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ABSTRACT

The non-equilibrium fluid mechanics and thermodynamics of
two-phase vapour—droplet and gas-particle flow are considered. The
formation of the droplets as well as their subsequent interaction with
the vapour are discussed. Five topics have been given particular at-
tention: () CFD application to unsteady condensation waves, (if)
CFD application to shock waves moving through a vapour—droplet
mixture, (ii) a new theory of nucleation of water droplets in steam
turbines based on Monte Carlo simulation (steam turbines are re-
sponsible for 80% of global electricity production and the presence
of moisture significantly reduces the turbine efficiency costing £50m
per annum in the UK alone), (iv) a unified theory for the interpretation
of total pressure and total temperature in two-phase flows and, (v) a
unified theory of particle transport in a turbulent flowfield.

NOMENCLATURE
Dy Brownian diffusion coefficient
D, coefficient of temperature gradient-dependent diffusion
Fy Saffman lift force
g acceleration due to gravity
Gg electrical force
L characteristic length
M., frozen Mach number at far upstream
)4 static pressure
Do inlet stagnation pressure; non-equilibrium total pressurer
Poe equilibrium total pressure
Por frozen total pressure
r droplet radii
R, non-dimensional total pressure
S, Stokes number
AT subcooling; separate definition in Section 6.3
T, inlet stagnation temperature
T, vapour temperature
T, saturation temperature at local pressure
u* friction velocity
V. unperturbed velocity
‘,}ep non-dimensional deposition velocity
Ve, particle convective velocity in the y-direction
Vi average fluid velocity
v average particle velocity

) ratio of specific heats of the solid and gas
€ eddy momentum diffusivity

% kinematic viscosity

Py average particle concentration

Tp droplet temperature relaxation time

T inertial relaxation time

Tr vapour thermal relaxation time

T non-dimensional inertial relaxation time

1.0 INTRODUCTION

The two phase flow of a vapour-liquid mixture consisting of a large
number of minute liquid droplets uniformly dispersed throughout a
background vapour phase continuum is both scientifically interesting
and of engineering importance (in a variety of areas in mechanical,
chemical and aerospace engineering, and, meteorology). Similarly,
two-phase gas-solid particle flows are important in many industrial
processes, environmental engineering and physiology. In the present
paper we discuss the formation of the liquid droplets as well as the
impact of the droplets or solid particles on the thermo-fluid dynamics
of the flow.

What follows is a brief description, with only a few equations, of
some of the work with which the present author has been involved
over the past few years. The cited references(-10) give fuller treat-
ment of these topics. The VKI lecture series() treats most of these
topics together at a much greater depth than that which could be
presented in this short paper. It also contains a good repertoire of
references and works of many researchers in this field which we do
not reproduce here for reasons of economy of space.

2.0 THERMO-FLUID DYNAMICS OF
CONDENSATION

2.1 Physical description of homogeneous condensation

All condensing (or evaporating) flows are non-equilibrium to a
greater or lesser extent. Departures from equilibrium are measured
by the subcooling AT which is the difference between the saturation
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temperature at local pressure and the actual vapour temperature
(AT = T, - T,). AT governs the rate at which nuclei are formed as
well as the rate at which established droplets grow (or evaporate).

As pure, clean steam expands through a nozzle or a turbine blade
passage, droplets do not appear as soon as the condition line crosses
the saturation line. This is due to the existence of a free-energy barrier
involved in creating new surface area. For some considerable time
during expansion the steam remains dry in a metastable equilibrium
until the subcooling becomes high enough to trigger an appreciable
nucleation rate. Depending on the rate of expansion and the pressure,
steam may become subcooled by 30°C-40°C while still remaining
dry. The nucleation process leads to the formation of very large
numbers (1014-1017 nuclei per kg of steam) of tiny droplets (diameter
< 1 nm), called the primary fog, more or less uniformly distributed
in the continuous vapour phase. Nucleation is practically terminated
at the point of maximum subcooling called the Wilson Point. For
pure steam, if the Wilson points for tests with varying nozzle inlet
conditions are plotted on the equilibrium Mollier diagram, they are
contained within a narrow zone around a line called the Wilson line
(which corresponds to approximately 3-4% equilibrium wetness
line).

The droplets thus formed then rapidly grow in size by exchanging
heat and mass with the surrounding, subcooled vapour (the final
droplet radii, r, in laboratory nozzles lie in the range 0-02-0-2 pm).
The high rate of heat release as a result of rapid condensation, causes
a sharp increase in vapour temperature and consequently an expo-
nential decay of the subcooling. Depending on the values of the flow
parameters, the initial growth phase of the droplets may give rise to a
gradual increase in pressure known as “condensation shock”. The
term “shock”, however, is a misnomer. Although pressure rises as a
result of heat addition to supersonic flow, the Mach number down-
stream of the condensation zone usually remains above unity and
more importantly the rise in pressure is gradual.

In conventional, laboratory nozzle experiments, where (dry
saturated or superheated) steam is produced in a boiler, the flow
must expand to supersonic velocities for significant subcooling to
develop. However, if subcooled steam could be supplied at the
nozzle inlet, homogeneous condensation could occur in the subsonic
part of the flow. This is possible, for example, in a multistage
turbine where steam could become subcooled at the inlet of a blade
row as a result of work extraction in previous blade rows. Subsonic
condensation would result in a decrease, rather than an increase, in
pressure.

Some inlet conditions may give rise to such combinations of flow
Mach number and heat release rate that necessitate the formation of
a true aerodynamic shock wave inside the condensation zone
(“supercritical condensation shock”). Under certain conditions this
shock wave may become unstable and propagate towards the nozzle
throat. The compressive wave ultimately interferes with the nucle-
ation zone causing a reduction in nucleation rate and hence heat
release rate. With the cause of its inception removed, the strength of
the wave decreases and the flow again expands through the throat in
a shock free manner, thus allowing the whole process to repeat itself.
Such unsteady flow is normally observed in pure steam when the
inlet stagnation temperature Ty is close to the saturation temperature
at the inlet stagnation pressure p,. Homogeneous condensation then
occurs in the transonic region close to the throat causing the flow
instability (the flow domain and boundary conditions remaining
fixed).

Keeping p, fixed, if T} is progressively reduced from superheated
to subcooled levels, one encounters different regimes of homoge-
neous condensation in the order: subcritical condensation (the usual
pressure humps characteristic of many condensation experiments),
supercritical condensation (with an embedded aerodynamic shock
wave), oscillatory condensation and subsonic condensation®.

After the “condensation shock” the steam generally reverts to near
thermodynamic equilibrium at which the temperature of the vapour
as well as of the droplets is close to the saturation level. Since the
growth of liquid phase takes place by heat transfer through a finite
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temperature difference between the phases, the process is essentially
irreversible and has associated with it a net rise in entropy. In
turbines this appears as a reduction in the potential for performing
work and is referred to as the Thermodynamic Wetness Loss. This is
a major component of the overall wetness loss. A simplistic version
of an empirical rule, formulated by Baumann in 1921, states that the
efficiency of a steam turbine decreases by 1% for 1% increase in
mean wetness fraction. A typical value of the wetness fraction at the
exit of a steam turbine in a electricity-generating power plant is
10-12%. Thus, in the last stages, the wetness loss is comparable to
the combined effects of the profile, secondary and tip leakage losses.
A 1988 estimate by the then UK Central Electricity Generating
Board showed that the adverse wet steam effects cost them £50m per
year. The global implication is thus quite serious since steam
turbines are responsible for about 80% of the world-wide generation
of electricity and hence there is a considerable economic incentive
for further research.

2.2 Computational fluid dynamics applied to the
prediction of unsteady condensation waves

The numerical scheme for the calculation of steady as well as un-
steady non-equilibrium wet steam flow has been detailed in@ 4.
Here, we describe only the outline and highlight some important
aspects.

One of the most effective methods of calculation is to write a
computational “black-box” which contains the nucleation and
droplet growth equations, and the energy equation in its thermody-
namic form. Together they furnish the full set of equations that
describe completely the formation and growth of liquid droplets in a
fluid particle (from a Lagrangian viewpoint) if the pressure-time
variation is specified. The pressure-time variation is obtained by
time marching solutions of the conservation equations such as
Denton’s method, extensively used for single-phase calculations in
turbomachinery blade rows. In this respect, the thermodynamic
aspects of phase-change can be completely divorced from fluid
dynamical considerations so that the use of the “black-box” is effec-
tively independent of any particular Computational Fluid Dynamic
application. Thus established single-phase CFD codes can, rather
easily, be modified to deal with non-equilibrium two-phase flow
with the above-mentioned modular approach. (The flexibility of this
scheme may be appreciated from Ref. 8 where the same “black-box”
has been grafted into a streamline curvature calculation procedure.)

The development of the computational routines within the “black-
box” represents a comparatively major undertaking and has been
fully described by Guha and Young® and Guha®. The routines are
sufficiently general and robust to deal with any type of nucleating or
wet steam flow and (in contrast to many procedures reported in the
literature) full details of the polydispersed droplet size spectrum
following nucleation are retained in the calculations. The last aspect
is essential for accurate modelling of the nucleation zone. This has
been possible, without consuming excessive CPU time, by developing
a novel averaging procedure that constantly redefines the average
size and droplet number in each droplet group. In this way, the
number of droplet groups required is restricted to an affordable
optimum, while always retaining the correct shape of the droplet size
spectrum.

A mixed Eulerian-Lagrangian technique is used. The continuity
and momentum equations are solved by Denton’s time-marching
method. (The wet-steam “black-box™ being flexible and modular,
any other Eulerian time-marching method, e.g. Jameson’s scheme,
can be used.) The “black-box” performs the integration of the
droplet growth equations along the fluid path lines rather than the
usual, quasi-unsteady, method in which the pressure field remains
frozen at a given instant of time while the growth of the liquid phase
is calculated. The present scheme allows simultaneous solution of all
the relevant equations and enforces the correct coupling between the
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Figure 1. Unsteady condensation: evolution of pressure for one cycle.

vapour-phase gasdynamics and the relaxation effects due to the
presence of the liquid phase.

For a proper comparison between experiments and theory,
variation in pressure as well as droplet size must be considered.
Many references compare the variation in pressure only. Such
comparison is an inadequate test for nucleation and droplet growth
theories. Almost any nucleation theory can be “tuned” to reproduce
the measured pressure distribution. A crucial test is to find out
whether the same “tuning” can predict the correct droplet size as
well. Experience with calculations for wet steam points out categori-
cally that, in general, predicting a satisfactory pressure distribution
does not automatically ensure a good prediction of droplet size. The
present computational scheme has been validated against measure-
ments of steady (both sub and supercritical) and unsteady condensa-
tion shock waves®. Various regimes of condensation have been
computed by Guha®, which shows a novel example of subsonic
condensation where the nozzle is unchoked at the geometric throat.
(In most reported studies on condensation shocks in nozzles,
condensation takes place in the supersonic divergent part.)

Figure 1 presents one example of unsteady calculation. The
prediction compares well with measurement. The pressure profiles at
different instants during a complete cycle reveal exactly the same
sequence of the formation and movement of the shock wave as
explained earlier. As the aerodynamic shock wave moves upstream
towards the throat and interacts with the nucleation zone, progres-
sively fewer droplets are nucleated thus resulting in a larger final
mean radius. This causes a large variation in the droplet size during
each cycle. An interesting implication of the unsteady nucleation
process is that it may be a contributing factor to the formation of the
highly-skewed polydispersed droplet spectrum measured in a real
'steam turbine: a polydispersity which cannot be predicted with
steady flow calculation methods (see Section 4). Details of this and
other calculations are in references 4.

2.3 Integral analysis: condensation wave theory

A great deal of physics may be learnt from an integral analysis,
which is a study of the jump conditions relating the end states of the
condensation zone, without considering the detailed flow structure
within it. Reference 2 presents condensation wave theory in great
detail and discusses similarities and differences with the more familiar
combustion wave theory. A theory of thermal choking is presented
in Ref. 3.

AEION, ANALYEIS AND THEORY OF TW0R-DHASE BLows .

3.0 FLUID DYNAMICS WITH INTERPHASE
TRANSPORT OF MASS, MOMENTUM
AND ENERGY IN PURE
VAPOUR-DROPLET MIXTURES

3.1 Relaxation gas dynamics for vapour—droplet mixtures

A lucid description covering many aspects of relaxation gas dynamics
and its applications to vapour—droplet flows (including coupled
relaxation processes) may be found in(.

A direct result of the relaxation processes is that various sound
speeds may be defined subject to different mechanical and thermo-
dynamic constraints, the two limiting cases being the frozen and the
full equilibrium speed of sound. The frozen speed corresponds to the
situation when there is no interphase transfer of mass, momentum or
energy. The full equilibrium speed results when the two phases
remain in equilibrium at all times. Depending on the upstream velocity
and mass fraction of the dispersed phase, many different types of
shock wave structures may result(- 2.5. 6 — e.g. a fully dispersed
wave or a partly dispersed wave. A partly dispersed wave consists of
a near-discontinuous wavefront, called the frozen shock which is
similar to an aerodynamic shock wave in a single-phase gas, fol-
lowed by a relaxation zone. In a fully dispersed wave flow properties
change continuously between the upstream and downstream ends.

Here, we present numerical solutions for a shock wave moving
through a vapour—droplet mixture. From a computational fluid
dynamics point of view it is quite a formidable task as it involves
modelling the effects of interphase transport of mass, momentum
and energy on top of the usual complications in predicting moving
shock waves in a single phase, ideal gas. In contrast to the calcula-
tion of condensation waves described in Section 2, here the slip
between the velocities of the two phases are to be accounted for. A
mixed Eulerian-Lagrangian technique has been employed”. The
two-phase continuity, momentum and energy equations are solved
by a finite volume, time-marching method. The interphase transfer
processes are, however, more easily describable in a Lagrangian
framework. They are therefore integrated along the droplet pathlines
and are coupled to the unsteady Euler solver by introducing their
effects as source terms in the continuity, momentum and energy
equations. '

3.2 Computational fluid dynamics applied to prediction of
moving shock waves in vapour—droplet mixtures

The physical significance of the various wave profiles mentioned
above can be appreciated more readily by considering their develop-
ment under unsteady flow conditions. As a typical example, we now
discuss wave generation in one-dimensional flow by an instanta-
neously accelerated piston in a frictionless pipe initially containing
stationary wet steam. The numerical scheme and other details may
be found in™.

Figure 2 shows the numerical prediction of a wave propagating in
wet steam. The figure also includes the flow behaviour in a dry,
perfect gas under identical conditions in order to illustrate the special
features of a vapour—droplet mixture. The perfect gas case is also
calculated to verify the accuracy of the numerical scheme by
comparing the results with known analytical solutions.

Theory predicts that a shock wave of constant strength propagates
at constant velocity into the stationary perfect gas. The gas velocity
behind the wave is constant and equal to the speed of the piston. The
numerical solution for the pressure distribution, shown by the dotted
line in Fig. 2, shows that the computed shock profile and wave
velocity are extremely accurate and remain remarkably constant as
the wave propagates along the pipe.

When the fluid is wet steam, instead of a perfect gas, the flow
physics (as well as the numeric) becomes more complicated. The
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Figure 2. Numerical prediction of shock propagation in a pipe.

(t — x) diagram in Fig. 2 was constructed from the results of the
unsteady time-marching calculation. At the instant of initiation, all
the interphase transfer processes are frozen and the shock velocity
corresponds to the propagation velocity into a single-phase vapour at
the same temperature. Behind the shock, the mixture relaxes to equi-
librium along the particle pathlines, a typical example of which is
shown in the (¢ — x) diagram. The droplet temperature relaxes first on
the very short timescale T, and is followed by the velocity slip and
vapour temperature on timescales T, and T; respectively. Changes
along the particle paths are propagated upstream and downstream
along the left and right running Mach lines (based on the frozen
speed of sound). The right running Mach lines overtake the shock
wave, weakening it and causing it to slow down. The shock path
therefore curves in the (¢ — x) diagram until it reaches a constant
equilibrium speed. When this occurs, the dispersive effects of the
relaxation processes are just balanced by the steepening effects of
the non-linear terms and the wave structure is identical to that of the
stationary waves in steady flow described earlier. Whether the final
equilibrium structure is partly or fully dispersed depends on the
piston velocity (for analytical conditions, see Ref. 1).

The variation of the wave pressure profile with time is also shown
in Fig. 2 and the deceleration and weakening of the wave front are
clearly visible. The behaviour of the superheat vapour temperature,
droplet radius and wetness fraction is shown by the curves in Fig. 3
which are self-explanatory. As with stationary partly dispersed shock
waves, the increase in wetness fraction downstream of the frozen
shock wave is due to the effects of velocity slip.

3.3 Integral analysis: jump conditions

Detailed study on the jump conditions across shock waves has been
made? 5 and the similarities and differences of condensation discon-
tinuities and aerodynamic shock waves are discussed at length
in Ref. 2. The integral analysis reveals that, depending on the up-
stream wetness fraction and the pressure ratio across the wave, four
types of shock structures may result in vapour—droplet flow. They
are: (i) equilibrium fully dispersed, (ii) equilibrium partly dispersed,
(iii) fully dispersed with complete evaporation, (iv) partly dispersed
with complete evaporation. Jump conditions or Rankine-Hugoniot
relations appropriate for each case are derived® % and the mechanism
of entropy production have been discussed®.
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Figure 3. Variation of flow parameters during shock propagation in wet
steam.

4.0 APPLICATION OF THE
NON-EQUILIBRIUM THEORY TO
STEAM TURBINES

4.1 The formation of the liquid phase

An introduction to the flow through steam turbines may be found in
Ref. 1. In a multistage steam turbine used in power plants for gener-
ating electricity, the steam enters the low-pressure (LP) turbine
cylinders as a dry superheated vapour but becomes wet towards the
last stages. Experiments show that the water in turbines exists in two
quite different forms. Usually more than 90% of the mass is concen-
trated in the fog, which consists of very large number of very fine
droplets (diameter 0-05-2-0 wm). The rest is in the form of coarse
droplets which are very much larger (diameter 20-200 pum). Coarse
water is formed as a small proportion of the fog (typically 2-3% per
blade row) is deposited on the blade surface either due to inertial
impaction or through turbulent diffusion. The deposited water is
drawn towards the trailing edge by the steam flow (or centrifuged
towards the casing on moving blades), where it is re-entrained in the
form of large droplets. The large droplets cause blade erosion, but
their thermodynamic and mechanical effects on the steam flow can
nearly always be neglected.

Formation of new droplets occurs only over a small part of the
expansion in a turbine. As a fluid particle flows through the machine,
typically the complete nucleation process takes only 10-20 us, as
compared with a typical flow transit time of 5-10 ms through an LP
turbine. Thus most of the expansion in the turbine simply involves
condensation on existing droplets. However, nucleation is of crucial
importance as it is the process which establishes the final fog droplet
size distribution which, in turn, determines the subsequent departure
from equilibrium affecting the flow behaviour, the magnitude of the
wetness loss and the rate of fog droplet deposition on the blading
forming coarse water. Once the droplet size distribution can be accu-
rately predicted, the analysis of the wet steam flow through the rest
of the turbine rests on more solid foundation. However, currently no
theory exists (see Section 4.2 for a novel theory) which gives even
remote agreement with the available experimental measurements of
the size distribution of fog droplets in turbines.

Our inability to understand the nucleation process in steam
turbines is surprising given the success with which spontaneous
condensation in laboratory nozzles and stationary, two-dimensional,
laboratory cascade of steam turbine blades can be predicted using a
synthesis of the classical theories of homogeneous nucleation and
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droplet growth with the conservation equations of gas dynamics.
Such calculations have now been refined to the extent that the theory,
amended by only a modicum of empiricism, gives acceptable agree-
ment in terms of pressure distribution and mean droplet diameter
with most experiments reported in the literature.

As shown in Fig. 4, calculations of droplet size spectra in
condensing steam nozzles usually indicate a narrow distribution with
a comparatively small mean droplet diameter strongly dependent on
the local expansion rate near the Wilson point. The mean droplet size
is sensitive to inlet conditions, small changes of which can displace
the Wilson point to new locations of quite different expansion rate.
In turbines, however, experimental determinations of droplet size
spectra give quite different results, the optical characteristics of the
medium invariably indicating a broad, strongly skewed, distribution
with a much larger mean diameter, typically in the range 0-2-0-6 pm.
Quite often, the distribution is bimodal with a significant proportion
of the total mass of liquid contained in a secondary population of
droplets having diameters in the range 0-4-1-0 um. Furthermore, the
spectrum is comparatively insensitive to small changes in turbine
inlet conditions and measurements taken on the same machine over a
period of years show excellent reproducibility.

It is therefore evident that the nucleation of water droplets in
turbines involves phenomena which are not reproduced by laboratory

+ experiments on nozzles and stationary cascades, but nevertheless play

Figure 5. Schematic diagram of the passage of blade wakes through
successive blade rows.
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Figure 6. Specification of the pitchwise loss profile for a blade row.

a dominating role in the process of phase-transition in real machines.
Possible explanations include nucleation in blade-wake vortices,
heterogeneous condensation due to the effects of impurities in the
steam and the effects of blade-row interaction unsteadiness. In
Section 4.2, consideration is given to the third of these possibilities.

4.2 A new theory of nucleation of water droplets in
multi-stage steam turbines used in power plants

The details of the theory are given Refs 1 and 8. The essence of the
theory is that large-scale temperature fluctuations caused by the
segmentation of blade wakes by successive blade rows have a domi-
nating influence on nucleation and droplet growth in turbines. The
fundamental premise is that, in passing through a multi-stage
turbine, different fluid particles undergo different fluid mechanical
experiences depending on the exact details of their passage through
the machine and hence arrive at a given axial location with a wide
variety of thermodynamic conditions. It is further assumed that,
downstream of any turbine stage, the pressure of all the fluid parti-
cles would be near-uniform but their specific entropies (and hence
static temperatures) would vary greatly depending on the dissipation
experienced by a particular particle due to its being entrained in one
or more blade boundary layers or loss-generating regions of the flow.
However, although the path taken by a fluid particle is assumed to be
random, the time-averaged dissipation of all the particles should
agree with the overall loss distribution in the turbine. This is
assumed to be known, either by direct measurement or from empirical
loss correlations.

Figure 5 is a schematic diagram of the way in which the wakes
from one blade row interact with, and are segmented by, the following
row. It can be clearly seen that dissipation occurring in successive
blade rows can become superposed in certain fluid particles (the
darkly shaded areas).

A Lagrangian frame of reference is adopted and attention is
focussed on a large number of individual fluid particles during their
passage through the turbine. Homogeneous nucleation and growth of
droplets in each fluid particle is assumed to be governed by classical
theories. All fluid particles are assumed to experience the same pres-
sure variation but those particles passing close to the blade surfaces
suffer greater entropy production and therefore have higher static
temperatures than those which pursue near-isentropic paths through
the central portions of the blade passages. Particles which suffer high
loss therefore nucleate later in the turbine than those which experi-
ence little dissipation. Condensation is thus viewed as an essentially
random and unsteady phenomenon as the dissipation experienced by
a fluid particle in one blade-row is assumed to be uncorrelated with
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its previous history. On a time-averaged basis, the condensation zone
is spread over a much greater distance in the flow direction than a
simple steady-flow analysis would indicate and may encompass sev-
eral blade-rows depending on the number of stages in the machine.

As shown in Fig. 6, a “loss profile” is constructed to represent the
pitchwise distribution (from the suction to the pressure surface) of
the loss in the blade-row. The pitchwise loss profiles represent the
time-averaged entropy increase along particular pathlines but indi-
vidual fluid particles associated with the passage of wakes may exit
from the blade-row at different conditions because, on entry, their
static temperatures and velocities deviate from the mean.

For the results presented below, a single (circumferentially aver-
aged) pressure-time variation based on an axisymmetric streamline-
curvature throughflow solution was adopted for all fluid particles.
Fluid particles are then launched at the turbine inlet (where the steam
is superheated), all at the same stagnation temperature and pressure.
At the entry to each blade row a random number is generated that
specifies the pathline to be followed by the particle. The pathline, in
turn, fixes the value of the polytropic efficiency (Fig. 6). The “black-
box” (Section 2.2) is then applied along the pathline to calculate the
subcooling and the droplet size distribution (if nucleation has taken
place) at the downstream of the particular blade row. A new random
number is then generated that specifies the pathline in the next blade
row and the procedure is repeated. The “black-box” can deal with
successive nucleations after the primary as a matter of course should
the expansion be sufficiently rapid to generate the high levels of
subcooling required.

For each fluid particle, the subcooling and droplet size distribution
at all points of interest are recorded. It is then a straightforward matter
to compute the time-mean wetness fraction and other statistical prop-
erties in order to obtain a quantitative picture of the process of
phase-change and liquid growth throughout the machine. In a
six-stage low-pressure turbine, some 104 fluid particle calculations
are undertaken on each streamsurface to obtain converged statistical
properties.

As an example of the Monte Carlo simulation, the flow through
the low pressure stages of a 320 MW turbine was analysed. The
turbine was manufactured by the Italian company Ansaldo and the
complete geometry is available in the literature(- 8. The LP section
has six-stages. Each stage consists of a stator followed by a rotor and
hence there are twelve blade-rows altogether in the turbine.

The physical characteristics are best explained by adopting a
Lagrangian viewpoint of a fluid particle as it passes through the
turbine. As described in the previous sections, different fluid parti-
cles experience different amounts of dissipation and heat transfer,
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for these droplets rapid condensation
takes place across the following gap
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Figure 8. Computed Sauter mean droplet diameter at Ansaldo turbine
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depending on the particular pathline followed. Two limiting cases
can be identified. At one extreme are the fluid particles which always
follow the mid-pitch pathline in each blade-row and consequently
suffer no dissipation. They pursue an isentropic path to the Wilson
point. At the other extreme are those particles which negotiate the
regions of maximum loss in each blade-row. Other fluid particles
experience levels of loss intermediate between these two extremes.

Figure 7 shows the calculated variation of the vapour subcooling
AT associated with the two extreme cases of zero and maximum dis-
sipation. The subcooling of the fluid particles change as a result of
the competing effects of the three physical processes: expansion,
condensation and dissipation. Consider first the case of the fluid
particle suffering no dissipation. Here, one of the mechanisms for
altering the subcooling, i.e. dissipation, is absent. The fluid particle
is superheated (negative AT) at the turbine inlet. Its subcooling
increases in each blade-row due to expansion but remains almost
constant between the rows. It attains the Wilson point in the stator of
the fifth stage and subsequently experiences an exponential decrease
in AT due to the extremely rapid liberation of latent heat. AT increas-
es significantly again in the last rotor where the expansion rate is too
high to be offset by the counteracting effect of condensation. Much
the same history is repeated for the fluid particle experiencing the
maximum dissipation. Here, however, dissipation opposes the
increase of the subcooling throughout the flowfield. Consequently,
the Wilson point occurs much further downstream (in the rotor of the
last stage). Other fluid particles, experiencing intermediate amounts
of dissipation, attain their Wilson Points at intermediate locations
between the two extremes. The region of nucleation thus covers (in a
randomly unsteady manner) almost two complete turbine stages as
opposed to being restricted to a very narrow zone in a specific blade-
TOW.

A reliable “rule of thumb” is that Wilson points occurring at loca-
tions of higher expansion rate result in smaller droplets. The variable
location of the Wilson point therefore results in large variations in
mean droplet diameter. It should be understood, however, that the
mean droplet diameters in the two limiting cases do not necessarily
represent the extreme limits of droplet size produced in the machine.
The droplet size is dependent on the local expansion rate which does
not vary monotonically with distance between the extreme locations
of the Wilson points.

Figure 8 shows the location of the Wilson points for the totality of
particles considered (104). Each point on this diagram corresponds to
an individual fluid particle. The abscissa denotes the axial location of
the Wilson point and the ordinate denotes the mean diameter of
droplets within the fluid particle on its arrival at the turbine outlet. It
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Figure 9. Computed time-averaged droplet size distribution at outlet of
the Ansaldo turbine. — mass mean, ----- Sauter mean.

can be seen that the majority of fluid particles nucleate either in the
fifth-stage rotor or in the sixth-stage stator. (The absence of Wilson
points in the first part of the sixth-stage stator results from the very
low expansion rate there, see Refs 1 and 8.) In each blade-row, the
mean diameter of the droplets becomes progressively smaller as the
Wilson point moves towards the trailing-edge, as the rate of expan-
sion tends to increase monotonically to each blade throat. However,
interesting behaviour results for those fluid particles that reach the
trailing-edge plane with subcoolings and nucleation rates which,
although moderately high, are still insufficient to cause complete
reversion to equilibrium. For these particles, the trailing-edge marks
the Wilson point (i.e. the cessation of nucleation) even if compara-
tively few droplets have yet been produced. Reversion to equilibrium
then occurs within the following gap by condensational growth on
existing droplets. Because there is plenty of time available and
because the droplet number density is low, these droplets may grow
to very large sizes as shown in Fig. 8. Such fluid particles are then
prime candidates for secondary nucleations in succeeding blade-
rows because their liquid surface area is insufficient to offset (by
condensation) the opposing effect of increased subcooling due to the
rapid expansion.

An imaginary probe with unlimited resolution in space and time,
sited at the turbine outlet, would register the complete droplet size
distribution for each fluid particle it encounters. Real probes based
on the measurement of attenuated or scattered light, however, record
only sufficient information to deduce, at most, the time-averaged
droplet size distribution (and sometimes only the time-averaged
Sauter mean diameter). In order to compare the theoretical predic-
tions with such measurements, a theoretical time-averaged droplet
size distribution may be constructed at any axial location in the tur-
bine, if the diameters and number density of droplets in all the 104
fluid particles considered are recorded by the computer for subse-
quent processing. The calculated time-averaged droplet size distribu-
tion for the Ansaldo turbine at outlet is shown in Fig. 9. The spec-
trum is polydispersed and highly-skewed (i.e. there is a large
difference between the mean and most probable diameters) and
resembles the shape of similar spectra measured in real turbines
(Fig. 4). This is very significant, as no existing steady-flow calculation
procedure can predict such a high degree of polydispersion.

Unfortunately, no measurement of the droplet size distribution is
available for the Ansaldo turbine, although the time-averaged Sauter
mean diameter of the droplets has been measured. The measured
Sauter mean diameter at mid-span is about 0-4 um, which is a little
smaller than the calculated value of 0-55 pum, shown in Fig. 9.
However, allowing for the uncertainties and approximations in the
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calculation scheme, the level of agreement is extremely encouraging.
Of course, many more experimental comparisons are required before
it is possible to assert conclusively that the important physical
processes are being successfully modelled by the theory presented.

4.3 Conclusion

A theory has been developed for predicting the effect of temperature
fluctuations on the homogeneous nucleation and growth of water
droplets in multi-stage steam turbines. The fluctuations result from
the segmentation of blade-wakes by successive blade-rows and the
amplitude of the fluctuations increases with the number of stages.
According to the model, the mechanics of nucleation in multi-stage
turbines are quite different from the predictions of conventional
steady-state theories of phase-change. For example, the nucleation
zone may encompass (in a randomly unsteady manner) several
blade-rows (as opposed to being isolated at a particular position in a
specific blade-row). The inherent unsteadiness of the process also
results in a highly-skewed, polydispersed (sometimes bimodal) time-
averaged droplet size distribution, having similar characteristics to
spectra measured in real turbines. The next step would be to include,
in the calculation scheme, the effects of circumferential variation in
pressure within the blade passages.

The fundamental implication of the theory is that the time-average
of the droplet spectrum that results from nucleation and droplet
growth in a fluctuating flowfield (due to wake segmentation in a
multistage machine) is quite different from the droplet spectrum that
is calculated by first determining a time-average flowfield and then
performing nucleation and droplet growth computations in this
steady field. The theory presents a radically different perspective of
nucleation in turbines from the generally accepted view and, if
correct, should have a major influence on the future development of
calculation procedures for non-equilibrium steam flows in turbines.

5.0 A UNIFIED THEORY FOR THE
INTERPRETATION OF TOTAL
PRESSURE AND TEMPERATURE IN
VAPOUR-DROPLET OR GAS-PARTICLE
TWO-PHASE FLOW

In this section we discuss briefly some interesting effects of the non-
equilibrium, interphase transfer mechanisms in a stagnation process
in two-phase flow®. Pitot measurements are often used for inferring
velocity or loss (entropy generation) in multiphase mixtures. In
single phase fluids, the fluid is assumed to be brought to rest at the
mouth of the Pitot tube isentropically. Hence flow Mach number and
entropy generation (in steady, adiabatic flow) are uniquely deter-
mined by the total pressure measured by a Pitot tube, together with
an independent measurement of the static pressure. (In supersonic
flow in an ideal gas, application of Rankine-Hugoniot equations
across the detached shock wave in front of a Pitot tube retains the
utility of Pitot measurements for deducing flow Mach number and
entropy generation.) The measurement and interpretation of total
pressure as well as of total temperature in a multiphase mixture
require careful considerations®.

The solid particles or the liquid droplets respond to changes in
temperature, velocity, etc. of the gas phase through interphase
exchanges of mass, momentum and energy. These are essentially
rate processes and hence significant departures from equilibrium can
take place if the rate of change of external conditions, imposed by
the deceleration in the stagnating flow, is comparable to the internal
time scales. Thus, for example, if the size of the liquid droplets or
the solid particles is very small, then inertial and thermodynamic
equilibrium between the two phases are always maintained, and a
Pitot tube would measure the equilibrium total pressure, p,,. On the
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other hand, if the size of the droplets or the particles is very large, all
interphase transfer processes remain essentially frozen. The Pitot
tube records the pressure which it would have recorded if the vapour
phase alone was brought to rest from the same velocity. The total
pressure in this case is termed the frozen total pressure, py. Analytical
expressions for py, and p, both in vapour—droplet and gas-particle
flow, are given in®).

As an example, consider low-pressure wet steam with a typical
wetness fraction of 10% and at a Mach number 1-5. Calculations
show that po/p = 3-3 and po,/p = 3-79, where p is the static pressure.
Therefore, in this particular example, the equilibrium total pressure
is about 15% higher than the frozen value.

It is expected that for intermediate sizes of the droplets or
particles, the pressure recorded by the probe would neither be the
equilibrium nor the frozen value. The imposed deceleration in front
of the Pitot tube would cause the two-phase mixture to deviate from
equilibrium conditions, both inertially and thermodynamically. The
deceleration process consequently ceases to be isentropic, as non-
equilibrium exchanges of mass, momentum and energy between the
two phases create entropy.

Guha has considered® a large number of two-phase mixtures, both
gas-particle and vapour—droplet, at subsonic as well as supersonic
velocities for many different sizes of the droplets (or particles). In the
supersonic case a detached frozen shock wave stands in front of the
Pitot tube. The relaxation mechanisms in a gas-particle mixture are
different from those in a vapour—droplet flow. Despite all these
complexities and differences, it was possible with proper non-dimen-
sionalisation of flow parameters to adopt a universal plot, within
acceptable tolerance, of non-dimensional total pressure, R,, versus
Stokes number, S, (which is a non-dimensional representation of
particle size). R, and S, are defined by, R, = (py — p)/(Po. — Poy) and
S, =1, V.JL, where, V_, is the unperturbed velocity of the two-phase
mixture far upstream of the measuring device, p, is the pressure
attained at the measuring point under non-equilibrium conditions (the
total pressure which is measured) and L is a characteristic length (in
subsonic flow L is related to the Pitot diameter, in supersonic flow L
is related to the distance between the frozen shock wave and the Pitot
mouth). Larger droplets or particles correspond to higher S,.

Figure 10 shows the variation of R, with S,, which may be adopted
as the Pitot correction curve usable at a wide range of subsonic and
supersonic Mach numbers and for any two-phase mixtures
(vapour—droplet or gas-particle). The variation is monotonic. It
should be noted that the denominator in the expression for R, is

calculated using the equilibrium thermodynamics, whereas the
numerator is calculated using non-equilibrium equations. That the
value of R,, shown in Fig. 10, indeed tends to unity and zero in the
appropriate limits of S,, demonstrates independent theoretical consis-
tency of the calculation schemes.

In addition to these numerical calculations, an analytical theory
for determining total pressure under non-equilibrium conditions has
been formulated (as yet unpublished). The analytical theory is sim-
ple and is amenable to direct physical interpretation. The theory
shows that R, = 1/(1 + S,). The predicted total pressure correctly
reduces to the frozen total pressure in the limit of large Stokes
number (large particles) and to the equilibrium total pressure in the
limit of small Stokes number (small particles). Maximum depen-
dence of the total pressure on Stokes number is observed when the
Stokes number is of the order unity. The analytical result is also plot-
ted in Fig. 10 for comparison. Under non-equilibrium conditions for
intermediate S,, the prediction of this equation compares very well
with results from full numerical solution of the gas dynamic
equations for two-phase mixtures.

Figure 11 plots the rise in mixture entropy, as mixtures of air and
solid particles are decelerated by a measuring probe from their far
upstream velocity to rest. Four different (hypothetical) solid particles
with 8 = ¢/c,, = 0-1, 0-8, 1-2 and 4 are considered (where § is the
ratio of specific heats of the solid and the gas) and the calculations
are performed for two upstream frozen Mach numbers (M.,). For the
subsonic case (Mg, = 0-8), Fig. 11 shows that the rise in entropy is
indeed maximum when S, ~ 1, and is almost zero in the frozen and
equilibrium limits. (Recall from Fig. 10 that the total pressures are
different in these limits.) At Mg,, = 1-5, the entropy rise is again max-
imum close to S, ~ 1, but it has a finite value both at S, — 0 and at
§,— oo. The rise in entropy in the limit S, — oo is simply that across
the frozen shock. (Since the same frozen shock is involved in all cas-
es because the same M, is used, this increase in entropy is the same
for all four mixtures considered.) The rise in entropy in the limit
S,— 0 is, however, different for different mixtures (it depends on the
isentropic index of the mixture and hence on 8). However, it is
shown®) that if the particles come to equilibrium downstream of a
frozen shock wave, then the entropy rise (across the shock plus the
relaxation zone) is not dependent on the particle size (and hence on
the relaxation times), but is determined completely by Rankine-
Hugoniot equations for two-phase flow. This fact is reflected in the
straight, horizontal portions of the curves (at Mg, = 1-5) in Fig. 11 in
the limit S, — 0.
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Figure 12. A typical variation in measured deposition rate with particle
relaxation time. Zone 1: turbulent diffusion regime, zone 2: turbulent
diffusion — eddy impaction regime and zone 3: particle inertia
moderated regime.

The rate of entropy production in a multiphase mixture is
maximum when the Stokes number is of the order unity (in accor-
dance with other results of relaxation gas dynamics), and a reduction
in measured total pressure is not unequivocally related to a rise in
entropy (as it is in steady, adiabatic flow of single-phase fluids). The
fact that the total pressure decreases monotonically from py, to py, as
S, changes from O to o (Fig. 10), whereas the entropy rise is zero at
both limits and has a maxima when S, ~ 1 (Fig. 11), demands care
while interpreting Pitot measurements in multiphase flow.

6.0 A UNIFIED EULERIAN THEORY OF
TURBULENT DEPOSITION TO
SMOOTH AND ROUGH SURFACES

6.1 Introduction

Understanding the mechanisms by which particles dispersed in a
turbulent stream of fluid are transported towards the solid walls
forming the flow passage, and predicting the rate of deposition, are
both scientifically interesting and of engineering importance (in a
variety of areas of mechanical engineering, chemical engineering,
environmental engineering and physiology). Consequently these
have been the subject-matter of an extremely large number of studies.

Guha(19 has developed, a simple, unified Eulerian theory of depo-
sition that can be used for practical calculations. Starting from the
fundamental conservation equations and with a modicum of approxi-
mations and no tuning factors, the present theory produces satisfac-
tory agreement with the experimental data. (Typical experimental
data is schematically shown in Fig. 12, which is a plot of non-dimen-
sional deposition velocity versus non-dimensional relaxation time;
T+ = Tu*?/v, where 7T, is the inertial relaxation time of the particles,
u* is the fluid friction velocity and v is the kinematic viscosity of the
fluid. V;ep = J/ﬁpou*, where J is the mass flux of particles and ﬁﬂo is
the bulk partial density of particles.)

There are two common approaches for deposition calculations:
Eulerian and Lagrangian. On the Eulerian front, the established
practice has been to use separate theories for capturing the different
behaviours of deposition rate in different size ranges of particles.
With reference to Fig. 12, a turbulent version of Fick’s law is applic-
able for the small particles, “free flight” or “stopping distance”

models are for the intermediate range, and yet another model is to be
applied for large particles. Although it is possible, with proper tuning
of the models (e.g. by prescribing the free flight velocity), to repro-
duce the experimental results for fully developed pipe flow, the
theories cannot be extrapolated to two or three dimensional flow
situations (e.g. for deposition of particles on gas turbine blades) with
any great confidence because of their piecemeal nature and the
required empirical tuning. These models are also of limited use if
other effects, e.g. thermophoresis or electrostatic interaction, are
present.

The Lagrangian scheme, on the other hand, involves trajectory
calculations typical for a large number of particles, the fluid turbu-
lence field being generated by various methods ranging from simple
to direct numerical simulation (DNS) of Navier-Stokes equations.
These calculations are illustrative and important for physical under-
standing. However, Lagrangian computations may be too time-
consuming to be effective as a practical calculation method,
especially for small particles. Many reported Lagrangian schemes
also do not reproduce the whole deposition curve as shown in
Fig. 12.

The present theory is Eulerian in nature but results in a universal
set of simple equations that apply for the whole size range of particles
and explain the physics of the problem to a great extent. The present
scheme has the potential of becoming a useful tool in practical
calculations of any complexity as well as theoretical analyses of
fundamental importance.

The present theory of deposition is general. Other than Fickian
diffusion (both Brownian and turbulent), the theory includes motion
of particles due to temperature gradient (thermophoresis), motion
arising from interaction of particle inertia with the inhomogeneity of
turbulence field (turbophoresis), motion of particles due to electrical
forces (electrophoresis), motion due to gravity and Saffman lift
force, and the effects of surface roughness. It is possible to extend
the theory to include other effects such as pressure diffusion,
stressphoresis or diffusiophoresis.

The theory is mathematically quite sound and should be useful in
understanding the physics of deposition process. However, one of
the main strength of the theory is its simplicity and practical rele-
vance. It is shown(!0) that the solution of a simple set of equations,
the continuity Equation (1) and two momentum Equations (2a) and
(2b), produce the whole of the “S-shaped” deposition curve and give
results which compare favourably with the most advanced and elab-
orate Lagranginan-type particle tracking methods. (In fact, it is
shown that the solution of just one momentum Equation (2c) could
be enough in many cases, the compromise being the neglect of the
Saffman lift force.)

The present scheme, being Eulerian, is computationally much
faster than stochastic Lagrangian calculations of particle tracking (by
several order of magnitude in the case of small particles). It is also
more versatile than any other reported calculation scheme (in its
applicability to the whole size range of particles and its ability to
account for various deposition mechanisms). Since the present theory
models the various deposition mechanisms correctly, it should be
applicable to practical deposition problems in complex geometries (e.g.
deposition of particles on internally cooled, highly curved, gas turbine
blades or that of water droplets on steam turbine blades). It is possible
to combine the present Eulerian scheme for calculating particle
motion with well-established Eulerian flow solvers for calculating the
flowfield of the primary fluid. Thus the present theory could be of
interest to fluid dynamicists as well as of use to aerosol engineers.

6.2 The present unified model of deposition

The proper way of deriving the equations for deposition is to write
the particle continuity and the momentum conservation equations,
split the different flow quantities into their respective mean and
fluctuating components, and then perform Reynolds averaging. The
details may be found in Ref. 10, here we quote the final results.



Consider vertical, fully-developed flow in a pipe with the x-coor-
dinate aligned to the flow direction and the y-coordinate being
perpendicular to the solid wall. The expression for the flux of particles
J in the y-direction results from the Reynolds-averaging of the particle
continuity equation and is given by
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where Dy is the coefficient of temperature-gradient-dependent diffu-
sion including the thermophoretic component, Dy is the Brownian
diffusion coefficient, € is the eddy momentum diffusivity, p, is the
average particle concentration, and, T is the temperature. The particle
convective velocity in the y direction, ng, appearing in Equation (1),
has to be calculated from the particle momentum. equation. The
particle momentum equations in the y and x directions are given by
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where, V2 is the square of particle rms velocity, Vp is the average
particle velocity, V, is the average fluid velocity, Fj is the Saffman
lift force, Gy is electrical force, T, is the particle relaxation time and
g is the acceleration due to gravity. Note that the x-momentum Equa-
tion (2b) involves both V. and V¢,. The y-momentum Equation (2a),
on the other hand, is almost decoupled and depends on V,, only
through the Saffman Lift force, Fg,. A study of Equations (2a) and
(2b) also shows nicely how gravity affects the y-momentum equa-
tion through the lift force.

In the general case, both Equations (2a) and (2b) must be solved
simultaneously. In order to gain more physical insight into the depo-
sition process, we temporarily suspend the effect of the Saffman Lift
force, F,, and the electrical force, Gg,. With these provisos, the par-
ticle convective velocity in the y direction, Vg, can be calculated
from '
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It is worth remembering that the second term in the LHS of Equation
(2¢) is the steady state drag term simplified with the assumption
V5, =0 the full form is «(V 5 — Vg )1,

The first term in the RHS of Equation (1) is the contribution from
Brownian and turbulent diffusion. This term depends on the gradient
in the particle concentration and is the same as Fick’s law. The second
term represents the diffusion due to a gradient in the temperature.
The third term represents a convective transport of particles. Equa-
tion (2c) relates the particle convective velocity with the gradient in
turbulence intensity (turbophoresis). Equation (2a) shows that the lift
force and the electrical force also contribute to this convective veloc-
ity. It is chiefly the absence of this convective term in Fick’s-law that
necessitated postulating stopping distance models. It is important to
note that the turbophoretic term depends on the particle rms velocity,
which may be different from the fluid rms velocity if the particle
inertia is large. When the particles are very small, they effectively
follow the fluid eddies and the two rms velocities are essentially the
same. In this limit, T, — 0, Equation (2c) shows that V;y — 0. Hence
the contribution from turbophoresis is negligible. Fick’s law is,
therefore, an adequate description for the deposition of small parti-
cles. As T, increases, the turbophoretic term assumes dominance,
thereby increasing the deposition rate by a few order of magnitude.
However, as T; increases, the particles are less able to follow fluid
fluctuations and the particle rms velocity becomes progressively
smaller as compared to the fluid rms velocity. This is one of the fac-
tors responsible for the eventual decrease in deposition velocity with
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Figure 13. Predicted deposition rate versus relaxation time (effects of
pure diffusion, pure inertia and interception).

—— Solution of Equation (1) retaining all terms

- - — Pure diffusion: solution of Fick’s law, with the lower boundary
at wall (y§ =0)

— — Pure diffusion: solution of Fick’s law, with interception (yg = r+)

- - - - Pure inertial deposition: solution of Equation (1) retaining only
the third term on the RHS. For all curves, ki =0, AT=0.

increasing particle size when T, is very large. For small particles the
first two terms in the RHS of Equation (1) dominates whereas for
large particles it is the third term that matters. That these three
distinct mechanisms of deposition appear in a simple additive form
in Equation (1) has not been postulated but is rigorously derived
from the fundamental conservation equations.

It is crucial to incorporate the particle momentum equation (equa-
tion set 2) in the analysis. The first term in Equation (2c) represents
particle acceleration, the second term is the viscous drag and the
third term arises from the turbulent fluctuations. When 1+ — oo, the
viscous drag term is negligible, and the acceleration term is balanced
by the turbulence term. However, in this limit, the turbulence term
also tends to zero. As T+ is decreased from this limit, the turbulence
term grows and so does the convective slip velocity V,gy. The deposi-

tion velocity therefore increases with decreasing particle size in this p

range (Fig. 12, zone 3). This trend in deposition velocity, however,
does not continue all the way to very small particles because the vis-
cous drag term assumes importance. The viscous drag term increases
with decreasing particle relaxation time, and tries to reduce the slip
velocity. The turn over point occurs around T+ = 30. For 1+ < 30, the
deposition velocity starts decreasing with decreasing relaxation time
(Fig. 12, zone 2). In this regime, the acceleration term loses impor-
tance, and the viscous term usually balances the turbulence term.
Equation (2c) shows that as T+ — 0, Vlgy — 0. Turbophoresis is thus
negligible for small particles even if there is a gradient in turbulence
intensity. However, for small particles the Brownian and turbulent
diffusion of particles begin to dominate and the deposition velocity
rises again with decreasing t+ (Fig. 12, zone 1).

6.3 Results and discussion

Figure 13 shows the relative importance of pure diffusion and pure
inertial effects in the equation for mass flux (Equation (1)). For all
curves in this figure, we assume that the effective roughness height,
k,, is zero, and that the flow is isothermal (no thermal diffusion). The
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Figure 14. Effects of surface roughness on the predicted deposition
rate (without lift force) and comparison with experimental results of Liu
and Agarwal (1974).

—— k¢=0,--— k=05, ----ki=1-5, ® experimental results of
Liu and Agarwal. For all curves, AT = 0.

pure diffusion case is calculated by assuming that the turbulence is
homogeneous. The source term in the RHS of Equation (2¢) is zero

and, consequently, the convective velocity, Vg, is zero. Under these
circumstances, Equation (1) becomes identical with the turbulent
version of Fick’s law. As discussed in Section 6.1, the deposition
velocity monotonically decreases with increasing relaxation time.
This case was calculated by taking the lower boundary at y* = 0. The
behaviour of the deposition velocity, however, changes if one
includes the effects of interception. The lower boundary is now at
one particle radius away from the wall. As the lower boundary is
shifted, the effective resistance against mass transfer tends to
decrease. For large relaxation times, this effect can more than offset
the effect of lower Brownian diffusion coefficient, Dy. For large
relaxation times, the calculated deposition velocity, therefore,
increases substantially with increasing relaxation time (Fig. 13),
even though the convective velocity, Vf,y, is neglected.

For calculating pure inertial effects, only the third term in the
RHS of Equation (1) is retained. Figure 13 shows that the convective
velocity goes to zero for very small particles. Its effect on the depo-
sition velocity has become comparable to that of pure diffusion
around T+ ~ 0-2. It then rises steeply by several order of magnitude as
7+ increases. The solid line in Fig. 13 is calculated by retaining all
terms in Equation (1). It merges with the pure diffusion case for very
small particles and merges with the pure inertial case for large
particles. The relative importance of diffusion, inertia and interception
can clearly be appreciated from Fig. 13.

Figure 14 shows the variation in deposition velocity with relax-
ation time for three different roughness parameters: k; = 0, k = 0-5
and k; = 1-5. The Reynolds number and the density ratio (p,/p,) are
taken as 10 000 and 770 respectively, as in Liu and Agarwal’s exper-
imerits(10), Equations (1) and (2c) are solved in full form for isothermal
flow (no diffusion due to temperature gradient). The effect of rough-
ness is reflected in the calculation procedure through a shift in the
lower boundary of the computational domain. As expected, rough-
ness affects the deposition velocity when diffusion is important. In
the same figure the experimental data of Liu and Agarwal (1974),
which have gained the reputation of one of the most trustworthy
measurements, are also plotted for comparison. It can be seen that
the present calculation scheme captures all the features of measured

-2. -1. 0. 1. 2. 3.

log;, (T

Figure 15. Effects of diffusion due to temperature gradient on the
predicted deposition rate (without lift force).
——AT=0,--—AT=5K,----, AT=20K, @ experimental results
of Liu and Agarwal. For all curves, k& = 0.

deposition velocity both qualitatively as well as quantitatively.
Specifically, the calculated curve for k;t = 0-5 is almost superposed on
the experimental values.

Figure 15 shows the effects of temperature gradient on the deposition
velocity. Equations (1) and (2c) are solved for three cases: AT = 0,
AT = 5 K and AT = 20 K, where AT is the temperature difference
between the upper boundary of the calculation domain (y* = 200)
and the pipe wall (the wall is cooled). The roughness k; is assumed
zero for all cases. Diffusion due to temperature gradient (second
term in the RHS of Equation (1)) is important for small particles.
Even a small temperature difference (e.g. AT = 5 K) has a significant
effect on the deposition velocity. For 1 < t+ < 10, there is an interaction
between thermophoresis and turbophoresis.

6.4 Conclusion

A unified theory of deposition is presented. Given that the deposition
velocity varies by more than four order of magnitude in the range of
particle sizes under investigation, and that it is calculated from a
simple, universal Equation (1) which contains only a modicum of
empiricism and no “tuning factor”, it is indeed remarkable that the cal-
culated deposition velocity agrees so well with the experimental values.

Present calculations (Fig. 14) show that the presence of small
surface roughness even in the hydraulically smooth regime signifi-
cantly enhances deposition of small particles. Figure 15 shows that
thermophoresis can be equally important (and should be considered,
for example, in deposition calculations for internally-cooled gas
turbine blades). For intermediate size particles, there can be a strong
interaction between thermophoresis and turbophoresis.

The effects of different deposition mechanisms come out naturally
from the present analysis in a physically satisfying manner and there
is scope to add other effects in a straightforward, logical way. The
present theory is also logical in finding the combined effects of
different deposition mechanisms, as the appropriate forces are added
in the momentum equation and the combined “velocity” or flux is
calculated by solving the continuity and momentum equations. This
should be superior to the often-used linear addition of respective
“velocities” in order to determine the combined mass flux (e.g.
adding a turbophoretic velocity with a diffusive velocity).



8 v v ine

Reference 10 provides the details of the presented theory and
shows that this simple theory produces results that are at least as
accurate as the most sophisticated state-of-the-art Lagrangian
calculations. Being Eulerian, the present theory not only offers a
very inexpensive method of computation but also can be readily
integrated with established (single-phase) Eulerian flow solvers.

7.0 EPILOGUE

The well-known books on multi-phase flows (e.g. by N.A. Fuchs, by
G.B. Wallis or by C.N. Davies) describe the long, inexhaustible list
of multi-phase phenomena demonstrating their all-pervasive occur-
rence. The literature on multiphase flow is therefore vast, a signifi-
cantly long list may be compiled by combining the lists of references
provided in the articles cited in this paper. Here, we have considered
only a few important topics, the selection inevitably being biased by
the author’s own interests. A complementary combination of analyti-
cal and computational techniques, and differential and integral treat-
ments has been used in order to model fundamental processes occur-
ring in two-phase mixtures as well as to explain observed phenomena
and experimental findings. This is an exciting, rewarding and potent
field, so many interesting and important things remain to be done!
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