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Abstract: Numerical simulation of the compressible flow through a turbine cascade is studied
in the present paper. The numerical solution is performed on self-adaptive unstructured meshes
by an implicit method. Computational codes have been developed for solving Euler as well as
Navier–Stokes equations with various turbulence modelling. The Euler and Navier–Stokes
codes have been applied on a standard turbine cascade, and the computed results are compared
with experimental results. A hybrid scheme is used for spatial discretization, where the inviscid
fluxes are discretized using a finite volume method while the viscous fluxes are calculated by
central differences. A MUSCL-type approach is used for achieving higher-order accuracy. The
effects of the turbulent stress terms in the Reynolds-averaged Navier–Stokes equations have
been studied with two different models: an algebraic turbulence model (Baldwin–Lomax
model) and a two-equation turbulence model (k–v model). The system of linear equations is
solved by a Gauss–Seidel algorithm at each step of time integration. A new treatment of the
non-reflection boundary condition is applied in the present study to make it consistent with
the finite volume flux calculation and the implicit time discretization.
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1 INTRODUCTION

Computational fluid dynamics (CFD) simulation has
become an essential tool in the design and analysis
of modern turbomachinery components during the
past decade. Steady and unsteady state flow predic-
tions are widely studied for problems ranging in
size from a single compressor or turbine blade to a
complete multistage turbomachine. CFD plays an
increasingly important role for it offers the following
advantages.

1. Improved designs:
(a) better understanding of flow from CFD leads

to improved designs;
(b) higher efficiency, lower losses, and wider

operating characteristics.
2. More reliable design methods:

(a) More accurate estimates of performance
during the design process;

(b) less reliance on empirical database and expert
knowledge.

3. Quicker development delivery times:
(a) design in virtual reality requires less hardware

and fewer prototypes to be made.
4. Less expensive design process:

(a) reduction in the number of expensive rig and
prototype tests;

(b) better understanding when something goes
wrong.

The continual increases in engine pressure ratio and
maximum temperature require accurate predictions
of the aerodynamic characteristics and of the heat
loads imposed on the blades.

The final purpose of the present research is to
investigate the complex physical phenomenon
when non-equilibrium wet steam flows through a
low-pressure steam turbine. As the first part, the pre-
sent paper is specifically concerned with dry gas
predictions for cascade flow.

An implicit time integration is used here for better
numerical stability and convergence. In the past,
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various upwind schemes [1–3] have been used for
calculation of the flux, while the Steger–Warming
scheme [4] has been used for treating the non-
reflecting boundary conditions and also for genera-
ting the implicit Jacobian (when implicit time
integration was involved). In the present work, a
new method is developed such that the calculation
of the flux, the boundary conditions, and the implicit
Jacobian all conform to the Roe scheme. This
provides internal consistency and improves the
convergence significantly.

A hybrid scheme is used for spatial discretization,
where the inviscid fluxes are discretized using a
finite volume method while the viscous fluxes
are calculated by central differences. A MUSCL-
type approach is used for achieving higher-order
accuracy. The effects of the turbulent stress terms
in the Reynolds-averaged Navier–Stokes equations
have been studied with two different models: the
Baldwin–Lomax algebraic turbulence model [5] and
the two-equation k–v turbulence model [6]. The
system of linear equations is solved by a Gauss–
Seidel algorithm at each step of time integration.

Unstructured grids are most suitable for complex
and irregular geometries. There are two major
unstructured grid generation methods: the Delaunay–
Voronoi method (DVM) and the advancing front
method (AFM) for triangles in two dimensions. Both
of the methods are used in the present work, the initial
grids are generated for inviscid and viscous compu-
tations by DVM and AFM while the self-adaptive -
procedure is based on the DVM theory.

2 GOVERNING EQUATIONS

The equations used to model the flow are the com-
pressible, Reynolds-averaged continuity, momen-
tum, and energy equations written in an integral
form, where the volume of a computational cell is
denoted by V and its surface by S

ð
V

@W

@t
dV þ

ð
S

F dS �

ð
S

G dS ¼ 0 (1)

where

W ¼ ½r, ru, e�T

F ¼ ½r(u � n), ru(u � n)þ pn, (e þ p)(u � n)�T

G ¼ ½0, tS, tS � uþ _qqS
�
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By assuming that the fluid is a perfect gas, the
pressure p is calculated from

p ¼ (g� 1)(e � 1
2 kuk
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The shear stress tensor, tij, is given by

tij ¼ m
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@xj
þ
@uj

@xi
�
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The above system of equations needs initial con-
ditions prescribing the flow state at t ¼ 0 and bound-
ary conditions. In the time marching method the
final steady state is achieved as the converged
solution of unsteady calculations.

3 NUMERICAL METHOD

The governing equations are treated in conservative
form and discretized in time using the Euler implicit
method leading to a set of non-linear finite difference
equations, which are solved using a Newton
procedure. In stationary simulations, convergence
history is accelerated by using local time steps
which are based on local stability criteria.

Applying Green’s theorem, the Navier–Stokes
equations can be rewritten in a differential form

@W

@t
þ r � F ¼ r � G (2)

3.1 Inviscid fluxes

The convective (Euler) parts are discretized using a
third-order accuracy, TVD-upwind finite volume
scheme. When solving transport equations for turbu-
lent quantities, a more stable first-order upwind
scheme is used. The TVD scheme is based on the
MUSCL-type of upwind scheme [7] which consists
of a projection stage and an evolution stage. In the
projection stage, left and right states at each control
volume interface are determined by extrapolating the
node values of the conservative variables towards
the control volume interface. In the evolution stage
the inviscid flux is evaluated by solving the Riemann
problem between left and right states using Roe’s
approximate Riemann solver [2].

3.2 Viscous fluxes

In order to construct the numerical viscous flux
vector at the control volume interfaces, it is neces-
sary to evaluate first-order derivatives of the velocity
components, the speed of sound, and the turbulent
quantities, which is done in a central-differences
manner, using Green’s theorem.
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3.3 Roe approximate Riemann solver

Consider Roe’s flux difference splitting of the inviscid
flux vector

F(WL,WR) ¼ 1
2 ½F(WL)þ F(WR)

� 1
2 j

~AA(WL,WR)j � (WL �WR)� (3)

where j ~AA(WL,WR)j denotes the standard Roe matrix.
It can be shown that this scheme is equivalent to
the first-order finite volume upwind cell–vertex
scheme based on a dual mesh. There are many differ-
ent ways to achieve higher-order accuracy. In this
work, a scheme of higher-order accuracy is obtained
by using upwind-biased interpolations of the solu-
tion WL,WR via the MUSCL approach. Therefore,
the flux function is shown as

FLR ¼
1
2 ½F
þ
L þ F�R � j

~AA(WþL ,W�R )j � (W�L �WþR )� (4)

where

FþL ¼ F(WþL ), F�R ¼ F(W�R )

and Wþ
L and W�

R are constructed by the MUSCL
scheme as

WþL ¼ WL þ
SL

4
½(1� kSL)D�L þ (1þ kSL)(WL �WR)�

W�R ¼ WR �
SR

4
½(1� kSR)DþR þ (1þ kSR)(WR �WL)�

where S is the flux limiter of von Albabda

Si ¼
2D�i (uj � ui)þ 1

(D�i )2 þ (uj � ui)
2 þ 1

Sj ¼
2Dþj (uj � ui)þ 1

(Dþj )2 þ (uj � ui)
2 þ 1

with 1! 0.
The forward and backward difference operators

are given by

DþL ¼ 2WL, D�R ¼ 2WR

The parameter k is chosen to control the degree
of approximation. In this paper, k ¼ 1/3, which cor-
responds to a third-order upwind-biased scheme.
When k ¼ 0 it is a Fromm scheme, and k ¼ 21 corres-
ponds to a second-order upwind-biased scheme.

One of the strategies is to develop a multi-
dimensional limiter for modifying high-order finite
volume schemes in such a way that the resulting
method is monotonic, thus avoiding the creation of
unphysical oscillations in the numerical solution

and so improving the robustness of the algorithm.
One commonly used approach is the slope limiting
(MUSCL) technique of van Leer, in which the limiter
is applied in a geometric manner to the gradients of a
piecewise linear reconstruction of the solution to
create a monotonic scheme.

3.4 Boundary condition

In the present scheme, phantom cells are used to
handle inlet and outlet boundaries. According to
the theory of characteristics, flow angle, total pres-
sure, total temperature, and isentropic relations are
used at the subsonic axial inlet, whereas all variables
are prescribed at the supersonic inlet. At the sub-
sonic axial outlet the average value of the static
pressure is prescribed, whereas all variables are
calculated at the supersonic axial outlet. For Euler
equations, the slippery adiabatic or isothermal con-
dition is applied on solid walls, and for NS equations
the non-slip condition is used instead. All details are
shown in Fig. 1.

1. Adiabatic impermeable solid wall: u . n ¼ 0 for
inviscid flow computation; u ¼ 0 and @T/@n ¼ 0
for viscous flow computation.

2. Periodic boundaries. Periodic boundaries are not
necessary if the whole bladerow is modelled,
but, in practice, computer resources are limited,
and only one blade passage of the whole flow
domain is modelled to save computational time.
This treatment is sufficient since flow data can
be transferred directly between periodic boun-
daries, and the periodic boundary condition is
prescribed on artificial cuts 2.

Fig. 1 Nomenclature for cascade of profiles SE1050
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3. Inlet boundary. Total pressure p0, total tempera-
ture T0, and the inflow angle of attack a (or
incidence angle i) are specified as the input
conditions.

4. Outlet boundary. Outlet static pressure p2 is speci-
fied. One option in the numerical simulation is to
set the static pressure at the outlet boundary as an
invariant given by the input condition; the other
option is to apply non-reflection treatment on
the outlet boundary as it has been successfully
applied on the farfield condition of the external
flow computation. This method is supported by
numerical results of Yao et al. [8]. Both of these
methods are used in the present paper, and the
numerical results based on non-reflecting con-
ditions are shown to be closer to that of the real
flow (i.e. experimental results).

Given the incoming Mach number, M1, and the
angle of attack, a, in the external computation, the
rest of the farfield properties are fixed. This makes
it easy to apply the Roe scheme on the farfield
boundary calculation simply by treating the farfield
phantom cells as the left-hand-side properties
while treating the real values as the right-hand-side
properties. This strategy makes the method that is
used to compute the fluxes contributed by the
boundaries the same as the method used in interior
flux computation. The internal consistency of treat-
ments results in a large CFL number in the implicit
algorithm and will be discussed later in this paper.
Unfortunately, unlike in the external computation,
the inlet and outlet boundary conditions are
expressed implicitly in the internal flow compu-
tation. The total pressure P0, the total temperature
T0, and the incident angle i are fixed at the entrance,
and the outlet static pressure p2 is fixed at the exit.
This does not provide enough information to
specify the flow properties which are necessary for
applying the Roe scheme at the inlet and outlet
boundary. To overcome this problem and to main-
tain the advantage of the consistency property at
the same time, a two-step prediction–correction
procedure is implemented here.

1. Prediction. There are three inlet boundary con-
ditions, p0, T0, and a, and the conservative varia-
bles will be specified explicitly if given another
extra independent condition such as the inlet
mach number, M1, or the inlet static pressure,
p1. For convenience of calculation, M1 is chosen
as the extra parameter to specify the predicted
values at the inlet phantom cells with the isentro-
pic assumption here; M1 can easily be calculated
from the local inlet boundary nodes. At the
outlet boundary it is found that it would cause
serious reflection from the outlet boundary if p2

were set as a constant at the outlet boundary

nodes. To avoid violation of the non-reflection
boundary condition, p2 at the outlet boundary is
kept flexible while p2 at the phantom cells is
fixed. There may be a loss of the total pressure
after passing through the cascade profile. p0.2

and T0.2 at the right-hand-side of the boundary
(phantom cells) are taken the same as p0.2 and
T0.2 at the left-hand-side, which are calculated
from W n at the outlet boundary. This, together
with specified p2 at the right-hand-side, enables
the Roe scheme to calculate all properties at the
outlet boundary.

2. Correction. After upgrading the conservative varia-
bles from Wn to Wnþ(1=2), a correction should be
imposed on the inlet boundary nodes to make
them satisfy the constant total pressure condition
and constant total temperature at the inlet boun-
dary. This can easily be realized by calculating the
Mach number M1 from the conservative values
Wnþ(1=2) at the inlet boundary and then updating
Wnþ1 from M1, p0, T0, and the inflow angle a.

Usually, the Steger–Warming scheme is used for the
farfield boundary condition. In this paper, the far-
field boundary condition is formulated such that it
is internally consistent with the Roe scheme. For
this, equation (3) is rewritten with the subscript R
replaced by 1 (the farfield condition)

F(WL,W1) ¼ 1
2 ½F(WL)þ F(W1)

� 1
2 j

~AA(WL,W1)j � (WL �W1)� (3a)

The same equation applies for inflow (subscript 1)
and outflow (subscript 2) farfeld conditions. Later
it will be shown that this internally consistent
treatment of boundary conditions improves the
convergence significantly.

3.5 Implicit time integration

Equation (1) can be rewritten in semi-discrete form
for each control volume

Vi ¼
@W

@t
¼ Ri (5)

where Vi is the area for two dimensions and the
volume for three dimensions of the dual mesh cell,
and Ri is the residual. The Euler implicit discretiza-
tion and linearization of equations leads to

V

Dt
þ
@F

@W

� �n

DWn ¼ Rn (6)

where Dt is the time increment, DWn is the difference
in the conservation variable between time levels n
and nþ 1, and @F=@W represents symbolically the
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(phantom cells) are taken the same as p0.2 and
T0.2 at the left-hand-side, which are calculated
from W n at the outlet boundary. This, together
with specified p2 at the right-hand-side, enables
the Roe scheme to calculate all properties at the
outlet boundary.

2. Correction. After upgrading the conservative varia-
bles from Wn to Wnþ(1=2), a correction should be
imposed on the inlet boundary nodes to make
them satisfy the constant total pressure condition
and constant total temperature at the inlet boun-
dary. This can easily be realized by calculating the
Mach number M1 from the conservative values
Wnþ(1=2) at the inlet boundary and then updating
Wnþ1 from M1, p0, T0, and the inflow angle a.

Usually, the Steger–Warming scheme is used for the
farfield boundary condition. In this paper, the far-
field boundary condition is formulated such that it
is internally consistent with the Roe scheme. For
this, equation (3) is rewritten with the subscript R
replaced by 1 (the farfield condition)

F(WL,W1) ¼ 1
2 ½F(WL)þ F(W1)

� 1
2 j

~AA(WL,W1)j � (WL �W1)� (3a)

The same equation applies for inflow (subscript 1)
and outflow (subscript 2) farfeld conditions. Later
it will be shown that this internally consistent
treatment of boundary conditions improves the
convergence significantly.

3.5 Implicit time integration

Equation (1) can be rewritten in semi-discrete form
for each control volume

Vi ¼
@W

@t
¼ Ri (5)

where Vi is the area for two dimensions and the
volume for three dimensions of the dual mesh cell,
and Ri is the residual. The Euler implicit discretiza-
tion and linearization of equations leads to

V

Dt
þ
@F

@W

� �n

DWn ¼ Rn (6)

where Dt is the time increment, DWn is the difference
in the conservation variable between time levels n
and nþ 1, and @F=@W represents symbolically the
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Jacobian matrix. The Gauss–Seidel algorithm is
applied in solving the linear equations at each step
of time integration.

The present work makes novel use of the Roe
scheme to calculate the implicit Jacobian matrix
(in addition to its standard use for space discretiza-
tion). The inviscid flux Jacobian matrix is thus
written as

@FLR

@WL

¼ 1
2½A(WL)þ j ~AAj�,

@FLR

@WR

¼ 1
2½A(WR)� j ~AAj� (7)

For the farfield boundary condition the Jacobian
matrix is

@F

@Wi
¼ 1

2½A(Wi)þ j ~AA(Wi,W1)j� (8)

Therefore, all computational nodes in the flowfield,
including the boundary points, are discretized by
the Roe scheme.

In the Navier–Stokes calculation, the boundary
conditions on the body correspond to no slip and
the velocities at the solid boundary are known as 0
and should not be treated as variables on the LHS
of the equations. A post-processor is utilized to
implement these boundary conditions by modifying
the matrix terms in equation (6) to reflect appropri-
ately the desired boundary conditions. For clearer
demonstration of this procedure, a slightly expanded
representation of one of the rows in equation (6) is
given by

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

2
664

3
775

Dr

Dru
Drv
De

2
664

3
775 ¼

R1

R2

R3

R4

2
664

3
775 (9)

where R represents both the residual and off-
diagonal terms on the right-hand side of equation
(6) and Aij represents the individual components of
one of the diagonal blocks in [A]. The density can
be determined from the continuity equation during
the solution process from the first row of equation
(9). However, the contribution to the continuity
residual along the boundary involves integration
around the dual mesh surrounding the node and a
segment of the body surface. The contribution from
the surface, assuming zero velocity at the wall, is
identically zero. The second and third rows are
modified so that the solution of equation (9) main-
tains a zero velocity at the nodes on the solid boun-
daries. Furthermore, the fourth row is altered to
preserve a constant temperature in the case of an
isothermal wall boundary condition. The constant

wall temperature assumption is used to relate
the change in energy at the wall to the change in
density

De ¼
Twall

g(g� 1)
Dr

The resulting matrices now reflect the implemen-
tation of the appropriate boundary conditions at
the wall and are given by Anderson and Bonhaus [9].

1. Adiabatic wall

A11 A12 A13 A14

0 1 0 0
0 0 1 0

A41 A42 A43 A44

2
664

3
775

Dr

Dru
Drv
De

2
664

3
775 ¼

R1

0
0

R4

2
664

3
775 (10)

2. Isothermal wall

A11 A12 A13 A14

0 1 0 0
0 0 1 0

�Twall=g(g� 1) 0 0 1

2
664

3
775

Dr

Dru
Drv
De

2
664

3
775

¼

R1

0
0
0

2
664

3
775 (11)

3.6 Turbulence model

The algebraic turbulence model and the two-
equation model are used here.

3.6.1 Baldwin–Lomax algebraic turbulence model

The Baldwin–Lomax (B–L) turbulence model is the
mixing length model owing to the algebraic relation-
ship which uses Prandtl mixing length theory for
determination of the eddy viscosity. This model is
easy to implement and can provide accurate results
for simple cases. It is a two-layer algebraic eddy
viscosity model in which mt is given by

mt ¼
(mt)innery 4 ycrossover

(mt)outery . ycrossover

�

where y is the normal distance from the wall and the
smallest value of y at which values from the inner and
outer formulation are equal.

The Prandtl–van Driest formulation is used in the
inner region

v(i)
T ¼ rl2jr � uj
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where

l ¼ Ky(1� e�(yþ=A))

yþ ¼
y

v

ffiffiffiffiffi
t0

r

r

and r is the density, u is the velocity of the field, the
shear stress tangential to the wall

t0 ¼ m
@u

@y

����
w

and A is the van-Driest constant (A ¼ 26).
In the outer region, the eddy viscosity is given by

(mt)outer ¼ 0:0168b
Fwake

Fkleb

where Fwake is determined from

Fwake ¼ min
ymaxFmax

0:25ymaxU2
dif=Fmax

� �

the quantity Udif is the difference between the
maximum and minimum total velocity in the velocity
profile

Udif ¼ (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
)max � (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
)min

ymax is the distance from the wall at which F( y)
becomes maximum, and Fmax is the maximum
value of the function F( y), which is given as

F( y) ¼ y(1� e�yþ=A)jr � uj

The intermittency factor is given by

F ¼
1

1þ 5:5(0:3y=ymax)

Generally, the BL model is designed on the basis of
structured grid computation because it needs the
normal distance from the wall. To adapt it for
unstructured grids, a modification to the original
BL model has been made. A turbulence reference
grid is used to supply the necessary length scale for
each cell. It is constructed by dividing the compu-
tational domain into strips, or narrow bands, which
emanate from the body walls or some wake centre-
lines. The width of each strip should be of the order
of 1–2 cell sizes. The control volumes whose nodes
reside in one particular strip are treated as one
group of nodes. In each group, the distance of each
node to the end-wall or the wake centre-line can be
measured, which, in turn, will be used as the

reference length in the turbulence model. Once the
reference length for each cell is established, compu-
tation of the turbulence model can proceed on the
unstructured mesh without difficulty. For example,
the vorticity at each node can be obtained directly
from the velocity gradient computed by the flow
solver. The peak of a functional distribution can be
located by searching the extremum points along
each strip or within each group. The turbulence
eddy viscosity at each node can then be determined
easily by the two-layer algebraic mode.

Ideally, the divided strips should cover the entire
computational domain without overlapping each
other. However, for the flowfield with multiple
walls (the pressure and suction surfaces of the
blades) or wake lines, regions of overlapping strips
will occur. This is equivalent to saying that the tur-
bulence in these regions is influenced by multiple
turbulence sources. In this case, the turbulence com-
putation within each group still proceeds as before,
but a weighting procedure is employed to determine
the influence from each wall or wake line. A more
sophisticated approach may take the distance-
weighted average as the final turbulence eddy
viscosity.

3.6.2 Two-equation turbulence model
(k–v model)

The main field of application of Navier–Stokes
methods in aerodynamics will be for complex turbu-
lent flows that cannot be treated by an inviscid or
viscous–inviscid interaction scheme. Examples are
massively separated flows, flows involving multiple
length scales, flows with three-dimensional separa-
tion, and complex unsteady flows. In these flows
the application of algebraic turbulence models such
as the Baldwin–Lomax model becomes very compli-
cated owing to the difficulty in defining an algebraic
length scale. It is obvious that the improvement of
numerical methods must be accompanied with the
development of more general turbulence models
and their implementation in Navier–Stokes codes.

The most popular non-algebraic turbulence
models are two-equation eddy viscosity models.
These models solve two transport equations, gener-
ally one for the turbulent kinetic energy and another
one related to turbulence length (or time) scale.
Among the two-equation models, the k–v turbu-
lence model of Wilcox is one of the most successful.
It solves one equation for the turbulence kinetic
energy, k, and a second equation for the specific
turbulent dissipation rate, v. The model does not
employ damping functions and has straightforward
Dirichlet boundary conditions. This leads to signifi-
cant advantages in numerical stability. The standard
Wilcox k–v model is given as follows.
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For the turbulence kinetic energy k transport
equation

@rk

@t
þ
@ruik

@xi
¼ tij

@ui

@xj
� b�rvk þ

@

@xj
(mþ sk1mt)

@k

@xj

� �

For the turbulent dissipation rate v transport
equation

@rv

@t
þ
@ruiv

@xi
¼

g1

nt

tij
@ui

@xj
� b1r

2k

þ
@

@xj
(mþ sv1mt)

@v

@xj

� �

where the constants will be

sk1 ¼ 0:5, sv1 ¼ 0:5, b1 ¼ 0:0750

b� ¼ 0:09, k ¼ 0:41, g1 ¼
b1

b�
�
sv1k

2ffiffiffiffiffi
b�

p

The model has to be supplemented by the definition
of the eddy viscosity

nt ¼
mt

r
¼

k

v

The turbulent stress tensor tij ¼ �ru0iu
0
j is then

given by

tij ¼ mt

@ui

@xj
þ
@uj

@xi
�

2

3

@uk

@xk
dij

� �
�

2

3
rkdij

For the turbulent equations, the boundary condi-
tions are needed. For the wall conditions, no slip
conditions are used. The turbulent kinetic energy k
is zero, and v satisfies the following equation [6]

v ¼ 10
6n

b1(Dy)2

where Dy is the distance to the first point away from
the wall. For freestream conditions, the turbulent
kinetic energy k is set at 1027, and the turbulent
coefficient is 0.01 (non-dimensional), so for the
freestream v ¼ Re=(M1m1)r1k1.

This model has been widely used. It is wall dis-
tance free, which is very important for the unstruc-
tured grid, and does not need damping functions in
the viscous sublayer. However, this model is sensitive
to the value specified for the freestream specific
dissipation, v1. The turbulent coefficient changes
greatly, but for wall-bounded flow this is not very
significant.

3.7 Computational grids

All computational unstructured grids are generated
by either the Delaunay–Voronoi method (DVM) or
the advancing front method (AFM). Thin grids are
necessary to capture the flow details in the boundary
layer, and for this purpose the advancing layer
method is applied in generating skew meshes
inside the boundary layer when the solver is consid-
ering the effect of viscosity. Figures 2 and 3 are the
unstructured grids generated for Euler equation
calculations. Figure 2 is the original grid generated

Fig. 2 Initial mesh around the SE1050 blade for the

Euler solver

Fig. 3 Computational grid for the Euler solver after

fivefold refinement
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by DVM, and Fig. 3 is the grid after fivefold
refinement.

4 NUMERICAL RESULTS

The final objective of the present research is to inves-
tigate the aerodynamic and thermal properties of
the effect of homogeneous condensation flow on
the performance of the cascade. The focus here is
upon single-phase flow through a two-dimensional
steam turbine cascade. The transonic rotor turbine
profile cascade SE1050 [10], which was designed for
the last stage of a ŠKODA steam turbine, is chosen
as the test case here. Extensive measurements
using this profile have been made for a large
number of operating conditions. A rigorous defi-
nition of measured quantities is given in reference
[10]. This provides a useful comparison with numeri-
cal computations. In addition, this cascade satisfies
the velocity range used in modern gas turbines.

The physical experiment was performed under
three conditions including the design condition and
two off-design conditions. The numerical experi-
ments were performed at the design condition for
the following data: angle of attack a ¼ 19:38 (corres-
ponding to the incident angle i ¼ 08), total pressure
p0 ¼ 96 748 Pa, total temperature T0 ¼ 296:65 K,
Reynolds number Re ¼ 1.48 � 106, and isentropic
outlet Mach number M2,is ¼ 1:198.

4.1 Inviscid computation

These computations were carried out to validate the
inviscid part of the solver. The original mesh used for
the present computation consists of 2605 nodes, of
which 222 nodes lie on the blade surface, and 4508
cells, as shown in Fig. 2. It takes 22 time steps to con-
verge to 25 orders with the Gauss–Seidel implicit
algorithm. The fine grid after fivefold self-adaptation
contains 8427 nodes and 16 062 cells, see Fig. 3. The
advantage of the interior consistency of the inviscid
solver is obvious: the CFL number can be as large
as 10 000 and still the scheme maintains stability.
Since the computational error is proportional to
O(Dt), too large a CFL number would result in a
large numerical error. Therefore, the maximum CFL
number is set at 200 during the calculation to achieve
a compromise between efficiency and accuracy.

The calculated surface pressure distribution along
the chord is plotted in Fig. 4. The pressure coefficient
Cp is defined as p/p0. From Fig. 4 it can be seen that
the pressure changes slowly along the pressure side
while it changes rapidly along the suction side.
The pressure downstream of the reflection shock
wave that is generated from the trailing edge of the
suction side of the blade corresponds to the outlet

static pressure p2 and remains approximately
constant until the arc of the trailing edge is reached.
The convergence histories of the computations
are compared in Fig. 5. The first test case is a Roe
scheme carried out on a coarse grid, the second is
a Roe scheme on a fine grid, and the third is an Osher
scheme on the same fine grid. The Roe method is
applied at the inflow and outflow boundaries in all

Fig. 4 Surface pressure distribution along the chord of

SE1050, calculated by the present Euler solver

Fig. 5 Convergence history of the computations on

coarse and fine grids for various schemes for

internal nodes and boundary nodes

42 Y Mei and A Guha

Proc. IMechE Vol. 219 Part A: J. Power and Energy A09404 # IMechE 2005

by DVM, and Fig. 3 is the grid after fivefold
refinement.

4 NUMERICAL RESULTS

The final objective of the present research is to inves-
tigate the aerodynamic and thermal properties of
the effect of homogeneous condensation flow on
the performance of the cascade. The focus here is
upon single-phase flow through a two-dimensional
steam turbine cascade. The transonic rotor turbine
profile cascade SE1050 [10], which was designed for
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ponding to the incident angle i ¼ 08), total pressure
p0 ¼ 96 748 Pa, total temperature T0 ¼ 296:65 K,
Reynolds number Re ¼ 1.48 � 106, and isentropic
outlet Mach number M2,is ¼ 1:198.

4.1 Inviscid computation

These computations were carried out to validate the
inviscid part of the solver. The original mesh used for
the present computation consists of 2605 nodes, of
which 222 nodes lie on the blade surface, and 4508
cells, as shown in Fig. 2. It takes 22 time steps to con-
verge to 25 orders with the Gauss–Seidel implicit
algorithm. The fine grid after fivefold self-adaptation
contains 8427 nodes and 16 062 cells, see Fig. 3. The
advantage of the interior consistency of the inviscid
solver is obvious: the CFL number can be as large
as 10 000 and still the scheme maintains stability.
Since the computational error is proportional to
O(Dt), too large a CFL number would result in a
large numerical error. Therefore, the maximum CFL
number is set at 200 during the calculation to achieve
a compromise between efficiency and accuracy.

The calculated surface pressure distribution along
the chord is plotted in Fig. 4. The pressure coefficient
Cp is defined as p/p0. From Fig. 4 it can be seen that
the pressure changes slowly along the pressure side
while it changes rapidly along the suction side.
The pressure downstream of the reflection shock
wave that is generated from the trailing edge of the
suction side of the blade corresponds to the outlet

static pressure p2 and remains approximately
constant until the arc of the trailing edge is reached.
The convergence histories of the computations
are compared in Fig. 5. The first test case is a Roe
scheme carried out on a coarse grid, the second is
a Roe scheme on a fine grid, and the third is an Osher
scheme on the same fine grid. The Roe method is
applied at the inflow and outflow boundaries in all

Fig. 4 Surface pressure distribution along the chord of

SE1050, calculated by the present Euler solver

Fig. 5 Convergence history of the computations on

coarse and fine grids for various schemes for

internal nodes and boundary nodes
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three test cases. The Roe–Roe method on a coarse
grid shows the best convergence history because of
the large artificial viscosity brought by the large
grid. Comparison between the Roe–Roe and
Osher–Roe methods on the self-adaptive grid
confirms that internal consistency of the solver will
provide a more efficient computation.

Šafarik suggested that the relative velocity l be
used as a standard parameter in the internal flow
computation. Here, l is defined as the ratio of
velocity and the critical speed of sound

l ¼
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½g=(gþ 1)�RT0

p

A comparison of the computed surface relative
velocity distribution with the experimental data of
Štastny and Šafarik [10] is shown in Fig. 6. In this
figure, the results denoted by circles have been
obtained with the inviscid computation while those
denoted by the squares are obtained from the experi-
ment. Since the real velocities on the solid wall are
zero, the relative velocity data in the experiment
were obtained at the edge of the boundary layer.

The agreement between the computations and the
experiment is good over most of the blade, although
an overexpansion near the trailing edge is evident
in the computations which does not appear in the
experiment. The round trailing edge of the SE1050
blade profile causes this difficulty in the computation
of Euler equations. Denton and Dawes [11] found
that, with the coarse grid, it is not necessary
to apply the Kutta condition explicitly and the

numerical viscosity in the solution will automatically
damp the flow and make it leave the trailing edge
smoothly. However, with the refinement of the grids
after several self-adaptive processes, more nodes are
set on the trailing edge automatically for accurately
capture of the dramatic changes. The flow then tries
to approach a stagnation point on the trailing edge
circle and the point where the Kutta condition
should be imposed is not well defined. Then, the
predicted flow is found to accelerate to high speed
at the start of the trailing edge circle on both pressure
and suction surfaces. From the numerical point of
view, the high-speed flows from the pressure side
and the suction side clash somewhere at the trailing
edge with opposite directions and stop at the stag-
nation point all of a sudden. The dramatic change in
the physical properties occurs within a few grids
occupying a short distance along the trailing edge
and destabilizes the numerical robustness.

To obtain a desirable solution, Denton rec-
ommended that the trailing edge of the blade be
extended along the streamline, so the round shape
of the trailing edge is changed into a sharp one
making the flow leave the trailing edge smoothly.
This technology is known as CUSP, and it simplifies
the complexity of the computation and does not
influence the flow significantly. The CUSP should
be unloaded, so that it only introduces blockage
without exerting tangential force on the flow. Unfor-
tunately, there is no theoretical instruction about
how to create such a CUSP, and experience is
needed in its proper implementation.

Figures 7 and 8 represent the Mach contours of
the numerical and experimental results respectively.
Figure 8 shows the interferometric picture with lines
of constant Mach number. Several shock waves,
boundary layers, wakes, and expansion waves are
observed. (The figure presents the frame around
trailing edges of a cascade of profiles.) The ‘fishtail’
shock waves are seen from both the pressure and
suction sides of the trailing edge circle. The shock
wave generated from the pressure side is very
strong and hits the suction side of its neighbouring
blade. It can be seen from a comparison of Figs 7
and 8 that the solver captured exact positions of
the reflection shock wave.

4.2 Viscous computation

Many (�20 in the present calculation) layers of
nodes are distributed in the boundary layer to
simulate the real flow more accurately. Both the
Baldwin–Lomax algebraic turbulence model and
the two-equation k–v model are incorporated in
the developed solver. The initial computational grid
is plotted in Fig. 9, while the surface pressure distri-
bution and the Mach number contour are shown in

Fig. 6 Comparison between the experimental and

numerical relative surface velocity l along the

chord of SE1050 (M2,is ¼ 1.198, a ¼ 19.38)
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Figs 10 and 11 respectively. The operating condition
is the same as the inviscid computation, with the
Reynolds number as an additional parameter: inci-
dent angle i ¼ 19.38, M2,is ¼ 1:198, Re ¼ 1.48 � 106,
total pressure P0 ¼ 99 805 Pa, and total temperature
T0 ¼ 300 K.

Comparing the pressure distribution of the inviscid
result in Fig. 4 with the viscous result in Fig. 10, it is
interesting to see that the oscillation at the trailing
edge disappeared. In the viscous computation, the
velocity on the solid wall is fixed at zero, so it reduces
non-physical oscillation and enforces stability of
the calculation. Comparison between Figs 4 and 10
shows that the shock wave moves towards the leading
edge, which results from boundary layer blockage.

Different self-adaptive sensors are applied in the
grid refinement procedure for efficiently detecting
the positions of the shock wave and the wake. The
shock is characterized as an abrupt jump in pressure,
density, and other flow variables. Therefore, the den-
sity gradient is chosen as the shock wave sensor to
indicate the position of the shock wave. Unfortu-
nately, this sensor does not detect the wake, because
neither the pressure nor the density changes signifi-
cantly in the wake. To capture the wake, which is
dominated by the viscosity, various rotation-related
sensors are constructed and tested as follows.

1. Primitive rotation variable v. The primitive
rotation variable, v, is chosen as the first wake
sensor. As expected, the wake is captured in the

Fig. 8 Interferometric picture of flow in the SE1050

cascade (a ¼ 0, M2,is ¼ 1.198) (courtesy of

P. Šafarik)

Fig. 7 Mach contour on the SE1050 blade cascade,

calculated by the present Euler solver (a ¼ 0,

M2,is ¼ 1.198)

Fig. 9 Initial computational grid around the SE1050

blade for the NS solver

44 Y Mei and A Guha

Proc. IMechE Vol. 219 Part A: J. Power and Energy A09404 # IMechE 2005

Figs 10 and 11 respectively. The operating condition
is the same as the inviscid computation, with the
Reynolds number as an additional parameter: inci-
dent angle i ¼ 19.38, M2,is ¼ 1:198, Re ¼ 1.48 � 106,
total pressure P0 ¼ 99 805 Pa, and total temperature
T0 ¼ 300 K.

Comparing the pressure distribution of the inviscid
result in Fig. 4 with the viscous result in Fig. 10, it is
interesting to see that the oscillation at the trailing
edge disappeared. In the viscous computation, the
velocity on the solid wall is fixed at zero, so it reduces
non-physical oscillation and enforces stability of
the calculation. Comparison between Figs 4 and 10
shows that the shock wave moves towards the leading
edge, which results from boundary layer blockage.

Different self-adaptive sensors are applied in the
grid refinement procedure for efficiently detecting
the positions of the shock wave and the wake. The
shock is characterized as an abrupt jump in pressure,
density, and other flow variables. Therefore, the den-
sity gradient is chosen as the shock wave sensor to
indicate the position of the shock wave. Unfortu-
nately, this sensor does not detect the wake, because
neither the pressure nor the density changes signifi-
cantly in the wake. To capture the wake, which is
dominated by the viscosity, various rotation-related
sensors are constructed and tested as follows.

1. Primitive rotation variable v. The primitive
rotation variable, v, is chosen as the first wake
sensor. As expected, the wake is captured in the

Fig. 8 Interferometric picture of flow in the SE1050

cascade (a ¼ 0, M2,is ¼ 1.198) (courtesy of

P. Šafarik)

Fig. 7 Mach contour on the SE1050 blade cascade,

calculated by the present Euler solver (a ¼ 0,

M2,is ¼ 1.198)

Fig. 9 Initial computational grid around the SE1050

blade for the NS solver

44 Y Mei and A Guha

Proc. IMechE Vol. 219 Part A: J. Power and Energy A09404 # IMechE 2005



first three generations of self-adaptation. How-
ever, unfortunately, the new nodes are added
such that the dense region of grids extends like a
fork within the wake, the effect becoming more
prominent as more generations of self-adaptation
are employed. The reason for this non-uniform
distribution is that the transverse gradient of
speed near the centre-line of the wake decreases
in the axial downstream direction. This means
that the rotation variable v near the centre-line
of the wake decreases more rapidly than that of
the other area in the wake.

2. New wake sensor v=(u 2
þ V 2). To get rid of the

‘fork’ and predict an accurate position of the
wake, a new wake sensor is created. Considering
that the velocities on the centre-line are relatively
small compared with those on the other area of
the wake, the new wake-sensitive sensor is
devised as v=(u2 þ v2). The numerical tests in
the present study showed that this sensor is
more effective for self-adaptation of grids within
the wake.

Figure 11 shows the computational mesh after three
rounds of refinement, two of them based on the
shock sensor and one based on the wake sensor.
The pressure distribution along the blade surface is
plotted in Fig. 12. A comparison with Fig. 10 shows
that the shock wave is much sharper after the grid
refinement. Figure 13 plots the Mach contour

based on the refined grid and provides an instant
view of the wake of the flow.

The numerical results of the inviscid and viscous
flow computations are listed in Table 1 and com-
pared with experimental results [12]. Five numerical
solutions from the present study are included: Euler
(on a coarse grid), Euler (on a fine grid), Navier–
Stokes (NS) (laminar), NS (BL turbulent model),
and NS (k–v turbulent model).

Fig. 10 Pressure distribution along the chord of the

SE1050 blade with a k–v model based on the

initial grid

Fig. 11 Refined grid for N–S computation

Fig. 12 Pressure distribution along the blade chord

based on the refined grid, calculated by the

present N–S solver with a k–v model

Implicit numerical simulation of transonic flow through turbine cascades 45

A09404 # IMechE 2005 Proc. IMechE Vol. 219 Part A: J. Power and Energy

first three generations of self-adaptation. How-
ever, unfortunately, the new nodes are added
such that the dense region of grids extends like a
fork within the wake, the effect becoming more
prominent as more generations of self-adaptation
are employed. The reason for this non-uniform
distribution is that the transverse gradient of
speed near the centre-line of the wake decreases
in the axial downstream direction. This means
that the rotation variable v near the centre-line
of the wake decreases more rapidly than that of
the other area in the wake.

2. New wake sensor v=(u 2
þ V 2). To get rid of the

‘fork’ and predict an accurate position of the
wake, a new wake sensor is created. Considering
that the velocities on the centre-line are relatively
small compared with those on the other area of
the wake, the new wake-sensitive sensor is
devised as v=(u2 þ v2). The numerical tests in
the present study showed that this sensor is
more effective for self-adaptation of grids within
the wake.

Figure 11 shows the computational mesh after three
rounds of refinement, two of them based on the
shock sensor and one based on the wake sensor.
The pressure distribution along the blade surface is
plotted in Fig. 12. A comparison with Fig. 10 shows
that the shock wave is much sharper after the grid
refinement. Figure 13 plots the Mach contour

based on the refined grid and provides an instant
view of the wake of the flow.

The numerical results of the inviscid and viscous
flow computations are listed in Table 1 and com-
pared with experimental results [12]. Five numerical
solutions from the present study are included: Euler
(on a coarse grid), Euler (on a fine grid), Navier–
Stokes (NS) (laminar), NS (BL turbulent model),
and NS (k–v turbulent model).

Fig. 10 Pressure distribution along the chord of the

SE1050 blade with a k–v model based on the

initial grid

Fig. 11 Refined grid for N–S computation

Fig. 12 Pressure distribution along the blade chord

based on the refined grid, calculated by the

present N–S solver with a k–v model

Implicit numerical simulation of transonic flow through turbine cascades 45

A09404 # IMechE 2005 Proc. IMechE Vol. 219 Part A: J. Power and Energy



The energy loss coefficient, j, is defined [12] as

j ¼ 100 1�
l2

2

l2
2,is

 !

where l2,is is the isentropic outlet relative speed and
l2 is the real outlet relative speed. The j values calcu-
lated in different computations are listed in Table 1.
As expected the viscous results give a higher energy
loss than do the inviscid results. The loss coefficient
predicted by the inviscid computation depends on
the grid size: j ¼ 2.1 per cent in the fine grid and
j ¼ 2.6 per cent in the coarse grid. When the grid
size is small, the shocks are sharper and the numeri-
cal viscosity is lower. For the viscous computations,
the k–v model predicts the highest energy loss
(which is also the closest to the experiment result),

and j of the laminar flow is the smallest because of
the absence of turbulence viscosity.

5 CONCLUSION

Computational solvers of Euler and Navier–Stokes
equations have been developed. A hybrid scheme is
used for spatial discretization, where the inviscid
fluxes are discretized using a finite volume method
while the viscous fluxes are calculated by central
differences. A MUSCL-type approach is used for
achieving higher-order accuracy. The effects of the
turbulent stress terms in the Reynolds-averaged
Navier–Stokes equations have been studied with two
different models: an algebraic turbulence model
(Baldwin–Lomax model) and a two-equation turbu-
lence model (k–v model). The calculations have
been carried out on unstructured grids. The initial
grids for inviscid and viscous computations are gener-
ated by the advancing front method (AFM) and
Delaunay–Veronoi method (DVM), while the self-
adaptive procedure is based on the Delaunay–Veronoi
method (DVM). A new rotation-based sensor has been
devised to capture the wake region more accurately.

The numerical solvers have been applied to the
transonic rotor turbine profile cascade SE1050. The
numerical results of the inviscid and viscous flow
computations are listed in Table 1 and compared
with experimental results [12]. Five numerical solu-
tions from the present study are included: Euler (on
a coarse grid), Euler (on a fine grid), NS (laminar), NS
(BL turbulent model), and NS (k–v turbulent model).
Comparisons with experiment include relative velo-
city distributions and Mach number contours. In
general, the comparisons with experiment are good.

In the present work, a new method is developed
such that the calculation of the flux, the boundary
conditions, and the implicit Jacobian all conform to
the Roe scheme. This provides internal consistency
and improves the convergence significantly. Many
numerical tests have been performed with different
expressions for the inlet and outlet boundaries. The
traditional Steger–Warming scheme and the new
Roe scheme are tested, combined with different
inviscid flux solvers: the Osher scheme and the Roe
scheme. The present numerical study (e.g. Fig. 5)
shows that the new treatment of the boundary con-
ditions at the inlet and outlet boundaries improves
the computational efficiency significantly.

Work is at hand to augment the Euler and Navier–
Stokes solvers to simulate non-equilibrium wet
steam flow through turbine cascades. References
[13] and [14] present an Eulerian–Lagrangian
approach for wet steam calculations with many
novel features (e.g. accurate coupling of unsteady
fluid dynamics, a new averaging procedure for

Fig. 13 Mach contour on the SE1050 blade cascade

with a k–v model based on the refined grid

Table 1 Comparison of the experimental and various

numerical results

Inlet
Mach
number,
M1

Exit
angle,
b2 (deg)

Energy
loss
coefficient,
j (%)

Experimental [12] 0.375 29.80 4.6
Computational [12] 0.329 32.02 Not available
Euler (on a coarse grid) 0.329 31.94 2.5
Euler (on a fine grid) 0.329 31.91 2.1
NS (laminar) 0.328 31.80 2.6
NS (BL turbulent

model)
0.327 31.95 2.9

NS (k–v turbulent
model)

0.328 31.93 3.1
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retaining a poly-dispersed droplet spectrum etc.),
whereas the two-phase solvers under development
will use an Eulerian–Eulerian scheme.
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APPENDIX

Notation

A Jacobian matrix of flow equations
c chord length
C non-dimensional co-ordinate along the

chord
cp specific heat at constant pressure
Cp pressure coefficient (defined as p/p0)
e total energy per unit volume
i incident angle
k turbulent kinetic energy
M Mach number
M2,is isentropic outlet Mach number
n outward unit vector normal to the cell

interface
p static pressure
p0 total pressure
Pr Prandtl number
qi components of the heat flux vector
_qqS cell interface heat flux
Re Reynolds number
t time
T temperature
T0 total temperature
u velocity vector
V volume
W conservative variables vector
X non-dimensional coordinate ¼ x/c
Y non-dimensional coordinate ¼ y/c

a inflow angle
b exit angle
g ratio of specific heats
l relative velocity
m coefficient of viscosity
j energy loss coefficient
r density
tij components of the shear stress tensor

tS cell interface shear stress vector

v rotation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(@u=@y � @v=@x)2

q

Subscripts

is isentropic flow
L left of interface
R right of interface
1 inlet
2 outlet

Superscripts

n time step
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retaining a poly-dispersed droplet spectrum etc.),
whereas the two-phase solvers under development
will use an Eulerian–Eulerian scheme.
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APPENDIX

Notation

A Jacobian matrix of flow equations
c chord length
C non-dimensional co-ordinate along the

chord
cp specific heat at constant pressure
Cp pressure coefficient (defined as p/p0)
e total energy per unit volume
i incident angle
k turbulent kinetic energy
M Mach number
M2,is isentropic outlet Mach number
n outward unit vector normal to the cell

interface
p static pressure
p0 total pressure
Pr Prandtl number
qi components of the heat flux vector
_qqS cell interface heat flux
Re Reynolds number
t time
T temperature
T0 total temperature
u velocity vector
V volume
W conservative variables vector
X non-dimensional coordinate ¼ x/c
Y non-dimensional coordinate ¼ y/c

a inflow angle
b exit angle
g ratio of specific heats
l relative velocity
m coefficient of viscosity
j energy loss coefficient
r density
tij components of the shear stress tensor

tS cell interface shear stress vector

v rotation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(@u=@y � @v=@x)2

q

Subscripts

is isentropic flow
L left of interface
R right of interface
1 inlet
2 outlet

Superscripts

n time step
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