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The physics of pressure variation in microchannels
within corotating or static discs

Abhijit Guhaa) and Sayantan Senguptab)

Mechanical Engineering Department, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

(Received 8 April 2016; accepted 12 September 2016; published online 5 October 2016)

We formulate a comprehensive analysis for the radial pressure variation in flow
through microchannels within corotating (or static) discs, which is important for
its fundamental value and application potential in macrofluidic and microfluidic
devices. The uniqueness and utility of the present approach emanate from our ability
to describe the physics completely in terms of non-dimensional numbers and to
determine quantitatively the separate roles of inertia, centrifugal force, Coriolis force,
and viscous effects in the overall radial pressure difference (∆pio). It is established
here that the aspect ratio (ratio of inter-disc spacing and disc radius) plays only a
secondary role as an independent parameter, its major role being contained within
a newly identified dynamic similarity number (Ds). For radial inflow, it is shown
that the magnitude of ∆pio decreases monotonically as the tangential speed ratio (γ)
increases but exhibits a minima when Ds is varied. For radial outflow, it is shown
that ∆pio increases monotonically as the flow coefficient (φ) decreases but evinces
a maxima when Ds is varied. It is further shown that for the radial inflow case, the
minima in the magnitude of ∆pio exist even when the rotational speed of the discs
is reduced to zero (static discs). The demonstrated existence of these extrema (i.e.,
minima for radial inflow and maxima for radial outflow) creates the scope for device
optimization. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963370]

I. INTRODUCTION

The physics of rotating flow is a vigorously active research topic, see Refs. 1–7. All reputed
monographs on rotating flow (see Refs. 8–11) devote one or more chapters on the fluid dynamics of
the swirling flow adjacent to stationary or rotating discs. Many famous fluid dynamicists like von
Kármán, Batchelor, Bödewadt, and Stewartson contributed to this topic yielding various perspec-
tives. von Kármán12 studied the flow due to a semi-infinite rotating disc, whereas Bödewadt13 anal-
ysed the rotating flow above a static disc. While von Kármán and Bödewadt dealt with a single disc,
Batchelor and Stewartson studied the flow within a rotor-stator disc cavity14,15 formed by a station-
ary and a rotating disc. Many research articles are still being published on these flow configurations,
e.g., Refs. 16–18 for von Kármán’s flow, Refs. 19–21 for Bödewadt’s flow, Refs. 22–25 for the flow
within a rotor-stator disc cavity, and Refs. 26–33 for flow within corotating discs. In this paper,
a new line of systematic investigation is established by exploring the important question of how
pressure varies in the microchannels formed by corotating discs (or static discs), and by determining
quantitatively the separate roles of various physical mechanisms, e.g., inertia, centrifugal force,
Coriolis force, and viscous effects, in setting up the pressure variation. The power of similitude and
dimensional analysis is combined here with the power of computational fluid dynamics (CFD) to
achieve a generalized physical understanding from a large set of accurate numerical simulations.
The methodology developed here may be extended to related flow configurations.

a)Author to whom correspondence should be addressed. Electronic mail: a.guha@mech.iitkgp.ernet.in
b)Email: sayantansengupta@iitkgp.ac.in
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FIG. 1. Schematic diagram for the present physical configuration (the gap within the two discs, in relation to the radius, is
exaggerated in the sketch for clarity) and two different flow arrangements (radial inflow and radial outflow).

Apart from its fluid dynamic significance, the present study can also be important from an
engineering perspective. A few examples of disc-shaped engineering devices are Tesla disc turbine,
disc pump, centrifugal microfluidic systems (e.g., lab-on-a-disc or lab-on-a-CD), micro heat sink,
computer disc memory, centrifuges, gear, rotating air cleaner, and wet clutches. A thorough under-
standing of the fluid dynamics of pressure variation may be helpful for the design and innovative
improvements in the performance of disc-based engineering devices.

Figure 1 displays the present physical configuration showing two circular discs separated axially
(i.e., in the z-direction) by a distance b. Both discs are rotating about the z-axis at an angular speedΩ.
For this physical configuration, two different flow arrangements, viz., radial inflow and radial outflow
arrangements are widely used. For the radial inflow arrangement, the rotor inlet is situated along the
periphery of the discs (i.e., at radius ri); the rotor outlet is at the centre of the discs (at radius ro).
The working fluid is injected nearly tangentially, and the injected fluid, which passes through the
inter-disc-spacing, approaches spirally towards the exhaust port located at the centre of each disc. For
the radial outflow arrangement, the rotor inlet is situated at the centre of the discs (i.e., at radius ri);
the rotor outlet is along the periphery of the discs (at radius ro). The working fluid is driven radially
outward mainly because of the centrifugal force imparted on the fluid by the rotating disc-surface. The
inter-disc-spacing (b) considered in the present study is of the order of 100µm. The subtle flow physics
within such micro-spacing of co-rotating discs has been established here through a comprehensive
set of computational fluid dynamic (CFD) simulations, each run to a high degree of convergence
(the “scaled” residual for all conserved variables is set as 10−10 which is much smaller than what is
normally set in much of the reported CFD work). This comprehensiveness and precision have helped
us to formulate a synthesis of underlying physical principles.

The present study explores the physical mechanisms of pressure variation in a microchannel
within corotating discs with either radial inflow or outflow. Although a short initial attempt for
understanding pressure variation in the radial inflow case was made by the authors in Figure 8 of
Ref. 27, the study27 was performed for a particular physical geometry and by varying a single,
dimensional parameter (speed of rotation Ω). The present work builds upon this initial concept and
systematizes and generalizes the scope and outcome of the investigation. The first generalization
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involves the study of the radial inflow configuration side by side with radial outflow configuration.
The second generalizing aspect of the present work is that it is conducted in a fully non-dimensional
framework which is versatile and flexible. Various combinations of input variables, concise repre-
sentation of results, and generalized physical reflections thus become possible. The utility of the
non-dimensional framework is established more fully in Section II A.

As a result of the use of the non-dimensional framework and a large number of simulations cover-
ing a wide range of the non-dimensional numbers, it has been possible to systematically examine the
effect of changes in physical geometry, fluid properties, and boundary conditions on the magnitude
of pressure change and on the mechanisms of pressure variation. This knowledge is new. There are
other aspects in which the present paper complements and extends the work of Ref. 27. For example,
the present study solves Navier-Stokes equations, and thus is able to directly assess the validity of the
assumptions made in the theoretical formulation of Ref. 27 which solves a set of ordinary differential
equations. Secondly, the present paper establishes how the radial variation in pressure is achieved
as a balance between four components of the force, viz., centrifugal, viscous, Coriolis, and inertia.
Finally, solutions are also presented here for the flow through the space between two static discs.
These act as the baseline solutions which help to isolate the effects of rotation on the fluid dynamics
of pressure change in the microspacing between two corotating discs.

II. MATHEMATICAL PERSPECTIVE

In this work, the subscripts i and o are used, respectively, for the inlet and outlet. As shown
in Figure 1, for a given pair of discs, the positions of the inlet and outlet interchange between the
radial inflow and outflow arrangements. Therefore, ri for radial inflow and ro for radial outflow
represent the outer radius of the discs. In the flow field, a velocity vector has three components:
Ur , Uθ, and Uz (i.e., absolute radial, tangential, and axial components). The symbol overbar is used
to denote the depth-averaged values of the respective quantities. Thus, Ūθ(r) = (1/b)  b

0 Uθdz and
Ūr(r) = (1/b)  b

0 Urdz. Ūθ, i is the value of Ūθ(r) at the inlet, i.e., at r = ri. Similarly, Ūr, i is the
value of Ūr(r) at the inlet. The depth-averaging may also be performed on the pressure such that
p̄(r) = (1/b)  b

0 pdz.
In the present study, two quantities are used to denote pressure difference, viz., ∆pio and

∆pnet(r). ∆pio is called the overall radial pressure difference and is the difference between the
depth-averaged pressure at outlet and that at inlet. A positive value of ∆pio signifies that pressure
increases from the inlet to the outlet. ∆pnet(r) is termed the local net pressure difference and is the
difference between the depth-averaged local pressure at a given radial location and that at inlet.

The present study is conducted for steady, laminar, axisymmetric, incompressible flow of a
Newtonian fluid with constant density and viscosity. The results are expressed in a relative frame
of reference in which the observer is rotating at the same angular velocity as that of the disc (Ω).
The relations between the components of velocity in absolute frame (Ur , Uz, and Uθ) and those in
the relative frame (Vr , Vz, and Vθ) are as follows: Ur = Vr; Uz = Vz; Uθ = (Vθ +Ωr). In this relative
frame of reference, the (dimensional form of) r-momentum equation10 is as follows:

∂p
∂r
= *
,

ρV 2
θ

r
− ρVr

∂Vr

∂r
− ρVz

∂Vr

∂z
+
-
+ 2ρΩVθ + ρΩ

2r + µ


1
r
∂

∂r
(r ∂Vr

∂r
) − Vr

r2 +
∂2Vr

∂z2


. (1)

Equation (1) can easily be interpreted as a relation between the radial pressure gradient ( ∂p
∂r

) and
the terms obtained from various forces. The overall radial pressure difference ∆pio is obtained by
integrating Equation (1). The integral form of Equation (1) is as follows:

1
b

 ro

ri

 b

0

∂p
∂r

dzdr =
 ro

ri

*
,

1
b

 b

0

*
,

ρV 2
θ

r
− ρVr

∂Vr

∂r
− ρVz

∂Vr

∂z
+
-

dz+
-

dr

+

 ro

ri

(
1
b

 b

0
(2ρΩVθ)dz

)
dr +

 ro

ri

(
1
b

 b

0
(ρΩ2r)dz

)
dr

+

 ro

ri

(
1
b

 b

0

(
µ


1
r
∂

∂r
(r ∂Vr

∂r
) − Vr

r2 +
∂2Vr

∂z2

)
dz

)
dr.

(2)
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The physical interpretations of various terms in Equation (2) are provided below. In the left
hand side of Equation (2), the term 1

b

 ro
ri

 b

0
∂p
∂r
δzδr signifies the (depth-averaged) overall radial

pressure difference, i.e., ∆pio. In the right hand side of Equation (2), the first term indicates the
contribution of inertia force, ∆pio,inertia; the second term displays the contribution of Coriolis force,
∆pio,Coriolis; the third term indicates the contribution of centrifugal force, ∆pio,centrifugal; and the
fourth term gives the contribution of viscous effect, ∆pio,viscous.

A study of Equation (2) sheds light on the nature of variation of the four components of ∆pio

with various flow and geometric parameters. A few observations are listed below. (i) Out of the
four components, only ∆pio,viscous depends directly on the fluid viscosity µ, and ∆pio,centrifugal does
not depend at all on µ. The two other components are affected indirectly by the magnitude of µ
through the effects of viscosity on the velocity field, viz., the spatial distributions of Vθ and Vr .
A reduction in µ (i.e., an increase in the non-dimensional number Ds introduced in Sec. II A)
increases ∆pio,inertia. (ii) ∆pio,viscous depends only on the radial velocity Vr and not on the relative
tangential velocity Vθ, the exactly opposite dependence being true for ∆pio,Coriolis. ∆pio,centrifugal does
not depend either on Vθ or Vr , while ∆pio,inertia depends on both. (iii) The speed of rotation Ω appears
directly in the centrifugal and Coriolis components (the effect on the centrifugal component being
the strongest because it appears as Ω2). Ω only indirectly affects the viscous and inertia components
through its effect on the velocity field (Vθ is more affected than Vr , and hence, the effect of Ω
is relatively greater on inertia than the viscous component). (iv) The inter-disc spacing b most
strongly affects the viscous component ∆pio,viscous; its effects on the other three components are
mainly through the velocity field (although the inertia component ∆pio,inertia contains the velocity
gradient ∂Vr/∂z, the gradient is multiplied by a small quantity Vz). (v) The radial variation in Vθ

can be complex,27,30 and consequently there can be subtle variation in the magnitude and sign of
the Coriolis component ∆pio,Coriolis, which depends on the cross-product of the relative tangential
velocity Vθ and angular velocity of the discs. The sign of Vθ does not bring similar complexity in the
variation of ∆pio,inertia, since it appears as a squared quantity (i.e., as V 2

θ ). The qualitative features
described in this paragraph will be useful later for interpreting the computed results.

A. Similitude and non-dimensionalization

The flow solutions are obtained in this work by the application of a computational fluid dy-
namics (CFD) software which is described in Section III. Here, we give a brief account of a
mathematical formulation that serves two principal purposes. First of all, with the help of this
non-dimensional mathematical formulation, the CFD results can be post-processed and recast in
terms of appropriate non-dimensional numbers. This allows generalization of the underlying scien-
tific principles and significant conciseness in the presentation of the output results. Secondly, the
non-dimensional mathematical formulation allows one to undertake a scale analysis which en-
hances physical understanding and reveals the relative importance of the various terms in an equa-
tion. With this, it becomes easier to comprehend the large amount of data generated through CFD
and to make appropriate physical reflections on the computed results.

In one of our previous publications,26 we have formulated a systematic dimensional analysis
and appropriate scaling laws for the radial inflow arrangement (Figure 1). Based on this, five
input non-dimensional numbers are used for the radial inflow arrangement. These are radius ratio
r̂o (r̂o ≡ ro/ri), aspect ratio b̂ (b̂ ≡ b/ri), tangential speed ratio at inlet γ (γ ≡ Ūθ, i/Ωri), flow angle
at inlet α (α ≡ tan−1(�Ūr, i

�
/Ūθ, i)), and dynamic similarity number Ds (Ds ≡

�
Ūr, i

�
b2/(ν ri)). The

symbol ν denotes the kinematic viscosity of the fluid which is the ratio of dynamic viscosity µ
and density ρ. For the usual radial inflow configuration, the fluid enters nearly tangentially, i.e., the
value of the flow angle at inlet α would be small. In addition to the above non-dimensional numbers,
the relevant non-dimensional variables required for the present analysis are given in Table I.

For the radial outflow arrangement (Figure 1), the four relevant input non-dimensional numbers
are radius ratio r̂i (r̂i ≡ ri/ro), aspect ratio b̂ (b̂ ≡ b/ro), flow coefficient at inlet φ (φ ≡ Ūr, i/(Ωri)),
and dynamic similarity number Ds (Ds ≡ Ūr, i b2/(ν ri)). For the case of radial outflow, the flow
angle at inlet α is not treated as a variable since, from practical considerations, its usual value would
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TABLE I. Non-dimensionalisation schemes for radial inflow and outflow arrangements.

Dimensional
variable

Symbol for the corresponding
non-dimensional variable

Expression of the non-dimensional
variable for radial inflow arrangement

Expression of the
non-dimensional variable for
radial outflow arrangement

r r̂ r/ri r/ro

z ẑ z/b z/b

Ur Ûr Ur/|Ūr, i | Ur/Ūr, i

Uθ Ûθ Uθ/(Ωri) Uθ/(Ωro)
Uz Ûz (Uzri)/(�Ūr, i

�
b) (Uzro)/(Ūr, ib)

p p̂ p/(ρŪ2
θ, i) p/(ρΩ2r2

o)
∆pio ∆p̂io ∆pio/(ρŪ2

θ, i) ∆pio/(ρΩ2r2
o)

∆pnet(r ) ∆p̂net(r ) ∆pnet(r )/(ρŪ2
θ, i) ∆pnet(r )/(ρΩ2r2

o)
∆pio, inertia ∆p̂io, inertia ∆pio, inertia/(ρŪ2

θ, i) ∆pio, inertia/(ρΩ2r2
o)

∆pio,Coriolis ∆p̂io,Coriolis ∆pio,Coriolis/(ρŪ2
θ, i) ∆pio,Coriolis/(ρΩ2r2

o)
∆pio,centrifugal ∆p̂io,centrifugal ∆pio,centrifugal/(ρŪ2

θ, i) ∆pio,centrifugal/(ρΩ2r2
o)

∆pio,viscous ∆p̂io,viscous ∆pio,viscous/(ρŪ2
θ, i) ∆pio,viscous/(ρΩ2r2

o)

be 90◦ (i.e., the inlet velocity is in the radial direction). The non-dimensional variables required for
analysing the fluid dynamics of radial outflow are also given in Table I.

We have already mentioned that the non-dimensional mathematical formulation allows one to
undertake a scale analysis which enhances physical understanding and reveals the relative impor-
tance of the various terms in an equation. In this spirit, two sets of non-dimensional governing
equations are given below, one for the radial inflow arrangement and the second for the radial
outflow arrangement.

The non-dimensional governing equations for the radial inflow arrangement are as follows:

1
r̂
∂(r̂Ûr)
∂r̂

+
∂Ûz

∂ ẑ
= 0, (3)

Ûr
∂Ûr

∂r̂
+ Ûz

∂Ûr

∂ ẑ
−

Û2
θ

r̂(γ tan α)2 = −
1

(tan α)2
∂ p̂
∂r̂
+

1
Ds


∂2Ûr

∂ ẑ2 + b̂2
(

1
r̂
∂

∂r̂
(r̂ ∂Ûr

∂r̂
) − Ûr

r̂2

)
, (4)

Ûr
∂Ûθ

∂r̂
+ Ûz

∂Ûθ

∂ ẑ
+

ÛrÛθ

r̂
=

1
Ds


∂2Ûθ

∂ ẑ2 + b̂2
(

1
r̂
∂

∂r̂
(r̂ ∂Ûθ

∂r̂
) − Ûθ

r̂2

)
, (5)

Ûr
∂Ûz

∂r̂
+ Ûz

∂Ûz

∂ ẑ
= − 1

b̂2(tan α)2
(
∂ p̂′

∂ ẑ

)
+

1
Ds


b̂2

(
1
r̂
∂

∂r̂
(r̂ ∂Ûz

∂r̂
)
)
+
∂2Ûz

∂ ẑ2


. (6)

The non-dimensional governing equations for the radial outflow arrangement are as follows:

1
r̂
∂(r̂Ûr)
∂r̂

+
∂Ûz

∂ ẑ
= 0, (7)

Ûr
∂Ûr

∂r̂
+ Ûz

∂Ûr

∂ ẑ
− 1
ψ2

Û2
θ

r̂
= − 1

ψ2

∂ p̂
∂r̂
+

1
Ds∗


∂2Ûr

∂ ẑ2 + b̂2
(

1
r̂
∂

∂r̂
(r̂ ∂Ûr

∂r̂
) − Ûr

r̂2

)
, (8)

Ûr
∂Ûθ

∂r̂
+ Ûz

∂Ûθ

∂ ẑ
+

ÛrÛθ

r̂
=

1
Ds∗


∂2Ûθ

∂ ẑ2 + b̂2
(

1
r̂
∂

∂r̂
(r̂ ∂Ûθ

∂r̂
) − Ûθ

r̂2

)
, (9)

Ûr
∂Ûz

∂r̂
+ Ûz

∂Ûz

∂ ẑ
= − 1

b̂2ψ2

(
∂ p̂′

∂ ẑ

)
+

1
Ds∗


b̂2

(
1
r̂
∂

∂r̂
(r̂ ∂Ûz

∂r̂
)
)
+
∂2Ûz

∂ ẑ2


. (10)

Equations (3)-(6) and (7)-(10) are obtained from Navier-Stokes equations in cylindrical coordinate,
invoking the assumptions mentioned above. Present study considers laminar flow (for which Ds < 10,
see Ref. 27). gθ and gr are zero for the assumed orientation of the discs. In Equations (6) and (10),
p′ is the modified pressure, i.e., (p − ρgzz). In Equations (8)-(10), two additional non-dimensional
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parameters, ψ and Ds∗, are used. The expressions of ψ and Ds∗ are as follows:

ψ = φ r̂i
Ds∗ = Ds r̂i.

(11)

The boundary conditions for the radial inflow arrangement are given below

at ẑ = 0 and 1, Ûr = 0, Ûθ = r̂ , Ûz = 0, (12)

at r̂ = 1, Ûr = Ûr, i, Ûθ = Ûθ, i, Ûz = 0, (13)
at r̂ = ro/ri, p̂ = 0. (14)

The surfaces of the two discs are located at ẑ = 0 and ẑ = 1; Equation (12) refers to the no slip
boundary condition. At inlet, both radial and tangential components of velocity are specified. (Both
Ûr, i and Ûθ, i are independent of θ.) At outlet, a zero gauge pressure is specified.

The boundary conditions for the radial outflow arrangement are given below

at ẑ = 0 and 1, Ûr = 0, Ûθ = r̂ , Ûz = 0, (15)

at r̂ = ri/ro, Ûr = Ûr, i, Ûθ = 0, Ûz = 0, (16)
at r̂ = 1, p̂ = 0. (17)

A study of Equations (4)-(6) and (8)-(10) shows that wherever the aspect ratio (b̂) appears as
a separate non-dimensional number, independent of the dynamic similarity number Ds or Ds∗, it
appears as a squared quantity. Its physical significance will be revealed later in Section IV A 1.

III. COMPUTATIONAL FRAMEWORK

Dimensional Navier-Stokes equations are solved by applying the Fluent software which em-
ploys the finite-volume discretization method.34 The integral form of Navier-Stokes equations is
considered at each mapped, quadrilateral cell of the numerical grid to obtain a set of coupled
nonlinear algebraic equations that are pseudolinearized and solved.35 Axi-symmetric swirl model34

is implemented in a two-dimensional interface, and double precision arithmetic is adopted for
all numerical calculations given in this paper. Second order upwind scheme for discretizing the
advection terms and the “Standard” scheme34 for interpolating pressure are utilized. An implicit36

time-marching method is used. Under-relaxation factors for momentum (radial and axial compo-
nents), swirl (tangential component), pressure, density, and body force are chosen as 0.7, 0.9,
0.3, 1, and 1, respectively. The convergence criterion for the maximum “scaled” residual34 for all
conserved variables is set as 10−10.

A grid independence test has been carried out (Table II showing a few pertinent details for
uniform velocity distribution at inlet), and based on this study, a total 12 500 (125 × 100) mapped,
quadrilateral computational cells are used for the results presented in this paper. The grids are con-
structed carefully as per Ref. 30. The grids are distributed in r and z directions in accordance with
the difference in the flow physics in the two directions. The grid distribution in the z-direction is
non-uniform with very small grid size close to the surfaces of the two discs (to capture the velocity
gradient on the surface accurately) and with progressively larger grid size as one moves away from

TABLE II. Grid independence test.

Grid
distribution

Number of grids in the
r and z directions

Total number of
grids

∆p̂io [≡∆pio/(ρŪ2
θ, i)] for

radial inflow arrangement
(b̂ = 0.008, r̂o = 0.528,α =
6.2◦,γ = 1.25,Ds= 1.26)

∆p̂io [≡∆pio/(ρΩ2r2
o)] for radial

outflow arrangement
(b̂ = 0.008, r̂i = 0.528,α =
90◦,Ds= 2.39, φ = 0.26)

Coarse (75 × 50) 3 750 −0.615 0.121
Standard (125 × 100) 12 500 −0.616 0.120
Fine (200 × 150) 30 000 −0.616 0.120
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the surfaces to the middle of the inter-disc gap (with a successive ratio of 1.05). Guha and Sen-
gupta30 have shown that when there is no z-dependence in the applied boundary conditions at inlet
for the radial and tangential velocities, both velocities change very rapidly within a very short radial
distance from the inlet, within which the z-profiles of both velocities are created from their uniform
values at inlet. In order to capture this effect properly, the grids in the radial direction are divided
into two zones—non-uniform and uniform. Near the inlet, non-uniform boundary-layer-type grids
with 25 rows in the radial direction are used. The size of the first grid is 0.001 mm and the succes-
sive ratio of the geometric progression series is 1.2. The rest of the radial extent up to the outlet is
meshed uniformly with 100 grid points. The non-dimensional input parameters, used in the repre-
sentative computations for radial inflow and outflow arrangements, are provided in Table II. Table II
shows the computed values of ∆p̂io for three different grid distributions (coarse, standard, and fine).
For both flow arrangements, a marginal change of ∆p̂io is observed after attaining a grid distribution
of 125 × 100 (the distribution is referred as standard in Table II). All results given in this paper are
obtained by using the grid distribution of 125 × 100.

IV. RESULTS AND DISCUSSION

For radial inflow, ∆p̂io depends on the five non-dimensional numbers: r̂o, b̂, γ,Ds, and α [see
Equations (3)-(6)]. For radial outflow, ∆p̂io depends on the four non-dimensional numbers: r̂i, b̂, φ,
and Ds [see Equations (7)-(10)]. It is to be recognized that the same dimensional quantity may
be involved in more than one non-dimensional numbers. As an example, b, the gap between two
consecutive discs, appears both in aspect ratio, b̂, and dynamic similarity number, Ds. Therefore,
a non-dimensional study, in which the effect of varying a non-dimensional number is to be found
while keeping other non-dimensional numbers fixed, can be performed in a number of ways. Sup-
pose we want to study the effect of dynamic similarity number. In a computational study, this can be
achieved simply by altering the fluid viscosity µ, since µ appears only in the definition of Ds. There-
fore, Ds can be varied very simply by this method while keeping all other non-dimensional numbers
fixed. This is the method adopted in the present study. On the other hand, if one is to embark
upon an experimental study, this method alone may not be sufficient or appropriate as the available
values of µ will be restricted by the values of a real property of suitable fluids. Hence, a number of
(raw) dimensional quantities may need to be simultaneously adjusted to vary Ds continuously while
keeping other non-dimensional numbers fixed.

A. Radial inflow arrangement

Figure 1 shows the physical configuration, and Figures 2-5 and Table III show representa-
tive results for the radial inflow case. Quantities like pressure and pressure difference are non-
dimensionalized by ρŪ2

θ, i. Since ρŪ2
θ, i is constant for all simulations shown in Figures 2-5, non-

dimensional pressure differences shown in the figures are directly proportional to their dimensional
counterparts. Out of the four components of pressure difference, only the non-dimensional centrif-
ugal component can be expressed by an explicit algebraic relation: ∆p̂io,centrifugal = (r̂2

o − 1)/(2γ2).
In the present study, we focus our attention to the two most important non-dimensional num-

bers, viz., Ds and γ. The secondary role of aspect ratio b̂, as an additional non-dimensional number
outside Ds, is also revealed here. Ds and γ are important non-dimensional numbers; they contain
physical variables such as fluid viscosity, inter-disc spacing, and the rotational speed which, one can
anticipate, will have important effect on the fluid dynamics. For all the results presented here, fixed
values of radius ratio of the rotor (r̂o) and the flow angle at inlet to the rotor (α) are used. We have
assumed r̂o = 0.528 and α = 6.2◦ (i.e., 0.11 radian), the values adopted in the experimental study of
Ref. 32. Sample computations were also repeated at other values of r̂o and α, but it was found that
they do not reveal any new physics; hence, they are not reported here.

The present section is divided into three subsections for streamlining the physical understanding.
Section IV A 1, with Figures 2 and 3 and Table III, presents the variation in the overall radial pressure
difference (∆pio), Section IV A 2, with Figure 4, gives the variation in local net pressure difference
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FIG. 2. Contribution of various forces to produce the overall radial pressure difference ∆p̂io over a range of dynamic simi-
larity number Ds: prediction of the present CFD simulations for radial inflow. (r̂o = 0.528, b̂ = 0.008,γ = 1.37,α = 6.2◦, and
parabolic velocity distribution at inlet:Uθ, i = V̄θ, i [6(z/b)(1−z/b)]+Ωri,Ur, i =Ūr, i [6(z/b)(1−z/b)]. Pressure differences
are non-dimensionalized by ρŪ2

θ, i. Each curve contains data from 50 separate CFD simulations, with appropriate higher
resolution close to the minima.)

∆pnet(r), and Section IV A 3, with Figure 5, discusses the baseline solutions when the discs are static.
The role of the four components of force is explained in all three subsections.

1. Physical mechanisms for the overall pressure difference, ∆p̂io

First of all, we investigate the role of Ds while keeping all other non-dimensional numbers
fixed. In order to generate a high-definition set of comprehensive results, full CFD simulations are

FIG. 3. Contribution of various forces to produce the overall radial pressure difference ∆p̂io over a range of tangential speed
ratio at inlet γ: prediction of the present CFD simulations for radial inflow. (r̂o = 0.528, b̂ = 0.008,Ds= 0.43,α = 6.2◦, and
parabolic velocity distribution at inlet:Uθ, i = V̄θ, i [6(z/b)(1−z/b)]+Ωri,Ur, i =Ūr, i [6(z/b)(1−z/b)]. Pressure differences
are non-dimensionalized by ρŪ2

θ, i. Each curve contains data from 50 separate CFD simulations.)
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FIG. 4. Radial variation of local net pressure difference ∆p̂net(r ) and its components: prediction of the present CFD
simulations for radial inflow. (r̂o = 0.528, b̂ = 0.008,Ds= 1,γ = 1.37,α = 6.2◦, and parabolic velocity distribution at inlet:
Uθ, i = V̄θ, i [6(z/b)(1−z/b)]+Ωri,Ur, i =Ūr, i [6(z/b)(1−z/b)]. Pressure differences are non-dimensionalized by ρŪ2

θ, i.
There are 125 grid points between the inlet and the outlet.)

run at each of 50 different values of Ds, with appropriate local clustering of data points for higher
quantitative resolution in the region of greater qualitative significance. Figure 2 represents the final
outcome of this labour-intensive computation.

Figure 2 shows the variation of∆p̂io and its four components∆p̂io,inertia,∆p̂io,Coriolis,∆p̂io,centrifugal,
and ∆p̂io,viscous with Ds. The negative values of ∆p̂io signify that pressure decreases from the inlet to
the outlet. It can be seen that the curve corresponding to the variation of ∆p̂io is bucket-shaped, and

FIG. 5. Contribution of various forces within two static discs to produce the overall radial pressure difference ∆p̂io over
a range of dynamic similarity number Ds: prediction of the present CFD simulations for radial inflow. (r̂o = 0.528, b̂ =
0.008,α = 6.2◦, and parabolic velocity distribution at inlet:Uθ, i = V̄θ, i [6(z/b)(1−z/b)]+Ωri,Ur, i =Ūr, i [6(z/b)(1−z/b)].
Pressure differences are non-dimensionalized by ρŪ2

θ, i. Each curve contains data from 50 separate CFD simulations, with
appropriate higher resolution close to the minima.)
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TABLE III. The role of aspect ratio (b̂) as a separate dimensionless num-
ber, independent of dynamic similarity number (Ds), in determining three
representative output parameters (CFD simulations are performed for r̂o =
0.528,γ = 1.37,α = 6.2◦, and parabolic velocity distribution at inlet).

Ds b̂ ∆p̂io [≡∆pio/(ρU2
θ, i)] Uθ,o U r,o

0.43
0.004 0.533 0.689 −1.893
0.008 0.533 0.689 −1.893
0.016 0.533 0.689 −1.893

2.5
0.004 0.783 1.345 −1.895
0.008 0.783 1.345 −1.895
0.016 0.783 1.345 −1.895

the magnitude of ∆p̂io is minimum at a certain Ds (around 0.56 for the present case). For both small
and large values of Ds, the magnitude of∆p̂io is large. The physical reason behind the bucket-shape of
∆p̂io versus Ds curve can be understood in terms of the quantitative variation of the four components
of ∆p̂io. ∆p̂io,centrifugal does not vary with a change in Ds. (∆p̂io,centrifugal depends on r̂o and γ. Both r̂o
and γ are fixed in this case.) Secondly, with an increase in Ds, the magnitudes of both ∆p̂io,inertia and
∆p̂io,Coriolis increase; whereas, the magnitude of ∆p̂io,viscous decreases. Thirdly, at a small value of Ds,
the magnitudes of both ∆p̂io,inertia and ∆p̂io,Coriolis are small, whereas, the magnitude of ∆p̂io,viscous is
large. Finally, at a large Ds, the magnitudes of both ∆p̂io,inertia and ∆p̂io,Coriolis overtake the magnitude
of ∆p̂io,viscous.

It can be summarised that at a small value of Ds, a large ∆p̂io occurs because of the large
∆p̂io,viscous. On the other hand, at a comparatively greater Ds, a large ∆p̂io occurs from a combined
effect of ∆p̂io,inertia,∆p̂io,Coriolis, and ∆p̂io,centrifugal. This subtle fluid dynamics is responsible for the
bucket-shaped ∆p̂io versus Ds curve. It is to be noted that Ds is a product of aspect ratio and the term�
Ūr, i

�
b/ν. The term

�
Ūr, i

�
b/ν can be interpreted as a Reynolds number based on the average radial

velocity at inlet and inter-disc-spacing. Keeping the aspect ratio fixed, an increase in Ds, therefore,
should lead to an increase in the ratio of inertial and viscous contributions. In fact, Figure 2 shows
that an increase in Ds leads to an increase in ∆p̂io,inertia and a simultaneous decrease in ∆p̂io,viscous.

We now investigate the role of γ while keeping all other non-dimensional numbers fixed. γ is
defined as: γ = Ūθ, i/ (Ωri). The absolute tangential velocity at the inlet of the rotor, Ūθ, i, is fixed by
the design of the inlet nozzle, and ri is fixed for a particular rotor. Therefore, in order to understand
the fluid dynamics of the rotational flow, γ in this study is varied by altering the rotational speed
Ω. In order to generate a high-definition set of comprehensive results, full CFD simulations are run
at each of 50 different values of γ. Figure 3 represents the final outcome of this labour-intensive
computation.

Figure 3 shows the variation of∆p̂io and its four components∆p̂io,inertia,∆p̂io,Coriolis,∆p̂io,centrifugal,
and ∆p̂io,viscous with γ. It can be seen that the magnitude of ∆p̂io increases with a decrease in γ and
the rate of the increase is greater at comparatively smaller values of γ. Since ∆p̂io,centrifugal is inversely
proportional to the square of γ, the value of ∆p̂io,centrifugal increases rapidly with a decrease in γ and
at small γ,∆p̂io,centrifugal becomes the major contributor to overall ∆p̂io.

Figure 3 shows that at the selected value of Ds, the magnitude of ∆p̂io,viscous is significant at
all values of γ. Equation (4) shows that γ is not present in the viscous term; this is reflected in
Figure 3. Moreover, it is found in the CFD simulations that the radial velocity field within the
inter-disc-spacing of the present physical configuration is weakly dependent on γ.

For the selected Ds of Figure 3, both ∆p̂io,Coriolis and ∆p̂io,inertia are small, which is consistent
with the message contained in Figure 2. Figure 2 also suggests that if the curves in Figure 3 were
redrawn at a high value of Ds, then the magnitudes of pressure difference due to the inertial and
Coriolis components can be appreciably large. Returning to the computations of Figure 3, it is found
that as γ decreases from a large value, the magnitude of ∆p̂io,inertia decreases and the magnitude of
∆p̂io,Coriolis increases, though both trends reverse below certain small values of γ (the reversal in
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∆p̂io,inertia is visible in Figure 3, and the reversal in ∆p̂io,Coriolis could be seen if the lower limit of
abscissa is extended below 0.53).
∆pio,Coriolis depends on the product of Vθ and Ω. With a decrease in γ,∆pio,Coriolis increases

mainly because of an increase in Ω, and below a certain γ,∆pio,Coriolis decreases mainly because
of a decrease in Vθ, i (Vθ, i is the value of Vθ at inlet). However, while estimating ∆pio,Coriolis one
should also take the radial variation of Vθ into account because ∆pio,Coriolis is an integrated value
covering the full radial extent between the inlet and the outlet. Guha and Sengupta27 explained the
fluid dynamics for the radial variation of Vθ at various values of γ. They showed that depending on
the relative magnitude of various forces, two different trends are possible in the radial variation of
Vθ. In one case, with decreasing radius from the inlet, Vθ decreases to a minimum at a certain radius
and then onwards increases. This happens when γ is sufficiently greater than 1. In the other case, Vθ

continuously increases with a decrease in radius. This happens either when γ is less than 1 (i.e., the
case of flow reversal, see Ref. 27) or when γ is close to 1.

It is to be noted that γ can be interpreted as a Rossby number (a ratio of inertial to Coriolis
forces); where, Ūθ, i and ri are, respectively, characteristic velocity and length scales. With increas-
ing γ, i.e., increasing Rossby number, the decrease of the Coriolis term and the decrease in the
ratio of Coriolis and inertial terms are both consistent with the characteristics of Rossby number.
The individual variation of the inertial term is however complex as described above; according to
Figure 3, a minima in ∆p̂io,inertia occur at γ = 1.15.

We now investigate the role of aspect ratio b̂ (b̂ ≡ b/ri) while keeping all other non-dimensional
numbers fixed. At the first thought, it appears that b̂ should also play an important role since the
relative proximity of two disc surfaces would influence the value of shear stress and hence the
overall fluid dynamics. However, the expression of b̂ is included in the definition of Ds [Ds ≡
(Ūr, i b/ν )(b/ri) = (Ūr, i b/ν)b̂]. Since the systematic dimensional analysis of Ref. 26 has produced
both Ds and b̂ as two separate non-dimensional numbers, we need to reflect on their separate roles.
b̂ can be altered by varying any or all of b and ri. Similarly, Ds can be altered by varying any or all
of

�
Ūr, i

�
,b, ν, and ri. On the basis of a large number of computational simulations in which Ds and b̂

were independently varied over respective relevant ranges, it was found that when b̂ is varied but Ds
is held constant (by making compensating changes in ν,

�
Ūr, i

�
, and b), there is only a little change in

the non-dimensional pressure and velocity fields (e.g., in p̂,Ûθ, or Ûr as a function of ẑ and r̂) within
the co-rotating discs. A few sample computations to this effect are shown in Table III. Results given
in Table III and Figure 2, on the other hand, demonstrate that if b̂ is fixed but Ds is varied then large
changes happen in the non-dimensional pressure and velocity fields.

Physical intuition tells us that changing the inter-disc spacing b should significantly control the
fluid dynamics; it is expected that keeping all other parameters fixed, a reduction in the inter-disc
spacing should increase the importance of the viscous force over inertial forces. The discussion in
the previous paragraph shows that this primary role of the inter-disc spacing b is contained almost
solely in the dynamic similarity number Ds. Although b also appears in another non-dimensional
number (the aspect ratio b̂), as a direct ratio of b and ri, the fluid-dynamic role of b̂ as a separate
non-dimensional number, independent of Ds, is secondary in determining the non-dimensional flow
field.

A similitude analysis using the Buckingham’s Pi theorem to the present problem26 has given
both Ds and b̂ as two independent non-dimensional numbers. From the similitude analysis itself
it is not possible to identify their relative importance, and a casual reader could assume that the
intuitive feeling about the effect of varying inter-disc spacing is contained in the aspect ratio b̂. The
systematic computations of the present study have established the primary role of Ds (in which b̂
is present as a constituent term) and the secondary role of b̂ as a separate non-dimensional number
in determining the non-dimensional flow field. This subtle dynamics can also be appreciated from
a study of the three momentum equations (4)-(6) in which both Ds and b̂ appear as independent
parameters, but b̂ appears as a squared quantity. Since, for the present physical configuration, b̂ is a
small quantity, square of b̂ is even smaller. This provides the mathematical explanation for why the
independent role of b̂, outside Ds, on the flow field is secondary.
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2. Radial variation of local net pressure difference ∆p̂net(r ) and its components

∆p̂net(r) and its components can be determined by changing the upper limit of integration in
Equation (2) to the local value of the radius, r , instead of ro used for the determination of the overall
pressure difference discussed in Sec. IV A 1. Figure 4 shows the results of a large number of such
numerical integration performed at various r between the inlet and the outlet. It can be seen that
with decreasing radius, the magnitude of local net pressure difference monotonically increases. It
can also be observed that (at the selected value of γ), with decreasing radius, all four components
try to increase the magnitude of pressure difference. In other words, all the components possess the
same sign.

The relative magnitudes of the four components of ∆p̂net(r) depend predominantly on the
values Ds and γ selected for the representative computation. Another subtle point is that the sign of
the Coriolis component can change (i.e., become positive) over a certain part of the flow field if the
value of γ is less than 1. This is so because, with flow reversal, the sign of Vθ is negative over the
same certain part of the flow field.

3. The limiting case for zero rotational speed (Ω = 0)

In Section IV A 1, the overall pressure difference was calculated within corotating discs, and
many subtle flow physics were discussed. It is interesting to explore the related flow physics for
the case of static discs (i.e., Ω = 0 or γ → ∞). The same calculation procedure is repeated in order
to find the physical mechanism responsible for ∆pio in microchannels within static discs. It is to
be realised that for the case of static discs, the only non-zero components of the overall pressure
difference are ∆p̂io,inertia and ∆p̂io,viscous. Since γ is not a relevant parameter for the present study,
and the computed pressure does not significantly vary with b̂, only the effect of change in Ds on
the overall pressure difference and on its two relevant components is investigated here (keeping the
same values of r̂o, b̂, and α as used in Section IV A 1). In order to generate a high-definition set
of comprehensive results, full CFD simulations are run at each of 50 different values of Ds, with
appropriate local clustering of data points for higher quantitative resolution in the region of greater
qualitative significance. Figure 5 represents the final outcome of this labour-intensive computation.
(Note that in addition to the 50 CFD simulations run to obtain Figure 2, 50 more CFD simulations
are run to obtain Figure 5.)

Figure 5 shows that the curve corresponding to the variation of ∆p̂io is bucket-shaped, which
is similar to the shape obtained for the case of corotating discs (given in Figure 2). For both small
and large values of Ds, the magnitude of ∆p̂io is large. At a small value of Ds, a large ∆p̂io occurs
because of the large ∆p̂io,viscous; whereas, for large Ds, a large ∆p̂io occurs because of the large
∆p̂io,inertia. An important difference between the ∆p̂io versus Ds curve for corotating discs and the
∆p̂io versus Ds curve for static discs is found in the location of the minima. A comparison between
Figures 2 and 5 reveals that the location of minima shifts to a lower value of Ds when the discs are
rotating (this happens as the effects of the Coriolis force and the inertia are additive). A quantitative
estimate of the shift is from 0.75 (for static discs) to 0.56 (for corotating discs). At the minima, the
value of ∆p̂io for static discs is much lower than that for corotating discs (due to the absence of
∆p̂io,Coriolis and ∆p̂io,centrifugal).

A study of Equation (2) shows that ∆p̂io,inertia is composed of several terms; of these, the term
containing V 2

θ is often the dominant term. Now, Vθ = Uθ −Ωr and for the radial inflow simulations,
the same value of Uθ, i is used. Thus the magnitude of ∆pio,inertia is greater for flow through static
discs (Ω = 0) than its corresponding magnitude for non-zero rotation; the curves for ∆p̂io,inertia given
in Figures 2 and 5 are consistent with this analysis.

4. A semi-analytical technique for the determination of pressure difference

In this paper, CFD is used for determining the flow field and pressure variation. This is the most
general theoretical method. When the inter-disc gap is small, it is shown in Refs. 30 and 33 that it
is possible to approximate the z-variations of Vθ and Vr by parabolic profiles. The continuity and
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momentum equations then give30,33

V r(r)
V r, i

=
1
r̂
, (18)

V θ(r)
V θ, i

=

C2
C1
+

(
1 − C2

C1

)
exp


C1
2

�
1 − r̂2�

r̂
, (19)

where

C1 =
−10
Ds

, C2 =
−10

6(γ − 1) . (20)

With the help of Equations (2) and (18)-(20), the integral pressure difference equation, keeping only
the major contributors based on an order of magnitude analysis,33 can be written as

(21)

Equation (21) is the same as Equation (18) of Ref. 33, recast in terms of the non-dimensionalization
scheme used here. Equation (21) is an ordinary differential equation and can be easily integrated
numerically to determine ∆p̂net(r) (and therefore ∆p̂io by changing the upper limit r̂ by r̂o). The
ratio V̄θ/V̄θ, i from Equation (19) needs to be substituted in Equation (21) to get the full form of the
integrand. Other than the numerical integration, a series solution of Equation (21) is also possible.33

The factor 6/5 appearing in Equation (21) was introduced for the first time in Ref. 33. It arose
in Ref. 33 through rigorous mathematical analysis. A physical interpretation was given in Ref. 30
that appropriate use of mass-flow-averaged quantities gives rise to this factor 6/5 for a situation
in which strong flow non-uniformities exist in two mutually perpendicular directions. Many re-
searchers inappropriately use area-averaged flow quantities, and then, the factor 6/5 does not occur,
with the possibility of producing a large error in the evaluation of work transfer.30

The contributions of the four physical mechanisms (viz., centrifugal, Coriolis, inertia, and
viscous) are directly attributable to the various terms in the RHS of Equation (21), as shown. All
of the qualitative physical reflections on the various terms mentioned after Equation (2) can now be
appreciated quantitatively with the help of Equation (21). Equation (21) also contains the basis for
changeover of the sign of Coriolis component somewhere in the flow field when γ < 1. For γ < 1,
(γ − 1) is negative, and V̄θ also becomes negative (see Equation (19)) in a region close to the inlet
causing flow reversal.27 Therefore, in that region, the product (γ − 1)(V̄θ/V̄θ, i) becomes negative
changing the sign of the Coriolis component in the reversed flow region. The tangential speed ratio
at inlet, γ, and the ratio V̄θ/V̄θ, i, on the other hand, appear as squared quantities in the inertia term;
hence, the sign of the inertia term does not depend on the value of γ.

The specialized form of Equation (21) for the case of static discs can be obtained by taking the
limit γ → ∞ on Equation (21), the final equation being,

∆p̂net(r)|static discs ≡
p̄(r) − p̄i
ρŪ2

θ, i

������static discs

=

r̂
1



6
5r̂

(
V̄θ

V̄θ, i

)2

+
6

5r̂3 (tan α)2 + 12
r̂
(tan α)2

Ds


dr̂ . (22)

Equations (21) and (22) are mentioned here for the sake of completeness. The above procedure can
be applied to easily derive equations equivalent to (21) and (22) for the radial outflow arrangement.
We, however, return to the use of CFD for solving the radial outflow arrangement in Section IV B.
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FIG. 6. Contribution of various forces to produce the overall radial pressure difference ∆p̂io over a range of dynamic
similarity number Ds: prediction of the present CFD simulations for radial outflow. (r̂i = 0.528, b̂ = 0.008, φ = 0.124,
and uniform velocity distribution at inlet: Ur, i =Ūr, i. Pressure differences are non-dimensionalized by ρΩ2r2

o. Each curve
contains data from 50 separate CFD simulations, with appropriate higher resolution close to the maxima.)

B. Radial outflow arrangement

Figure 1 shows the physical configuration and Figures 6-9 show representative results for the
radial outflow case. It is found that for this case also the role of b̂ as a separate non-dimensional
number, independent of Ds, is secondary in determining the non-dimensional flow field. It is
already mentioned that from practical considerations, the flow angle at inlet α is fixed at 90◦. The
radius ratio is kept fixed at its previous value, i.e., r̂i = 0.528. Additional computations for other

FIG. 7. Contribution of various forces to produce the overall radial pressure difference ∆p̂io over a range of flow coefficient at
inlet φ: prediction of the present CFD simulations for radial outflow. (r̂i = 0.528, b̂ = 0.008,Ds= 0.61, and uniform velocity
distribution at inlet: Ur, i =Ūr, i. Pressure differences are non-dimensionalized by ρΩ2r2

o. Each curve contains data from 50
separate CFD simulations.)
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FIG. 8. Radial variation of local net pressure difference ∆p̂net(r ) and its components: prediction of the present CFD sim-
ulations for radial outflow. (r̂i = 0.528, b̂ = 0.008,Ds= 1, φ = 0.124, and uniform velocity distribution at inlet: Ur, i =Ūr, i.
Pressure differences are non-dimensionalized by ρΩ2r2

o. There are 125 grid points between the inlet and the outlet.)

values of r̂i, not reported here, showed that they do not reveal any new physics. We therefore focus
our attention to the two remaining, most important, non-dimensional numbers Ds and φ.

Table I shows that for the case of corotating discs with radial outflow, quantities like pres-
sure and pressure difference are non-dimensionalized by ρΩ2r2

o. As a result, the non-dimensional
centrifugal component becomes a function of ri alone, the relation being ∆p̂io,centrifugal = (1 − r̂2

i )/2.
The present section is divided into three subsections. Section IV B 1, with Figures 6 and 7,

gives the physical mechanisms of the overall radial pressure difference (∆pio). Section IV B 2, with
Figure 8, presents the physical mechanisms of the variation in local net pressure difference ∆pnet(r).

FIG. 9. Contribution of various forces within two static discs to produce the overall radial pressure difference ∆p̂io over a
range of dynamic similarity number Ds: prediction of the present CFD simulations for radial outflow. (r̂i = 0.528, b̂ = 0.008,
and uniform velocity distribution at inlet: Ur, i =Ūr, i. Pressure differences are non-dimensionalized by ρŪ2

r, i. Each curve
contains data from 50 separate CFD simulations.)
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Section IV B 3, with Figure 9, provides a discussion on the baseline solutions when the discs are
static.

1. Physical mechanisms for the overall pressure difference, ∆p̂io

At first, we explore the role of Ds while keeping all other non-dimensional numbers fixed.
In order to generate a high-definition set of comprehensive results, full CFD simulations are run
at each of 50 different values of Ds, with appropriate local clustering of data points for higher
quantitative resolution in the region of greater qualitative significance.

Figure 6 shows the variation of∆p̂io and its four components∆p̂io,inertia,∆p̂io,Coriolis,∆p̂io,centrifugal,
and ∆p̂io,viscous with Ds. The positive values of ∆p̂io indicate that pressure increases from the inlet
to the outlet. It can be observed that the curve corresponding to the variation of ∆p̂io is inverted
bucket-shaped and ∆p̂io is maximum at a certain Ds (around 0.6 for the present case). The phys-
ical reason behind the inverted bucket-shape of ∆p̂io versus Ds curve can be understood in terms
of the quantitative variation of the four components of ∆p̂io. First of all, consider the sign of the
four components. It is found that ∆p̂io,centrifugal and ∆p̂io,inertia are positive, whereas ∆p̂io,Coriolis and
∆p̂io,viscous are negative. ∆p̂io,centrifugal is positive because r̂i is less than 1 [∆p̂io,centrifugal = (1 − r̂2

i )/2].
∆p̂io,inertia is positive because ρV 2

θ /r and −ρVr/(∂Vr/∂r) are positive and the term −ρVz/(∂Vr/∂z)
is very small. ∆p̂io,viscous is negative because fluid friction always causes pressure drop. ∆p̂io,Coriolis

is negative because for radial outflow, Vθ is negative (except at the solid walls where Vθ is zero due
to no slip condition). Secondly, we consider the magnitude of the positive components. It is found
that ∆p̂io,inertia is small, especially at small Ds. On the contrary, ∆p̂io,centrifugal has a dominating effect.
∆p̂io,centrifugal depends only on the radius ratio and thus remains constant when only Ds is varied.
Thirdly, we reflect upon the magnitude of the negative components. At a small value of Ds, the magni-
tude of ∆p̂io,viscous is large but the magnitude of ∆p̂io,Coriolis is small. On the contrary, at a large Ds, the
magnitude of ∆p̂io,Coriolis is large but ∆p̂io,viscous is small. As a result of the above-mentioned signs and
relative magnitudes of the components, two interesting features arise in the overall radial pressure
difference: (i) the magnitude of ∆p̂io is less than that of the centrifugal component ∆p̂io,centrifugal alone
and (ii) ∆p̂io exhibits a maxima at a certain value of Ds.

From the above list of observations, it can be inferred that at a small value of Ds, a small ∆p̂io

occurs because of the large magnitude of ∆p̂io,viscous which opposes ∆p̂io,centrifugal. On the other hand,
at a comparatively greater Ds, a small ∆p̂io occurs because of the large magnitude of ∆p̂io,Coriolis

which opposes ∆p̂io,centrifugal. Furthermore, for a decrease of Ds from Ds ≈ 0.6, the decrement of
∆p̂io is drastic due to the sharp rise of the magnitude of ∆p̂io,viscous. On the other hand, for an increase
of Ds from Ds ≈ 0.6, the decrement of ∆p̂io is rather slow because of two reasons. The rate of
increase of the magnitude of ∆p̂io,Coriolis is not drastic and ∆p̂io,inertia increases. This subtle fluid
dynamics is responsible for the special shape of ∆p̂io versus Ds curve as shown in Figure 6.

We now investigate the role of φ while keeping all other non-dimensional numbers fixed. φ is
defined as: φ = Ūr, i/(Ωri). The radial velocity at the inlet of the rotor, Ūr, i, is fixed for maintaining
a specific flow rate, and ri is fixed for a particular rotor. Therefore, in order to understand the
fluid dynamics of the rotational flow, φ in the illustrative computations of this study is varied by
altering the rotational speed Ω. In the abscissa of Figure 7, increasing φ therefore also equivalently
represents decreasing Ω. This should be kept in mind while interpreting the variations of various
non-dimensional quantities of Figure 7 since quantities like pressure and pressure difference are
non-dimensionalized, for the radial outflow case, by ρΩ2r2

o.
Figure 7 is obtained by running full CFD simulations at each of 50 different values of φ.

Figure 7 shows the variation of ∆p̂io and its four components ∆p̂io,inertia,∆p̂io,Coriolis,∆p̂io,centrifugal,
and ∆p̂io,viscous with φ. With an increase in φ, ∆p̂io decreases, and the value of ∆p̂io changes from
positive to negative. The physical reason behind the above trend of ∆p̂io can be understood in
terms of the quantitative variation of the four components of ∆p̂io. It is discussed previously that
p̂io,centrifugal and ∆p̂io,inertia are positive, whereas ∆p̂io,Coriolis and ∆p̂io,viscous are negative (see Fig-
ure 7). ∆p̂io,centrifugal remains constant with varying φ because it depends only on the radius ratio. At
small φ, ∆p̂io,centrifugal becomes the major contributor and ∆p̂io,viscous, ∆p̂io,inertia, and ∆p̂io,Coriolis are
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small. Consequently, ∆p̂io, is positive. At large φ, ∆p̂io,viscous becomes the major contributor, hence,
∆p̂io becomes negative.

It is to be noted ∆p̂io,Coriolis [∆p̂io,Coriolis ≡
 ro
ri

((1/b)  b

0 (2ρVθ) dz
)
dr/(ρΩr2

o)] changes insig-
nificantly with an increase in φ. It is already mentioned that φ is varied here by changing Ω. With an
increase in φ (i.e., decrease in Ω), it can be shown that the magnitude of Vθ decreases. Thus, in the
expression of ∆p̂io,Coriolis, both the numerator and the denominator decrease with an increase in φ.
This may explain the presented trend of ∆p̂io,Coriolis. For the selected fixed value of Ds, ∆p̂io,inertia is
small which is consistent with the message contained in Figure 6. Figure 6 shows that for small and
moderate values of Ds, ∆p̂io,inertia is small.

It is already stated that ∆p̂io for radial outflow may be positive or negative. The implication of
the negative ∆p̂io is that the power, from an external source, is required not only to maintain a steady
disc-speed Ω but also to maintain a constant positive head at the rotor inlet for sustaining a steady
radial efflux. On the other hand, the positive ∆p̂io implies that the externally supplied power is solely
utilized to maintain a steady disc-speed Ω which, in turn, causes a continuous pumping action in a
radially outward direction and gives rise to an increase in pressure from inlet to outlet. Therefore,
for a positive ∆p̂io, this radial outflow device may act as a pump. The largest possible positive value
of ∆p̂io is (1 − r̂2

i )/2, which is the value of ∆p̂io,centrifugal (see Figure 7).

2. Radial variation of local net pressure difference ∆p̂net(r ) and its components

∆p̂net(r) and its components can be determined by changing the upper limit of integration in
Equation (2) to the local value of the radius, r , instead of ro used for the determination of the overall
pressure difference discussed in Sec. IV B 1. Figure 8 shows the radial variation of the local net
pressure difference and its components. It is observed that close to the inlet, the net pressure differ-
ence is negative. However, with an increase in non-dimensional radius, the net pressure difference
changes its sign and becomes positive (at the selected value of φ). Therefore, at some intermediate
non-dimensional radius between inlet and outlet, the net pressure difference is zero. The radial loca-
tion of zero net pressure-difference depends on the values of the fixed non-dimensional numbers. It
is to be observed that centrifugal and inertial components of the net pressure are positive, whereas
Coriolis and viscous components of the net pressure are negative. Explanations related to the sign of
the components are provided in Sec. IV B 1. Close to the inlet, the combined effect of Coriolis and
viscous components overtakes the effect of centrifugal and inertial components. Therefore, the sign
of the net pressure difference is negative. With an increase of radius, the influence of the centrifugal
component increases, so much so that the net pressure difference becomes positive.

Figure 7 shows that at large values of φ (i.e., at small values of rotational speed Ω), ∆p̂io can be
negative. If Figure 8 were redrawn at such values of φ, ∆p̂net(r) may remain negative at all radii from
the inlet to the outlet.

3. The limiting case for zero rotational speed (Ω = 0)

The limiting case for zero rotational speed (i.e., static discs) is also investigated. A summary
of results is described below. When the discs are static, φ tends to ∞. We, therefore, examine only
the effect of change in Ds on the overall pressure difference. Figure 9 is based on labour-intensive
computations in which full CFD simulations are run at each of 50 different values of Ds. (Note that
in addition to the 50 CFD simulations run to obtain Figure 6, 50 more CFD simulations are run to
obtain Figure 9.)

It is found that the overall pressure difference is negative and its magnitude decreases with
increasing Ds, unless Ds is very large. In the absence of rotation, both centrifugal and Coriolis
components are zero and viscous and inertial components are the only active parts. The inertial
component is positive but its contribution is small unless Ds is very large. The viscous component
is negative (unless at very large Ds) and makes the dominating contribution to the overall pressure
difference whose sign, magnitude, and the trend of variation as Ds changes are all close to those of
the viscous component. The shape of the ∆p̂io versus Ds curve for the static discs is thus similar to
that of the ∆p̂io,viscous versus Ds curve shown in Figure 6. Unlike the case of corotating discs (see

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

203.110.242.24 On: Wed, 05 Oct 2016 15:03:17



103601-18 A. Guha and S. Sengupta Phys. Fluids 28, 103601 (2016)

Figure 2 or 6) or static discs with radial inflow (Figure 5), the curve of the overall pressure differ-
ence for static discs with radial outflow does not pass through any extrema. It is so because with
increasing Ds, the values (not the magnitudes) of both viscous and inertial components increase.
Since Ω is zero, ρŪ2

r, i, instead of ρΩ2r2
o, may be used for non-dimensionalising the pressure

differences.
A study of Equation (2) shows that ∆pio,inertia is composed of several terms; of these, the term

containing V 2
θ is often the dominant term. Now, Vθ = Uθ −Ωr and for the radial outflow simulations,

the assumed value of Uθ, i is zero. Thus, for static discs (Ω = 0), Vθ = 0. The magnitude of ∆pio,inertia,
for flow through static discs with radial outflow, is therefore quite small, and the variation in ∆p̂io

closely resembles that in ∆p̂io,viscous (as seen in Figure 9).

V. CONCLUSION

In this paper, a new formulation is presented for understanding the radial pressure variation
for flow through microchannels within corotating or static discs. The full benefit of similitude
and scaling is extracted by expressing the results and analyses in terms of carefully formulated
non-dimensional numbers. We have given emphasis not only on the overall magnitude of the radial
pressure difference (∆pio) but also on the mechanisms of pressure variation, and with this objective,
the separate roles of inertia, centrifugal force, Coriolis force, and viscous effects are determined
quantitatively. The present paper demonstrates that the aspect ratio (b̂) plays only a secondary role
as an independent parameter, its major role being contained within the newly identified dynamic
similarity number (Ds). For radial inflow, it is established that ∆p̂io,viscous depends predominately
on Ds; ∆p̂io,centrifugal depends predominately on γ; and ∆p̂io,inertia and ∆p̂io,Coriolis depend on both
Ds and γ (see Figures 2 and 3). It is shown that the magnitude of ∆pio decreases monotonically
as the tangential speed ratio (γ) increases, and the centrifugal force is dominant at low γ. ∆pio

exhibits a minima when Ds is varied, viscous effects dominating at low Ds, while Coriolis force and
inertia dominating at large Ds. For radial outflow, ∆p̂io,centrifugal and ∆p̂io,inertia are positive, whereas
∆p̂io,Coriolis and ∆p̂io,viscous are negative and ∆p̂io may be either positive or negative depending on the
quantitative variation of these four components. It is demonstrated that ∆p̂io increases monotoni-
cally as the flow coefficient (φ) decreases but evinces a maxima when Ds is varied. The occurrence
of these extrema (i.e., the minima for radial inflow devices and maxima for radial outflow de-
vices) offers the scope for the optimization of macrofluidic and microfluidic devices consisting of
corotating discs.

Computations for the limiting cases with zero rotational speed (Ω = 0) show that there is no
extrema in the ∆pio versus Ds curve for the radial outflow case, but for the radial inflow case, the
inertia and viscous components bring about a minima in the magnitude of ∆pio as Ds is varied.
As compared to the corotating discs, the minima occur at a greater value of Ds and the magnitude
of ∆pio is a lot smaller at the point of minima. These changes are caused by the absence of the
centrifugal and Coriolis components in the case of static discs.
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