less than a very small value (a relative error of 10−8 is used as
the convergence criterion for the present work).

Present numerical solution of Equations (17)–(19) for Bn = 0 is validated with the numerical
solution given in Ref. 39 for a Newtonian fluid. According to the solution given in Ref. 39, the
values of V̂ ′r (0), V̂ ′θ(0), and V̂z(∞) are 0.5102, −0.6159, and −0.8845, respectively. The values
of V̂ ′r (0), V̂ ′θ(0), and V̂z(∞), which are obtained from the present numerical solution, are 0.5102,
−0.6159, and −0.8845, respectively. Figure 2 shows that the ζ-variations of V̂r , V̂θ, and V̂z ob-
tained from the present numerical solution of Equations (17)–(19) for Bn = 0 agree well with
the ζ-variations of V̂r , V̂θ, and V̂z given by Owen and Rogers.39 In Sec. V, solutions of Equa-
tions (17)–(19) have been compared with full CFD simulations for various values of Bn.

V. RESULTS AND DISCUSSION

Results from CFD simulations and semi-analytical approaches are presented and critically
analysed here. In order to streamline the physical understanding, the analysis is grouped in seven
sub-sections.

A. Velocity distributions

In the present work, the non-dimensional velocity components (V̂θ, V̂r , and V̂z) in the axi-
symmetric flow domain are calculated by three complementary but separate ways: (i) full CFD
simulations and (ii) semi-analytical approach involving Equations (17)–(19), and (iii) semi-
analytical approach involving Equations (28)–(30).

Figures 3–5 show the axial (i.e., ζ) distributions of V̂θ, V̂r , and V̂z, respectively. This study
is conducted at a moderate value of non-dimensional radius ℜ which corresponds to Re = 3000
(Equation (10) shows that ℜ = r/


νp/Ω =

√
Re). The representative calculations displayed in

Figures 3–5 are carried out for three different values of Bn (10, 30, and 50).
It can be observed from Figure 3 that, at all values of Bn, the ζ-distribution of V̂θ obtained by

Equations (17)–(19) agree well with that obtained by CFD simulations. The value of V̂θ is greatest at
the disc surface where it is equal to one. V̂θ decreases with increasing ζ , asymptotically approaching
zero at sufficiently large ζ . When Bn increases, two major changes in the V̂θ-profile can be observed.
First of all, the value of V̂θ increases at all nonzero ζ . Second, with an increase in ζ , the rate of
decrease of V̂θ decreases. The physical implication of these two effects is that, with an increase in
the Bingham number, the rotation imparted by the solid disc penetrates further up into the fluid.
Why V̂θ (at a particular non-zero value of ζ) increases with an increase in Bn can be explained in the
following way. Consider a limiting case when Bn is very large (Bn → ∞). Then, the rotation of the
fluid at the steady state (for finiteℜ) will be comparable to a solid-body rotation, thus acquiring the
angular speed of the disc, Ω. The high effective viscosity at large Bn inhibits the decay of tangential
velocity in the axial direction. Hence, when Bn increases, the decay of tangential velocity in the
axial direction decreases.

The fluid above the rotating disc is pumped radially outward. The radial flow is a kind of
secondary flow which is generated because of the centripetal acceleration. Figure 4 shows the axial
variation of the non-dimensional radial velocity V̂r for a Bingham fluid. It can be seen that the
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FIG. 3. Non-dimensional tangential velocity (V̂θ) profiles for a Bingham fluid at various values of Bn. [(——) Present CFD
simulations for various Bn; prediction of Equations (17)–(19): (△) Bn= 10, (♦) Bn= 30, (⃝) Bn= 50. All profiles correspond
to Re= 3000.]

V̂r obtained by Equations (17)–(19) agrees well with the V̂r obtained by CFD simulation. At the
disc-surface, the value of V̂r is zero due to the no slip boundary condition. With an increase in ζ , V̂r

attains a maxima near the disc surface and then decreases, and ultimately becomes zero. When Bn
increases, three major changes in the V̂r-profiles can be observed. First of all, the maximum value of
V̂r decreases. Secondly, the corresponding ζ , at which this maxima occurs, increases. Thirdly, after
attaining the maxima, the rate of decrease of V̂r with an increase in ζ decreases. As a consequence,
V̂r-profiles corresponding to any two different Bn cross each other; this means that V̂r is smaller for
greater Bn in the region between the origin and the cross-over point whereas V̂r is greater for higher
Bn when ζ is larger than the coordinate of the cross-over point. The underlying physics for this
crossing over of V̂r-profiles is as follows. There are two opposing forces acting on the fluid above

FIG. 4. Non-dimensional radial velocity (V̂r) profiles for a Bingham fluid at various values of Bn. [(——) Present CFD
simulations for various Bn; prediction of Equations (17)–(19): (△) Bn= 10, (♦) Bn= 30, (⃝) Bn= 50. All profiles correspond
to Re= 3000.]
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FIG. 5. Non-dimensional axial velocity (V̂z) profiles for a Bingham fluid at various values of Bn. [(——) Present CFD
simulations for various Bn; prediction of Equations (17)–(19): (△) Bn= 10, (♦) Bn= 30, (⃝) Bn= 50; (•) prediction of
Equations (28)–(30) for Bn= 50. All profiles correspond to Re = 3000.]

the rotating disc in the radial direction. These two are viscous force and inertial force. Near the
disc-surface, the effect of the viscous force dominates over the inertial force. The effect of viscous
force in radial direction is such that it opposes the radial outflow of fluid (at disc-surface, the radial
velocity is zero). With an increase in Bn, viscous force increases. Hence, near the disc, V̂r decreases
with an increase in Bn. When ζ increases, inertial force gradually overtakes the effect of viscous
force. It has already been shown that at any particular Re, the non-dimensional tangential velocity V̂θ

increases with an increase in Bn. The inertial force increases with an increase in tangential velocity.
Therefore, when ζ is larger than the coordinate of the cross-over point, V̂r increases with an increase
in Bn.

The axial flow (towards the disc) occurs to supply the fluid within the boundary layer which
will otherwise be evacuated for continuous radial-outflow. Figure 5 shows the axial variation for
the non-dimensional axial velocity V̂z of a Bingham fluid. It can be observed that the V̂z obtained
by Equations (17)–(19) are in close agreement with the V̂z obtained by CFD simulations. The same
figure also contains the solutions obtained by Equations (28)–(30) at Bn = 50 (results for only one
Bingham number are included so that the clarity of the figure is not jeopardized). A significant
discrepancy can be observed between the prediction of equations of (28)-(30) and the prediction of
CFD, thus establishing the superiority of Equations (17)–(19) over Equations (28)–(30). Figure 5
shows that the axial velocity is negative in the flow domain. It is so because the ambient fluid flows
towards the disc. The magnitude of V̂z decreases towards the disc and becomes zero at the disc
surface because of the no penetration boundary condition. With an increase in Bn, the magnitude of
V̂z at any particular ζ decreases (so long asℜ is not too large). It is so because the net radial outflow
[across a line connecting the points (ℜ, 0) and (ℜ, ζ)] decreases with an increase in Bn.

Figure 6 shows the variation of three normalized velocity components (Ṽθ, Ṽr , and Ṽz) with
non-dimensional radiusℜ for Bn = 50. All variables are calculated by three methods: CFD simula-
tions, predictions of Equations (17)–(19), and, predictions of Equations (28)–(30). Each component
of velocity is normalized by its respective value atℜ = 160 determined by CFD. Figures 6(a)–6(c)
display, respectively, the tangential (Ṽθ), radial (Ṽr), and axial (Ṽz) components, all calculated at a
particular ζ (ζ = 5).

It can be observed from Figures 6(a)–6(c) that the numerical solution of Equations (17)–(19)
captures the ℜ-variation of all three velocity components and matches well with the full CFD
simulations, including the complex variation at small ℜ. Figures 6(a)–6(c) also demonstrate that
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FIG. 6. Comparisons of radial-variation for three normalized velocity components at a particular ζ(ζ = 5) obtained by
three different solution methods. (a) Normalized tangential velocity Ṽθ, (b) normalized radial velocity Ṽr , (c) normalized
axial velocity Ṽz. [Keys for the three methods of calculation: (——) Present CFD simulations; ( ) prediction of
Equations (17)–(19); ( ) prediction of Equations (28)–(30). All calculations correspond to Bn= 50. Vθ, Vr , and Vz

(obtained from the three methods at anyℜ) are normalized, respectively, with Vθ, Vr , and Vz obtained by CFD atℜ= 160.]

Equations (17)–(19) based on the transformation that is proposed here perform a lot better than
Equations (28)–(30) based on modified von Kármán’s similarity transformation. It may be remem-
bered that Figure 5 also showed the superiority of the present formulation in predicting the ζ-
variation of the velocity components. A subtle but striking feature of Figure 6 is that, although the
correction factor exp(−yn) is applied only to the radial velocity component Ṽr (see Equation (14)),
the prediction of all three velocity components (Ṽr , Ṽθ, and Ṽz) by the semi-analytical approach
improves significantly. The magnitude of the correction factor exp(−yn) is plotted in Figure 7. With
recommended values c = 7.27 and n = 5, Equation (15) completely prescribes the variation of yn
as a function of Bn and Re.

B. A closed-form expression for the disc-torque

A constant torque has to be applied on the disc to maintain a steady rotational speed of the
disc. The applied torque balances the resisting torque due to the viscous shear stress acting on
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FIG. 7. Variation of the correction factor exp(−yn) with non-dimensional radiusℜ at various values of Bn.

the disc. Here, the torque is computed only on one side of the disc, the two sides being fluid
dynamically symmetrical. Consider a segment from the disc-centre up to a radius r . The torque Γr
required to maintain a steady rotational speed of this disc-segment can be determined by integrating
−2πr2[τzθ]z=0 dr as follows:

Γr = −
r

0

2πr2[τzθ]z=0 dr. (34)

A non-dimensional moment coefficient Cm, r can be defined for the disc-segment of radius r as
follows:

Cm, r = Γr/
�
0.5ρΩ2r5� . (35)

According to the semi-analytical approach described in Section IV, [τzθ]z=0 can be written as

[τzθ]z=0 =


ρΩ3µp

(
1 + Bn/

�
ˆ̇γ
�
z=0

) �
V̂ ′θ
�
z=0 r. (36)

By Equation (21),
�

ˆ̇γ
�
z=0 can be expressed as

�
ˆ̇γ
�
z=0 =


Re

�(V̂ ′r )2 + (V̂ ′θ)2
	

z=0
. (37)

The superscript single prime denotes ∂/∂ζ of the variable. It would be a formidable mathe-
matical task to derive a closed-form expression for Cm, r simply by substituting various expressions
of Equations (34), (36), and (37) into Equation (35). Therefore, a few approximations are made
here, the validity of which has been assessed below by comparing the prediction of the so-derived
closed-form analytical expression for Cm, r and that from the full CFD simulation for Cm, r . The
radial variation in

�
V̂ ′θ
�
z=0 and

�
V̂ ′r
�
z=0 is neglected; their values at the disc periphery are assumed to

apply over the whole disc surface. For simplification of notation, these peripheral values are denoted
by V̂ ′θ(0) and V̂ ′r (0) in the following discussion (i.e., V̂ ′θ(r =


Reνp/Ω , z = 0) is denoted simply by

V̂ ′θ(0) and V̂ ′r (r =


Reνp/Ω , z = 0) is denoted by V̂ ′r (0)). One can then integrate Equation (34) by
substituting Equations (36) and (37) into it. Then, by substituting the integrated expression of Γr
into Equation (35), the expression for Cm, r can be finally shown to be
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Cm, r = −4π V̂ ′θ(0)


Bn

3


Re
�
V̂ ′2r (0) + V̂ ′2θ (0)	

+
1
4



1
√

Re
. (38)

For particular values of Bn and Re, Equation (38) gives Cm, r when the values of V̂ ′θ(0) and V̂ ′r (0) are
known. The values of V̂ ′θ(0) and V̂ ′r (0) are obtained by solving Equations (17)–(19), but the advan-
tage of using Equation (38) is that V̂ ′θ(0) and V̂ ′r (0) need to be determined only at one particular
value of the radius that corresponds to the Reynolds number in question.

Equation (38) produces the correct result for a Newtonian fluid in the limit Bn → 0. From
Equation (38), lim

Bn→0
Cm,r = −π V̂ ′θ(0)/

√
Re which is the same result as given by Childs.2

The validity of the approximations involved in the derivation of Equation (38) is assessed by
comparing its predictions with the values of Cm, r obtained by full CFD simulation which is free
of the approximations. Table II shows such a comparison for various Bn at Re = 200, Re = 3000,
and Re = 20 000. It can be seen that Equation (38) predicts the values of Cm, r with high degree of
accuracy over a large range of Bn and Re.

Equation (38) shows that, for a particular value of Re, the value of Cm, r increases with an
increase in Bn. Cm, r for a Bingham fluid (Bn > 0) depends on both V̂ ′θ(0) and V̂ ′r (0), whereas Cm, r

for a Newtonian fluid is independent of V̂ ′r (0).
Equation (38) is new and has not appeared in the literature previously. The success of this equa-

tion is demonstrated in Table II. However, the mathematical derivation of Equation (38) neglects
the radial variation in V̂ ′θ(0) and V̂ ′r (0), so that analytical integration is possible. The success of
Equation (38) in predicting the torque, however, does not allow one to conclude that von Kármán’s
original similarity transformation is adequate in describing the entire velocity field in a Bingham
fluid. To shed further light, we have plotted the radial variation of the ζ-derivatives of the velocity
components, i.e., V̂ ′θ and V̂ ′r , at three values of ζ in Figure 8. It is found that the derivatives V̂ ′θ and
V̂ ′r vary with the radial position in a complex fashion. V̂ ′θ is negative everywhere inside the boundary
layer, since the tangential speed is maximum on the disc surface.

�
V̂ ′θ
�

on the surface is maximum
for a Newtonian fluid. For a Bingham fluid,

�
V̂ ′θ
�

on the surface approaches the Newtonian limit

TABLE II. Non-dimensional moment coefficient (Cm, r) for various Bn at
three different Re.

Re Bn Cm, r from Equation (38)
Cm, r from CFD

simulations

200

0 0.137 0.136
10 0.306 0.306
20 0.499 0.499
30 0.700 0.699
40 0.903 0.900
50 1.109 1.104

3000

0 0.035 0.035
10 0.045 0.045
20 0.056 0.056
30 0.068 0.068
40 0.081 0.081
50 0.093 0.093

20 000

0 0.014 0.014
10 0.015 0.015
20 0.017 0.017
30 0.018 0.018
40 0.020 0.020
50 0.022 0.022
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FIG. 8. Variations of V̂ ′θ and V̂ ′r with non-dimensional radiusℜ at three values of ζ. [V̂ ′θ ≡ ∂/∂ζ(V̂θ), V̂ ′r ≡ ∂/∂ζ(V̂r). All
calculations are performed at Bn= 30.]

(−0.6159) as the radius increases. The ζ profile of the radial velocity passes through a maxima.
Therefore, V̂ ′r is positive on the disc surface but becomes negative when the ζ-coordinate is above
the point of maxima. V̂ ′r on the disc surface is maximum for a Newtonian fluid. For a Bingham fluid,
V̂ ′r on the surface approaches the Newtonian limit (0.5102) as the radius increases.

There are two reasons for why Equation (38) works so well in practice. The first reason is that
the radial variation of the ratio V̂ ′θ(0)/[V̂ ′2r (0) + V̂ ′2θ (0)] is modest. The second reason is that, in the
analytical integration process, the torque contribution of an elemental circular strip is weighted by
r3 (see Equations (34) and (36)), hence the torque contribution from the peripheral region of the disc
(over which the variation in the ratio V̂ ′θ(0)/[V̂ ′2r (0) + V̂ ′2θ (0)] is even smaller) dominates.

C. Volume flow rate

The net volume flow rate, which is pumped by the radial outflow, is entrained into the boundary
layer by the axial flow. Hence, on one side of a disc, the net volume flow rate can be expressed as

Q̇r = 2πr
 ∞

0
Vrdz = −2π

 r

0
r[Vz]z→∞dr, (39)

where Q̇r is the net volume flow rate through the curved surface of an infinitely long cylinder of
radius r .

The non-dimensional volume flow rate is defined as

ˆ̇Qr = Q̇r/
(

νpΩ π r2
)
. (40)

For a Newtonian fluid, [Vz]z→∞ in Equation (39) is independent of the local radius r . Thus,
the integration can be performed analytically and results into the simple expression
ˆ̇Qr = −[1/


νpΩ][Vz]z→∞ as given by Childs.2 However, for a Bingham fluid, it is difficult to

evaluate the integration analytically because [Vz]z→∞ varies with r and a closed-form expression
for this variation is not available. (The integration is erroneously evaluated in Ref. 29 by taking
[Vz]z→∞ outside of the integral. Thus, the expression of ˆ̇Qr and the values of ˆ̇Qr given in Ref. 29
are inappropriate.) The integration is performed here numerically with the data obtained from CFD
simulations. Figure 9 shows the variation of ˆ̇Qr with Bn at three values of non-dimensional radius
ℜ. At a fixed value of ℜ, ˆ̇Qr decreases with an increase in Bn. For Bn = 0, the non-dimensional
volume flow rate attains the Newtonian limit (0.8845) at any radius.
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FIG. 9. Variation in non-dimensional volume flow rate with Bingham number.

D. Streamlines

The steady state velocity fields in the axi-symmetric flow domain above a rotating disc are
calculated by CFD simulations. Once the velocity field is known, the stream function can be
calculated. A streamline represents a line along which the stream function has a constant value,
and a tangent drawn at any point of a streamline represents the direction of the local velocity
vector. Figures 10(a) and 10(b) show a few illustrative streamlines obtained by the above-mentioned
post-processing operations of present CFD simulations, respectively, for a Newtonian fluid (Bn = 0)
and a Bingham fluid (Bn = 50). Each Figure contains three streamlines which start from ℜ = 10,
ℜ = 30, and ℜ = 50. All the streamlines (in Figure 10) are shown up to ℜ = 110. The radial
locations for the start and end points of the streamlines are selected arbitrarily for illustrating certain
features. Two characteristics which are common in the shape for all the streamlines are as follows.

1. At large ζ (that is far from the disc-surface), the streamlines are approximately parallel to the
axis of rotation.

2. At small ζ (that is near the disc-surface), the streamlines are spiral-shaped.

There are fluid dynamic reasons behind such shape of the streamlines. At large ζ , the axial ve-
locity component is the only nonzero component of the velocity vector (because both radial and
tangential velocity components asymptotically approach to zero at large ζ). Therefore, there the
streamlines are parallel to the axis of rotation. Near the disc, the three components of velocity vector
exist simultaneously. The streamlines are deflected radially outward due to the radial velocity and
the streamlines are deflected in circumferential direction due to the tangential velocity. These two
deflections result into streamline bending (see Figure 10). The spiral shape is attained because of
the simultaneous existence of both radial and tangential components. The end of the spiral always
shifts towards the disc due to the negative value of axial velocity. Thus, near the disc-surface, the
streamlines take a conical helix shape.

Figure 10(b) (for Bn = 50) shows that a fluid streamline close to the disc-surface makes more
number of complete turns around the axis of rotation. This is so because the radial velocity close to
the disc-surface is much lower in the Bingham fluid as compared to the Newtonian fluid, whereas
the tangential velocity is of comparable magnitude (slightly greater for a Bingham fluid) in the two
cases [see Figures 3 and 4].

The values of ζ at ℜ = 110 for all streamlines shown in Figure 10 are mentioned in the figure
caption. ℜ = 110 is selected as the end location for all streamlines only for illustrative purposes.
For both Newtonian and Bingham fluids, it can be observed that the ζ-value at ℜ = 110 increases
when a streamline starts from a greater value of ℜ. For example, at ℜ = 110, the ζ-value of the
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FIG. 10. Streamlines obtained from the present CFD simulation for Newtonian and Bingham fluids. (a) Computed stream-
lines for a Newtonian fluid (Bn= 0); (b) computed streamlines for a Bingham fluid (Bn= 50). (ℜ, ζ) co-ordinates of the
beginning and end of each streamline: S1 [(10, 21.7) → (110, 0.12)]; S2 [(30, 21.7) → (110, 0.41)]; S3 [(50, 21.7) → (110,
0.77)]; S4 [(10, 21.7) → (110, 0.11)]; S5 [(30, 21.7) → (110, 0.36)]; S6 [(50, 21.7) → (110, 0.73)].

streamline which originates at ℜ = 10 is less as compared to the ζ-value of the streamline which
originates atℜ = 50, i.e., the vertical displacement of a fluid particle is less in the second case (for
steady state, a streamline is the same as a pathline). These results may, at the first glance, seem to
be inconsistent with the fact that the magnitude of axial velocity increases with an increase in ℜ
as shown in Figure 6(c). The paradox regarding why the vertical displacement of a fluid particle,
which moves with a greater axial velocity (in the ζ-direction), would be lower can be resolved when
one considers that the time taken by the two fluid particles to reach the final location atℜ = 110 is
not the same. A fluid particle which follows the streamline starting fromℜ = 10 takes more time to
reach atℜ = 110 as compared to a fluid particle which follows the streamline starting fromℜ = 50.
The time, which a fluid particle needs to reach at ℜ = 110, depends on the radial distance and
average radial velocity (Figure 6(b) shows that the radial velocity increases with radius). Greater
radial distance and smaller average radial velocity are the causes for which a fluid particle starting
fromℜ = 10 requires more time to reach atℜ = 110.

E. Non-similar solutions versus self-similar solutions

The classical solution given by von Kármán for the flow of a Newtonian fluid above a rotating
disc exhibits similarity. For the existence of similarity, the axial variations of the non-dimensional
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FIG. 11. (a) An artist’s impression of the top-like structure of the self-similar radial velocity profiles in a Newtonian fluid
(b) An artist’s impression of the onion-like structure of the non-similar radial velocity profiles in a Bingham fluid (Bn= 50).

velocity-components are independent of Re (in this paper, flow is considered to be laminar). The
present study shows that similarity does not hold for the flow of a Bingham fluid above a rotating
disc. The differences between the non-similar solution of a Bingham fluid and the self-similar
solution of a Newtonian fluid are shown in this section.

Figure 11 shows the axial variations of non-dimensional radial velocity (V̂r-profiles) for Newto-
nian and Bingham fluids over a large range of non-dimensional radiusℜ. Figure 11(a) corresponds to
the flow of a Newtonian fluid and Figure 11(b) corresponds to the flow of a Bingham fluid (Bn = 50).
The flow field is axi-symmetric in both cases; therefore, it is possible to obtain surfaces of revolution
by integrating the V̂r-profiles. For a Newtonian fluid, the V̂r-profiles over a large range of ℜ super-
pose on one another due to the existence of similarity. This results into a single surface of revolution.
Figure 11(a) shows that this surface of revolution takes a top-like structure. For a Bingham fluid, the
V̂r-profiles over a large range ofℜ does not superpose on one another because of non-similarity. This
results in the existence of many surfaces of revolution over a range ofℜ. Figure 11(b) is composed
of four such surfaces of revolutions. The surfaces are at ℜ = 5, ℜ = 30, ℜ = 60, and ℜ = 110.
Figure 11(b) shows that a combination of the surfaces can be represented as an onion-like structure
in which each surface is a shell of this onion (though at large ζ , the surfaces may cross).

The non-similarity in the flow-field of a Bingham fluid can be examined with another example.
Figures 12(a) and 12(b) show the distributions of non-dimensional axial velocity (V̂z) for a Newto-
nian fluid (Bn = 0) and for a Bingham fluid (Bn = 50), respectively, obtained by CFD.

For a particular ζ , a Newtonian fluid shows no change in V̂z over a large range of ℜ due to
the existence of similarity. The computed V̂z is found to be a function only of ζ and not of ℜ,
as was the case in von Kármán’s solution. The iso-V̂z surfaces of Figure 12(a) are all parallel to
the ℜ-axis, demonstrating the accuracy of the CFD simulations. This monolithic simplicity of the
iso-V̂z surfaces of Figure 12(a) disappears when one plots the contours of V̂z for a Bingham fluid
shown in Figure 12(b). For a particular ζ , V̂z of a Bingham fluid varies withℜ due to non-similarity,�
V̂z

�
increasing with an increase in ℜ. The iso-V̂z surfaces for a Bingham fluid appear L-shaped on

theℜ-ζ plane.

F. Limiting behaviours of the solutions and exploration for possible scaling

For a Newtonian fluid, Bn is zero. Equations (17)–(19) take the following form in the limit
Bn → 0:
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FIG. 12. The contours of non-dimensional axial velocity (V̂z) obtained from the present CFD simulations. (a) Self-similar
V̂z-contour for a Newtonian fluid (Bn= 0); (b) non-similar V̂z-contour for a Bingham fluid (Bn= 50).

2V̂r + V̂ ′z = 0, (41)

V̂ 2
r − V̂ 2

θ + V̂zV̂ ′r = V̂ ′′r , (42)

2V̂rV̂θ + V̂zV̂ ′θ = V̂ ′′θ . (43)

The single and double prime signs in Equations (41)–(43) represent, respectively, the first and sec-
ond derivatives with respect to ζ . Equations (41)–(43), which are obtained as a limiting case of the
equations for a Bingham fluid, are the same as the governing equations for the flow of a Newtonian
fluid above a rotating disc (as given by von Kármán).

Now, for any positive but finite value of Bn, consider another limiting case when Re tends
to infinity. Under this condition, it can be shown that Equations (17)–(19) again reduce to Equa-
tions (41)–(43). In other words, Equations (41)–(43) are obtained from Equations (17)–(19) either
when Bn → 0 or when Re → ∞. We could not find any of the previous literature mentioning the
implication of the limit Re → ∞ for a Bingham fluid.

Thus, a Bingham fluid (for any positive but finite value of Bn) shows Newtonian behaviour at
Re → ∞. The mathematical infinity can, in practice, be replaced by a finite number which depends
on the value of Bn. It can be shown from Equations (17)–(19) that the value of this finite number
increases with an increase in Bn. When Bn tends to zero, a Bingham fluid becomes Newtonian at
very small Re.

A few additional considerations would be relevant here. First of all, replacing the mathematical
infinity (Re → ∞) by a large but finite value of Re is also consistent with the requirement that for a
laminar analysis to remain valid, the Reynolds number must be below the transition value (about 105

for a Newtonian fluid). Secondly, the physical implication of Re → ∞ is not that viscous stresses
are negligible with respect to inertial terms and consequently there is no discernible difference in
the behaviour of a Bingham and a Newtonian fluid (since their difference lies in the quantification
of the viscous term). It should be realized that both von Kármán’s original formulation and the
present formulation deal with rotational boundary layers inside which the viscous stresses are not
negligible. That the viscous stresses do not vanish can be mathematically appreciated from the fact
that in the limit Re → ∞ for a Bingham fluid, the right hand sides of Equations (42) and (43) are
non-zero. The second derivative terms V̂ ′′r and V̂ ′′θ in Equations (42) and (43) are the viscous terms,
and they are the same either for a Newtonian fluid or for a Bingham fluid with finite Bn and at
Re → ∞. Thirdly, the ζ-profile of V̂r results from the application of the no-slip boundary condition
on the disc surface, thus confirming once again that the solutions are viscous in nature. Fourthly,
an additional physical insight may be obtained by considering the ratio Re/Bn, which is physically
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FIG. 13. Non-dimensional radial velocity (V̂r) profiles at variousℜ for a Bingham fluid (with Bn= 10) and their progressive
development with an increase inℜ towards the V̂r-profile of a Newtonian fluid.

related to the ratio of inertia to yield stress τy. For finite Bn, the condition Re → ∞ implies that
Re/Bn → ∞. This means that, as compared to the inertia, the effect of the yield stress becomes
negligible. The fluid behaviour then simply can be modelled by an equivalent Newtonian fluid with
viscosity equal to µp. This interpretation also implies that as Bn increases, the convergence with
Reynolds number, of the Bingham solutions to the Newtonian solution, would be slow.

The Newtonian limit for a Bingham fluid can also be demonstrated with the results of the
present CFD simulations. At Bn = 10, the axial variation of V̂r for various values of ℜ are calcu-
lated from CFD simulations. Figure 13 shows these calculated V̂r-profiles. The same figure also
shows the unique V̂r-profile corresponding to a Newtonian fluid. ζ is plotted as the ordinate so that
the vertical sense is retained for easy physical interpretation. The ζ vs. V̂r profiles for a Bingham
fluid are different for different values of ℜ, whereas the ζ vs. V̂r profile for a Newtonian fluid
is independent of ℜ. It is to be remembered that, for the rotating disc problem, Equation (10)
shows that the non-dimensional radius and the Reynolds number are connected through the relation
ℜ = r/


νp/Ω =

√
Re. With an increase in ℜ, the progressive development of the V̂r-profiles of

Bingham fluid towards the unique Newtonian-V̂r-profile can be observed in Figure 13.
Figure 13 shows that the V̂r-profile corresponding to a particularℜ has a maxima. In this paper,

the maximum value of V̂r is denoted as V̂r, max. The value of ζ corresponding to a V̂r, max is denoted
as ζV̂r, max

. It can be seen from Figure 13 that, for a Bingham fluid, both V̂r, max and ζV̂r, max
vary with

ℜ. For a Newtonian fluid, von Kármán’s solution shows that V̂r, max = 0.1808 and ζV̂r, max
= 0.93,

and that these values do not depend on the radius. The present CFD solutions also produce exactly
the same results for a Newtonian fluid, thus lending further support to the accuracy of the present
computations.

In order to understand how V̂r, max and ζV̂r, max
vary with ℜ for a Bingham fluid, the results

of many CFD simulations have been post-processed to extract the variations of V̂r, max and ζV̂r, max
with ℜ. The outcome of these computations has been displayed in Figures 14 and 15. The figures
additionally provide graphical demonstration of the newly enunciated physical principle that all
Bingham fluids (with finite Bn) behave like a Newtonian fluid at sufficiently large values of Re.

Figure 14 shows V̂r, max versus ℜ for various values of Bn. The same figure also shows the
Newtonian limit for V̂r, max (0.1808) that is the maximum possible value of V̂r, max for the flow of
a Bingham fluid above a rotating disc. As ℜ increases, for a particular Bn, V̂r, max at first (in a
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FIG. 14. Variation of V̂r, max (maximum non-dimensional radial velocity at any particular ℜ) with non-dimensional radius
ℜ for various Bn. [For all Bn, V̂r, max for a Bingham fluid approaches towards V̂r, max of a Newtonian fluid with an increase
inℜ.]

region close to the axis of rotation) decreases and then onwards increases, the rate of increase of
V̂r, max decreasing with ℜ. For a particular ℜ, V̂r, max decreases with an increase in Bn. Figure 14
clearly shows that the curve (of V̂r, max-ℜ) corresponding to Bn = 1 asymptotically approaches the
Newtonian limit for V̂r, max. Figure 14 also shows that with an increase in Bn, the V̂r, max-ℜ curves
will attain the Newtonian limit at a greater value ofℜ.

Figure 15 shows the variation of ζV̂r, max
(non-dimensional axial coordinate corresponding to

V̂r, max) with respect toℜ for various Bn. The Newtonian limit for ζV̂r, max
, as shown in Figure 15, is

0.93. Asℜ increases, for a particular Bn, ζV̂r, max
generally decreases, the rate of decrease of ζV̂r, max

decreasing with ℜ. For a particular ℜ, ζV̂r, max
increases with an increase in Bn. It can be observed

how the ζV̂r, max
vs. ℜ curve corresponding to Bn = 10 asymptotically approaches the Newtonian

FIG. 15. Variation of ζV̂r, max
(non-dimensional axial coordinate corresponding to V̂r, max) with non-dimensional radius ℜ

for various Bn. [For all Bn, ζV̂r, max
for a Bingham fluid approaches towards ζV̂r, max

of a Newtonian fluid with an increase in
ℜ.]
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limit. [The curve corresponding to Bn = 1 reaches the Newtonian limit at a smaller value of ℜ;
but the curve is not shown in this figure for avoiding data congestion.] A comparison between
Figures 14 and 15 shows that, corresponding to a particular Bn, the Newtonian limit for ζV̂r, max
is reached at a lower value of ℜ as compared to the radial location where the Newtonian limit
for V̂r, max is reached. As an example, for Bn = 10, Figure 15 shows that the Newtonian limit for
ζV̂r, max

is nearly reached at ℜ = 160, but Figure 14 shows that the Newtonian limit for V̂r, max will
be reached at much greater value ofℜ. If one studies the locus of ζV̂r, max

in Figure 13 vis-à-vis the
approach of V̂r, max towards their respective Newtonian limits, then also it becomes clear that, along
theℜ axis, ζV̂r, max

reaches the Newtonian limit before V̂r, max does so.
We explored the idea whether it is possible to define a composite non-dimensional number

involving Bn and Re such that new scaling of solutions would be possible. Our efforts to find any
direct utility of the simple ratio of Bn and Re failed since strong non-linearity is present in the
variation of Bingham solutions with Bn at a fixed Re or vice versa. Taking cue from Equation (15),
we therefore tried to discover any special physical meaning of the non-linear combination Rem/Bn
in unifying the various curves contained in Figures 14 and 15. This effort has met with partial
success, the outcome is depicted in Figure 16.

G. Representation of the boundary-layer surface

It has been discussed in Section V A that V̂θ (non-dimensional tangential velocity) is maximum
at the disc-surface where it equals 1; V̂θ decreases with an increase in ζ , and far from the disc, V̂θ

asymptotically approaches to zero. As per convention,2 a boundary-layer thickness is defined to be
the axial distance away from the rotating disc at which V̂θ equals 0.01. The axi-symmetric surface,
which corresponds to V̂θ = 0.01, is referred in the present study as the boundary-layer surface. The
boundary-layer surfaces are calculated by using CFD over a large range of ℜ. Figure 17 shows
boundary-layer surfaces for various Bn (Bn equals 0, 10, 30, and 50).

Figure 17(a) shows that the boundary-layer surface for a Newtonian fluid (Bn = 0) is flat. This
indicates that, for laminar flow, the non-dimensional boundary-layer thickness (δ̂ ≡ δ/


νp/Ω) of a

Newtonian fluid is independent ofℜ. Theory2 shows that the value of δ̂ for a Newtonian fluid is 5.5
which is the same value obtained from the present CFD simulation as shown in Figure 17(a). The
absolute flatness of the computed surface shown in Figure 17(a) gives confidence in the accuracy of
the numerical results.

FIG. 16. Variations of V̂r, max and ζV̂r, max
with Rem/Bn obtained by the present CFD simulations for various values of Bn

(the values of m are calculated by Equation (15)).
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FIG. 17. Variation of non-dimensional boundary-layer thickness with ℜ obtained from the present CFD simulations for
Newtonian and Bingham fluids. (a) Bn= 0 (Newtonian fluid); (b) Bn= 10; (c) Bn= 30; (d) Bn= 50. (Minimum value of ℜ
considered in the above representations is 2.67.)

Figures 17(b)–17(d) show the boundary-layer surfaces for Bn = 10, Bn = 30, and Bn = 50,
respectively. Figure 18 shows the finer details of the shape of the surfaces at low value of ℜ
(i.e., close to the axis of rotation). It can be observed that, in contrast to what happens in a Newto-
nian fluid, δ̂ for a Bingham fluid is a complex function ofℜ. Although the boundary-layer thickness
generally increases with a decrease in ℜ when ℜ is relatively large (Figure 17), it eventually
decreases as one approaches the axis of rotation (Figure 18). The subtle behaviour close to the
axis of rotation is not perceptibly captured on the scale used for Figure 17 (so this region is dis-
cussed separately later). According to Figures 17(b)–17(d), boundary-layer surfaces corresponding
to Bingham fluids obtain hat-like structure. The central portions of the surfaces are peaky, and, the
surfaces gradually become disc-shaped with an increase inℜ. It has been discussed in Section V F
that a Bingham fluid behaves like a Newtonian fluid at large ℜ. For example, Figure 17(b)
shows that when ℜ is greater than 100, the boundary-layer surface takes a disc-like shape, and
δ̂ approaches to 5.5 (Newtonian limit). The shapes of the boundary layer surfaces shown in
Figures 17(b)–17(d) are related to the corresponding morphology of the unyielded zone.

A possible explanation for the increase of δ̂ with a decrease in ℜ, as shown in
Figures 17(b)–17(d), is as follows. Consider two fluid particles atℜ1 andℜ2 on a particular ζ-plane
above a rotating disc. Suppose ℜ2 is greater than ℜ1. For a Newtonian fluid, V̂θ is independent of
ℜ due to self-similar solution. So, for a Newtonian fluid, V̂θ at ℜ1 (V̂θ,1N) and V̂θ at ℜ2 (V̂θ,2N)
are equal, and an iso-ζ plane is equivalent to an iso-V̂θ plane. However, for a Bingham fluid, V̂θ at
ℜ1 (V̂θ,1B) is not equal to V̂θ at ℜ2 (V̂θ,2B) because of non-similarity. Now, consider an ℜ2 which
is substantially large. According to Section V F, V̂θ,2B tends to V̂θ,2N . Figure 3 shows that V̂θ at a
particularℜ increases with an increase in Bn. Whenℜ1 is not large, V̂θ,1B will be greater than V̂θ,1N

(or correspondingly greater than V̂θ,2N). Therefore, for a Bingham fluid, to obtain an iso-V̂θ-plane
which passes through the coordinate of the second particle, ζ-coordinate of the first particle needs to
be varied such that V̂θ decreases. Figure 3 shows that V̂θ decreases with an increase in ζ . Hence, to
obtain an iso-V̂θ-plane, ζ of the first particle should be greater than ζ of the second particle.
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FIG. 18. Close-up view of non-dimensional boundary-layer thickness at lowℜ for Bingham fluids with Bn= 10 and Bn= 50.
(Minimum value ofℜ considered in the above representations is 2.67.)

Figure 18 shows peculiar shapes of the computed boundary-layer surfaces obtained for small
ℜ (of the order of 10). It can be observed that for smallℜ, the boundary-layer thickness decreases,
instead of increasing, with a decrease inℜ. Thus, at any Bn, a maxima for δ̂ is observed. Figure 18
shows that the location of the maxima shifts to greater ℜ when Bn increases. Nonlinearity of
tangential velocity in the radial direction is the cause of the typical shape of the boundary-layer
surfaces. The solutions obtained from both the CFD simulation and the semi-analytical model
exhibit nonlinearity in the radial direction when Bn is greater than zero. At this point, it should be
mentioned that the nonlinearity of the velocity-components in the axial direction is common to both
Newtonian and Bingham fluids.

Our objective is to produce accurate solutions. One needs to be particularly careful while
obtaining solutions close to the axis of rotation. Other than comparing the CFD and analytical solu-
tions, we have taken a number of special steps to ensure the accuracy. A proper grid independence
study is conducted (Section III C) and a stringent convergence criterion is specified (Section III
A) in which the limit for the maximum residual for all conserved variables is set at 10−7 (which
is smaller than that in many reported studies in CFD). Secondly, we set a critical query regarding
what happens to the axial velocity Vz exactly at the axis of rotation and whether the ‘axis boundary
condition’ of Fluent reproduces that correctly; the summary of the affirmative findings is given in
the Appendix. Thirdly, we wanted to ensure that our solutions, particularly that close to the axis of
rotation, are not dependent on our choice of µy in the bi-viscosity model (see Section III B where
we have set the value of µy/µp to 50 000 for all computations reported in this paper). The Appendix
contains the summary of a systematic sensitivity study and provides the justification for our choice
of µy.
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TABLE III. Comparisons between von Kármán’s flow of a Newtonian fluid and von Kármán’s flow of a Bingham fluid.

Newtonian fluid Bingham fluid

1. Due to self-similarity, the non-dimensional
velocity components are independent of Re (when
Re < Recr). See Figures 11(a) and 12(a).

1. Due to non-similarity, the non-dimensional velocity
components vary with Re. See Figures 11(b) and 12(b).

2. The contours of constant non-dimensional axial
velocity on r -z plane are parallel lines to the disc.
See Figure 12(a).

2. The contours of constant non-dimensional axial velocity on
r -z plane form complex pattern. See Figure 12(b).

3. von Kármán assumed the variations of radial
velocity (Vr) and tangential velocities (Vθ) are
linear with radius, confirmed by present CFD.
See Figures 11(a) and 17(a).

3. The present semi-analytical approach and CFD both
show that the variations of Vr and Vθ with r are
nonlinear. See Figures 11(b), 17(b)–17(d), and 18.

4. The fluid elements at the disc surface rotate
with the angular speed Ω of the disc (no slip).
The angular velocity of the fluid elements above
the disc is not a function of r and decreases
with z (thus becoming zero at z→ ∞).

4. The angular speed of fluid elements Ωfluid is a function of
both r and z . At a fixed r , Ωfluid decreases from Ωsurface to
zero as z changes from 0 to∞. At a fixed z, Ωfluid tries to
be close to Ωsurface as r → 0 and shows complex variation
with increasing r .

5. Axi-symmetric surface representing the boundary
layer is sheet-like and parallel to the disc. See
Figure 17(a).

5. Axi-symmetric surface representing the boundary layer
forms hat-like shape with complex three-dimensional
shape near the disc-centre. The hat-like shape can be
seen in Figures 17(b)–17(d) and the complex
three-dimensional shape can be seen in Figure 18.

6. A Fluid streamline close the disc surface makes
less number of complete turns around the axis of
rotation. See Figure 10(a).

6. A fluid streamline close to the disc surface makes more
number of complete turns around the axis of rotation.
This is so because the radial velocity close to the
disc-surface is much lower in the Bingham fluid as
compared to the Newtonian fluid, whereas the tangential
velocity is of comparable magnitude in the two cases.
See Figure 10(b).

7. The analytical expression for non-dimensional
moment coefficient Cm, r for a Newtonian fluid
as given in Ref. 2 is Cm, r =−π V̂ ′θ(0)/

√
Re.

7. The analytical expression for non-dimensional moment
coefficient for a Bingham fluid as deduced here in Equation

(38) is Cm, r =−4π V̂ ′θ(0)


Bn

3


Re

V̂ ′2r (0)+V̂ ′2

θ
(0)
+ 1

4


1√
Re

.

8. Equations (41)–(43) govern the flow.
Equations (41)–(43) are obtained using von
Kármán’s similarity transformation
i.e., Vr = rΩ F(ζ), Vθ = rΩG(ζ) and
Vz =


νpΩH (ζ).

8. Equations (17)–(19) govern the flow, validated against
results of full CFD simulations. Equations (17)–(19) are
deduced using Equation (14), the transformation proposed
in the present paper. The present work has established that
Equations (41)–(43) are obtained from Equations (17)–(19)
either when Bn→ 0 or when Re→ ∞.

H. Newtonian fluid versus Bingham fluid

Some major differences and similarities between the flow of a Newtonian fluid and the flow of
a Bingham fluid above a rotating disc, deduced in the present investigation, are brought together in
Table III for ready reference.

VI. CONCLUSION

The Bingham fluid flow above a rotating disc has been investigated rigorously in three comple-
mentary but separate ways: (i) full CFD simulations and (ii) semi-analytical approach involv-
ing Equations (17)–(19), and (iii) semi-analytical approach involving Equations (28)–(30). In the
CFD simulations, partial differential equations (1)–(4) are solved; whereas in the semi-analytical
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approach, ordinary differential equations (17)–(19) are solved. Equations (17)–(19) are obtained
by simplifying Equations (1)–(4) invoking several assumptions and a new transformation law
(Equation (14)). It is shown here that all three components of the velocity-field obtained by the
semi-analytical approach are well-matched with the velocity-field obtained in the CFD simula-
tions. Present deductions demonstrate that the new transformation law reduces to von Kármán’s
transformation as a limiting case (yn → 0) and Equations (17)–(19) give rise to another set of
ordinary differential equations (28)–(30). Figure 6 shows a comparison among the CFD solutions,
numerical solutions of Equations (17)–(19) and numerical solutions of Equations (28)–(30). It
has been observed that the predictions of the full CFD simulations are better estimated by Equa-
tions (17)–(19) than by Equations (28)–(30). Moreover, the present paper provides a closed-form
analytical expression for predicting the non-dimensional moment coefficient Cm, r (Equation (38))
which works well in comparison with values obtained by the full CFD simulations, as shown in
Table II.

Some important fluid dynamic aspects can be observed in Figures 3–5 which show, respec-
tively, the axial variations of V̂θ, V̂r , and V̂z at a moderate value of Re (Re = 3000) for various Bn. At
a fixed Re, the V̂θ is maximum at the disc-surface (this maximum value is one) and asymptotically
becomes zero at large ζ ; the

�
V̂z

�
is zero at the disc-surface and asymptotically attains its maximum

at large ζ ; the V̂r is zero at the disc-surface and asymptotically becomes zero again at large ζ . In
between, ζ = 0 and ζ → ∞, V̂θ decreases;

�
V̂z

�
increases; and V̂r first increases to attain a maximum

value and then decreases. With an increase in Bn, the maximum value in the V̂r-profile decreases;
the ζ-value corresponding to the maximum V̂r increases. V̂r-ζ profiles corresponding to any two Bn
undergo a crossover. The decrease of maxima, the shift of maxima, and the crossover occur because
of the effect of two opposing forces, viz. viscous force and inertial force. Some other important
effects due to an increase in Bn (at a given Re and ζ) are the increase of V̂θ and the decrease of

�
V̂z

�
.

The net radial outflow decreases due to the decrease of
�
V̂z

�
.

Figure 10 shows the differences in the characteristics between the streamlines in a Newtonian
fluid flow and the streamlines in a Bingham fluid flow. For a Bingham fluid, a streamline close to the
disc-surface makes more number of complete turns around the axis of rotation. This is so because
the radial velocity close to the disc-surface is much lower in the Bingham fluid as compared to the
Newtonian fluid, whereas the tangential velocity is of comparable magnitude in the two cases.

The present study shows that self-similarity does not hold for the flow of a Bingham fluid
above a rotating disc. The differences between the self-similar solution of a Newtonian fluid and
the non-similar solution of a Bingham fluid are illustrated by two examples as given in Figures 11
and 12. Figure 11(a) shows that for a Newtonian fluid, the ζ – profiles of V̂r at various ℜ are all
superposed on one another. As a result, the surfaces of revolution obtained from the ζ− profiles of
V̂r form a top-like structure. On the other hand, Figure 11(b) shows that for a Bingham fluid, the
ζ− profiles of V̂r at various ℜ do not superpose resulting into an onion-like structure. Figure 12(a)
shows that for a Newtonian fluid, the contours of constant non-dimensional axial velocity on ℜ-ζ
plane are parallel lines to the disc. On the other hand, Figure 12(b) shows that for a Bingham fluid,
the contours of constant non-dimensional axial velocity onℜ-ζ plane form complex pattern.

Two limiting cases, viz. Bn → 0 and Re → ∞, are considered. The present results show that the
Bingham fluid solution progressively approaches von Kármán’s solution for a Newtonian fluid as
the Bingham number is progressively reduced to zero (Bn → 0). It is also established here that, for
finite values of Bn, the Bingham fluid solution progressively approaches the von Kármán’s solution
for a Newtonian fluid as the non-dimensional radius and Reynolds number increase. The higher
the value of Bn, the higher is the required value of Re at which convergence with the solution for
Newtonian fluid occurs. It is shown in Figures 13–15 that V̂r,max and ζV̂r,max for a Bingham fluid
asymptotically approach to their corresponding Newtonian limits when Re is sufficiently large. A
comparison between Figures 14 and 15 shows that, corresponding to a particular Bn, the Newtonian
limit for ζV̂r,max

is reached at a lower value of non-dimensional radius ℜ (ℜ = r/

νp/Ω =

√
Re)

as compared to the radial location where the Newtonian limit for V̂r,max is reached. With an increase
in ℜ, the progressive development of the boundary layer surfaces for various Bn is captured in
Figures 17 and 18. For a Newtonian fluid, the boundary layer surface is flat and sheet-like, whereas
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for a Bingham fluid, the boundary layer surface is hat-like (excluding the region near disc-centre
where the boundary layer surface for a Bingham fluid forms complex three-dimensional shape; see
Figure 18). Figure 17(b) clearly shows how the hat-like boundary layer surface, with an increase in
ℜ, turns into a sheet like surface and tries to attain ζ = 5.5 (corresponding to the δ̂ for a Newtonian
fluid). This provides further evidence for the existence of the Newtonian limits for a Bingham fluid.

APPENDIX: FURTHER COMPUTATIONS SHOWING THE SUITABILITY OF AXIS
BOUNDARY CONDITION AND THE SUITABILITY OF THE CHOICE OF µy /µp IN THE
BI-VISCOSITY MODEL

1. “Axis boundary condition” of Fluent

We implemented the “axis boundary condition” to reduce computational time since a large
number of separate simulations were needed for the present study. In order to determine whether
this boundary condition can produce accurate solutions, particularly very close to the axis of
rotation, full three-dimensional computations were also undertaken for a Newtonian fluid and for
representative Bingham numbers. These further computations showed that there is no discernible
difference between the solutions of these carefully conducted full 3-D solutions and that reported in
this paper.

Since obtaining the correct value of the axial velocity at the axis of rotation would be a critical
test for the “axis boundary condition,” only the ζ-profile of V̂z at the centre of the disc is shown in
Figure 19.

For brevity, only the comparison for a Newtonian fluid is shown. It can be seen that the
computed results with ‘axis boundary condition’ agree well with the full 3-D computational results
and von Kármán’s analytical solution.

2. Choice of µy /µp in the bi-viscosity model

O’Donovan and Tanner35 took µy/µp = 1000 and Turan et al.32 took µy/µp = 10 000. All
computational results given in the main body of this paper are obtained with µy/µp = 50 000.

FIG. 19. Axial velocity at the centre of the disc: comparisons of ζ-variation of the non-dimensional axial velocity (V̂z) for a
Newtonian fluid obtained by three different methods. (——) V̂z obtained by three dimensional CFD simulation at the centre
of the disc (ℜ= 0); (⃝) V̂z obtained by axisymmetric CFD simulation at the “axis boundary” (i.e.,ℜ= 0); (•) V̂z determined
by similarity solution.39
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FIG. 20. Effect of varying µy/µp on the computed non-dimensional boundary-layer thickness (δ̂) in the proximity of
disc-centre. [All calculations correspond to Bn= 50.]

Figure 20 depicts a sensitivity analysis on the choice of µy for the flow over a rotating disc. It
can be seen that even doubling the value of µy/µp over the adopted value for the present study
(50 000) does not appreciably change the solution, either qualitatively or quantitatively. However,
the solution would be altered if µy/µp = 10 000 or lower ratios are used.
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