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Abstract: With the help of a purpose-built computer program the separate and combined effects of
the various aspects of internal combustion and non-perfect gas properties on the optimum
performance of gas turbines are examined. The effects of variation of speci� c heat, addition of fuel
mass, pressure losses and dissociation are elucidated. The numerical results have been extensively
compared with closed-form analytical solutions and a linear perturbation analysis. The accuracy of a
standard, approximate method for predicting gas turbine performance is assessed and its various
limitations are identi� ed. The newly established concept of optimum turbine entry temperature is
further explored.
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NOTATION

cp speci� c heat at constant pressure
‰CVŠ0 calori� c value at temperature T 0

f fuel–air mass ratio
h speci� c enthalpy
n ˆ …cpa†12=…cpg†34
n0 ˆ …cpa†12=…cpg†13
p pressure
r pressure ratio
R characteristic gas constant
s speci� c entropy
T temperature
TET turbine entry temperature, de� ned here as

the temperature at entry to the turbine
stator (and is the same as the burner exit
temperature)

x isentropic temperature ratio ˆ r…gA ¡1†=gA

a ˆ ZcZty
b ˆ 1 ‡ Zc…y ¡ 1†
g ratio of speci� c heats
ZA air standard ef� ciency
Zc isentropic ef� ciency of the compressor
Zf plant ef� ciency with the ‘f effect’ alone
Zn plant ef� ciency with the ‘n effect’ alone
Zo overall plant ef� ciency
Zp plant ef� ciency with the pressure loss

effect alone

Zt isentropic ef� ciency of the turbine
y maximum–minimum temperature ratio

ˆ T3=T1

f ˆ …x e ¡ x eA†=x eA

j ˆ …Ze ¡ ZeA†=ZeA

Subscripts

a air
analyt present analytical (non-linear)
av average
A air standard
e maximum ef� ciency condition
f addition of fuel effect
g gas (combustion products)
isen isentropic
linear present linear analysis
n speci� c heat effect
p pressure loss effect
ref1 as in reference [1]
1 entry
2 exit of compressor
3 entry to turbine (stator)
4 exit of turbine

Two consecutive numerical subscripts indicate an
average value over that range.

1 INTRODUCTION

The analysis of a real, open-circuit gas turbine differs
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from the closed-circuit air-standard analysis (incorpor-
ating turbine and compressor ef� ciencies) because of
various effects: internal combustion of fuel instead of
heat addition from an external source, variation with
temperature of the speci� c heat of air and combustion
products, dissociation becoming signi� cant at high
temperatures and pressure losses in the combustion
chamber, turbine exhaust and other ducts. The theore-
tical determination of the optimum design parameters of
a gas turbine power plant depends on the mathematical
model used. The present paper provides qualitative
understanding and quantitative determination of the
dependence of optimum parameters on all of these four
effects considered separately and when combined. (If
turbine cooling is necessary, then calculations become
further involved.)

The air-standard analysis is used as the datum
(subscript A). The shifts in optimum conditions, when
other mathematical models are used, are measured from
this datum, where f denotes the fractional change in
optimum pressure ratio and j denotes the fractional
change in the corresponding maximum ef� ciency. In
order to study the above effects separately four
intermediate models are used:

1. The ‘n effect’ . This studies the deviation from air-
standard analysis when the variation with tempera-
ture of the speci� c heat of air and combustion
products is included. The subscript n is used to
denote this model.

2. The ‘f effect’ . This studies the deviation from air-
standard analysis when the effect of increased mass
� ow due to fuel addition is considered. The subscript
f is used to denote this model.

3. The ‘Dp effect’ . This studies the deviation from air-
standard analysis when the effect of pressure losses in
the combustion chamber, turbine exhaust and other
ducts are included. The subscript p is used to denote
this model.

4. Dissociation. This studies the effects of dissociation
of combustion products.

When all these effects are considered together the
general model for an open-circuit gas turbine power
plant is obtained. The overall plant ef� ciency is then
denoted by Zo .

Study of the above four effects, in isolation and when
combined, has been undertaken by four different
methods:

1. Full numerical solution developed in this paper.
2. Analytical (non-linear) solution developed in this

paper. The subscript analyt has been used to denote
this procedure.

3. Linear perturbation analysis developed in this paper.
The subscript linear has been used to denote this
procedure.

4. Linear perturbation analysis developed in a recent

extensive paper by Horlock and Woods [1], who
discussed the issues in a systematic way. The
subscript ref1 has been used to denote this procedure.

The present numerical solutions have been compared
with closed-form analytical solutions and the linear
perturbation analyses. Two major conclusions of
reference [1] were that the ef� ciency of CBT (compres-
sor–burner–turbine) plant increases due to the ‘n effect’
and decreases due to the ‘f effect’ . The present study
shows that the actual effects are the opposite of these;
the reasons for the discrepancy are explained in sections
3.1 and 3.4. Accordingly, the linear perturbation
analysis has been modi� ed. The calculation of the ‘n
effect’ and the ‘f effect’ contains a number of subtle and
conceptual issues. These two effects are discussed � rst.
The effects of pressure loss and dissociation are then
discussed in sections 3.6 and 3.7 respectively. Section 3.7
and Appendix 3 describe a newly discovered concept of
optimum turbine entry temperature. The accuracy of a
standard, approximate method for predicting the
performance of gas turbines is assessed in section 3.2
and Appendices 1 and 2.

2 MATHEMATICAL MODELS AND SOLUTION
METHODS

2.1 Mathematical models

The performance of a gas turbine power plant can be
modelled with various levels of approximations. The
basic model for a closed-circuit plant and the general
model for an open-circuit plant are discussed � rst.
Modi� cations required for capturing the ‘n effect’ and
the ‘f effect’ are then illustrated.

2.1.1 A ir-standard cycle

The simplest description of the cycle is the air-standard
model of a closed-circuit power plant. The working
� uid, air, is assumed to be a perfect gas with constant
speci� c heats. The heat addition and rejection are
external (i.e. these take place through appropriate heat
exchangers). There is no loss in pressure in the circuit
and therefore the pressure ratio across the compressor is
the same as that across the turbine. The irreversibilities
in the turbine and compressor are accounted for by
appropriate isentropic ef� ciencies. The ef� ciency of the
air-standard cycle, with compressor and turbine losses,
is given by [2]

ZA ˆ

T 3

T 1
1 ¡ 1

x

³ ´
Zt ¡ x ¡ 1

Zc
T3

T1
¡ x ¡ 1

Zc
¡ 1

…1†
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Differentiation of equation (1) …qZA=qx ˆ 0† gives the
optimum value of the isentropic temperature ratio, x eA ,
at which the maximum ef� ciency is achieved. It can be
shown [2] that, for a given temperature ratio T3=T1,

x eA ˆ ¡B ¡
���������������������
B2 ¡ 4AC

p

2A
…2†

where

A ˆ
T1

T3

1
Zc

‡
Zt

Zc
¡ 1

Zc

B ˆ ¡2
Zt

Zc

C ˆ T3

T1
Zt ¡ Zt ‡ Zt

Zc

Horlock and Woods [1] have considered the conditions
y ˆ T 3=T 1 ˆ 4, Zc ˆ 0:8 and Zt ˆ 0:9 for their numerical
illustrations. These values have been used here in all
subsequent calculations unless otherwise stated. Equa-
tions (2) and (1) then give x eA ˆ 2:0503, reA ˆ 12:34 and
ZeA ˆ 0:3149. The entry condition in the present work is
taken as p1 ˆ 1 bar, T1 ˆ 288K.

2.1.2 Open-circuit power plant

The de� nition of rational overall ef� ciency for the open-
circuit CBT plant is given by [1]

Zo ˆ …1 ‡ f †…hg3 ¡ hg4† ¡ …ha2 ¡ ha1†
f ‰CVŠ0

…3†

where the fuel–air ratio can be calculated from

f ‰CVŠ0 ˆ …1 ‡ f †…hg3 ¡ hg1† ¡ …ha2 ¡ ha1† …4†

This is the general model of a gas turbine power plant.
In this, fuel is directly added in the burner (combustion
chamber) and energy is released as a result of combus-
tion. The mass � owrate and the composition of the gas
that � ows through the turbine (which is situated
downstream of the combustion chamber) are different
from those going through the compressor. The variation
of speci� c heats with temperature for both air and
combustion products are included (section 2.2 shows
how this is actually calculated). Any pressure losses can
easily be included in the analysis; this would mean that
the pressure ratio across the compressor would be
different from the pressure ratio across the turbine.

2.1.3 M odel to capture the ‘n effect’ only

In this, the only deviation from the air-standard analysis
is that the variation of gas and air spec� c heats with
temperature are included. Simple equations for calculat-
ing thermodynamic properties of air and combustion
products have been given by Guha [3]. The study shows

that the speci� c heat increases with temperature. For
example, cp of air increases by 25 per cent as the
temperature changes from 300 to 2100 K. In addition to
the temperature, the speci� c heat of combustion
products depends on the fuel and fuel–air ratio. The
speci� c heat ratio …g† of air and combustion products
decreases with temperature. For example, for air,
g ˆ 1:4 at 300 K but decreases monotonically to g&1:3
at 2100 K. At any temperature, cp of combustion
products is higher than that of air and g of combustion
products is lower than that of air, the effects increasing
with an increasing fuel–air ratio [3].

The ef� ciency considering the ‘n effect’ only, Zn , is
given by

Zn ˆ
…hg3 ¡ hg4† ¡ …ha2 ¡ ha1†
…hg3 ¡ hg1† ¡ …ha2 ¡ ha1† …5†

While evaluating equation (5) various enthalpies are
determined by neglecting pressure losses and dissocia-
tion. Comparison with the air-standard cycle might
suggest the term …hg3 ¡ ha2† as the heat input. However,
the particular denominator in the right-hand side (RHS)
of equation (5) is used in order to be compatible with the
de� nition of rational overall ef� ciency of an open-circuit
plant de� ned by equations (3) and (4). The difference is
not great and does not make any qualitative change in
the result.

2.1.4 M odel to capture the ‘f effect’ only

In this, it is assumed that energy is added as a result of
combustion, which increases the mass � ow through the
turbine but does not alter the speci� c heat of the
working � uid from its constant value as in the air-
standard analysis. The ef� ciency of this cycle can be
calculated by the equation

Zf ˆ
…1 ‡ f †…hA3 ¡ hA4† ¡ …hA2 ¡ hA1†
…1 ‡ f †…hA3 ¡ hA1† ¡ …hA2 ¡ hA1† …6†

where the subscript A is used to indicate that the
enthalpy values are the same as in the air-standard
analysis considering constant speci� c heat (as the ‘f
effect’ is being studied in isolation). Substitution of f ˆ
0 in equation (6) recovers the air-standard result. [The
particular form of denominator is used in equation (6)
to be compatible with equations (3) and (4). Since the
aim is to � nd the difference in ef� ciency from an air-
standard cycle, it could perhaps be proposed that …1 ‡
f †hA3 ¡ hA2 be used as the heat input, which also
reduces to the appropriate air-standard form when
f ˆ 0. The effect of this choice is shown later in Table 2
and section 3.5.]
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2.1.5 M odel to capture pressure losses

It is a straightforward matter to calculate the effects of
pressure losses both in isolation as well as in conjunction
with all other effects. The turbine pressure ratio is lower
than the compressor pressure ratio by a factor
…1 ¡

P
Dp=p†, where

P
Dp=p is the total fractional

pressure loss in the combustion chamber, turbine
exhaust and other ducts. The turbine work output
therefore decreases, reducing the cycle ef� ciency. This
topic is discussed further with numerical illustrations in
section 3.6.

2.2 Solution methods

2.2.1 Approximate linear perturbation analysis

Various cycle ef� ciencies can be calculated from
equations (3) to (6) when appropriate enthalpy values
for air and combustion products are used. A linear
perturbation analysis seeks to � nd a closed-form
analytical estimate of the changes from the air-standard
analysis when ‘real’ effects are incorporated. Two levels
of approximations are used for this in reference [1]:

(a) Approximations in property values. Changes in
enthalpies are approximated by using average speci� c
heats for air and combustion products. This is done by
introducing two parameters n and n0 ‰n ˆ …cpa†12=…cpg†34;
n0 ˆ …cpa†12=…cpg†13Š. As an example, equation (5) then
specializes into equation (11) given later in section 3.1.1.
Further discussion on this approximation can be found
in section 3.2 and Appendices 1 and 2.

Moreover, reference [1] assumes a constant fuel–air
ratio … f ˆ 0:014†. The impact of this apparently
innocuous assumption is explored in section 3.3.

(b) Approximations due to linearization. In the linear
perturbation analysis, approximations to changes in
plant ef� ciency from air-standard values are made by
assuming these are small quantities. As an example,
jn can be calculated directly from its de� nition
jn ˆ …Zn ¡ ZA†=ZA, where ZA is calculated from equa-
tion (1) and Zn is calculated from equation (5) or
equation (11). In the linear perturbation analysis [1], this
is not done directly but jn is expressed as a linear
combination of small quantities: jn ˆ En…1 ¡ n† ‡ Fnfn
and fn ˆ Dn…1 ¡ n†, where Dn , En and Fn may be
determined from a, b and x eA . The advantage is that
Dn , En and Fn can all be calculated from the air-
standard analysis itself.

Similarly, in the linear perturbation analysis, jf and
ff (changes in maximum ef� ciency and optimum pres-
sure ratio due to the ‘f effect’) are determined from a
linear combination of small quantities: jf ˆ E f f ‡ Ffff
and ff ˆ Df f . In the linear perturbation analysis,
higher-order terms of small quantities are neglected.

2.2.2 Full numerical solution

It is intended here to determine the ‘n’ , ‘f ’ , pressure loss
and dissociation effects directly by full numerical
computations. It is not possible to study the effects of
various elements in isolation by employing a commer-
cially available computer program, e.g. GasTurb [4],
which only gives the combined effects as a single output.
A purpose-built computer program has been developed
by the author for understanding the physics involved.

For this, accurate relations for properties of air and
combustion products are needed. In particular, speci� c
enthalpy and speci� c entropy of air and combustion
products have to be determined as a function of
temperature to be used in equations (3) to (6). Although
the simple equations developed by Guha [3] would have
made the computer program usable for any hydrocarbon
fuel, the following equations, (7) to (10), comprehensive
but speci� c only for kerosene [5], have been used here.
The coef� cients are given in Table 1. These equations do
not model any dissociation of combustion products:

ha (MJ=kg) ˆ A 0

³
T

1000

´

‡
X9

iˆ2

1
i

A i¡1

³
T

1000

´i

‡ A 9 …7†

hg (MJ=kg) ˆ A 0

³
T

1000

´

‡
X9

iˆ2

1
i

A i¡1

³
T

1000

´i

‡ A 9 ‡ f
1 ‡ f

6

µ
B0

³
T

1000

´
‡

X7

iˆ2

1
i

Bi¡1

³
T

1000

´i

‡ B8

¶

…8†

sa2 ¡ sa1 (kJ=kg K) ˆ A 0 ln

³
T 2

T 1

´
‡

X8

iˆ1

1
i

A i

6

µ³
T 2

1000

´i

¡
³

T 1

1000

´i¶

¡ R a ln

³
p2

p1

´
…9†

Table 1 Values of coef� cients in equations (7) to (10)

i A i Bi

0 0.992313 ¡ 0.718874
1 0.236688 8.747481
2 ¡ 1.852148 ¡ 15.863157
3 6.083152 17.254096
4 ¡ 8.893933 ¡ 10.233795
5 7.097112 3.081778
6 ¡ 3.234725 ¡ 0.361112
7 0.794571 ¡ 0.003919
8 ¡ 0.081873 0.0555930
9 0.422178 ¡ 0.0016079

10 0.001053
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sg4 ¡ sg3 (kJ=kg K) ˆ A 0 ln
T 4

T 3

³ ´
‡

X8

iˆ1

1
i

A i

³
T 4

1000

´i

¡
³

T 3

1000

´i
" #

‡ f

1 ‡ f
B0 ln

T 4

T 3

³ ´
‡

X7

iˆ1

1
i

B i

³
T 4

1000

´i

¡
³

T 3

1000

´i
" #( )

¡ R g ln
p4

p3

³ ´
…10†

where R g ˆ 287:05 ¡ 0:0099f ‡ 10¡7f 2.
The procedure for calculating the overall rational

ef� ciency Zo in the open-circuit plant is as follows.
Calculate ha1 from equation (7) since T 1 is known. Now
set sa2 ¡ sa1 ˆ 0 in equation (9) and solve iteratively for
the temperature T a2, isen at the exit of a hypothetical
isentropic compressor. Use equation (7) to determine
ha2, isen . With the help of the isentropic ef� ciency of the
compressor, ha2 can now be determined. Equations (8)
and (4) are to be solved simultaneously and iteratively to
determine f and hg3. Set sg4 ¡ sg3 ˆ 0 in equation (10) to
calculate iteratively the temperature at the exit of a
hypothetical isentropic turbine, T g4, isen . Use equation (8)
to calculate hg4, isen . With the help of the turbine
isentropic ef� ciency, hg4 can then be determined.
Application of equation (3) will now give the rational
overall ef� ciency of the power plant, Zo . Similarly, ZA, Zn
and Zf can be calculated respectively by equations (1),
(5) and (6). The whole procedure is then repeated at
different pressure ratios. Figure 1 shows various
computed ef� ciencies as a function of the pressure ratio.
Table 2 shows some relevant parameters of the

simulation. Table 3 shows the comparison of present full
numerical calculations with the linear perturbation
prediction of reference {1].

3 DISCUSSION

The numerical calculations of Fig. 1 and Table 2 show
that both the ‘n effect’ and ‘f effect’ increase the opti-
mum pressure ratio, the in� uence of the ‘n effect’ in this
regard being the dominant one. The ‘n effect’ decreases
the maximum ef� ciency while the ‘f effect’ increases it,
the overall effect being a slight increase in maximum
ef� ciency. These results were calculated for y ˆ T3=T 1

ˆ 4, Zc ˆ 0:8 and Zt ˆ 0:9. Numerical calculations were
also conducted for other values of …T 3=T 1†, Zc and Zt .
For all calculations undertaken the above conclusions
remained valid.

It is easy to see why the ‘f effect’ increases maximum
ef� ciency. Consider equations (1) and (6) together.
These equations could be written in contracted form
as ZA ˆ …A ¡ B†=…C ¡ B† and Zf ˆ …A ¡ B 0†=…C ¡ B 0†,
where C > A and B 0 ˆ B=…1 ‡ f † < B. This means that,
at all pressure ratios, Zf > ZA. This is indeed borne out
by the numerical calculations shown in F ig. 1 and means
that Zf is positive.

The ‘n effect’ is complex. As a result of variation of cp

and g with temperature, the compressor work input
…wc†, turbine work output …wt† and energy added …qin†
are all affected, though the changes in the latter two are
much more prominent. Suppose that Dwt and Dqin are
the differences between the n-effect analysis and the
corresponding air-standard analysis at the same pressure
ratio. Both Dwt and Dqin are positive quantities. The
main reason why Dqin is positive is the increased value of
cp. Dwt , although positive, is however affected by the
opposing effects of cp and g, the increase in cp tending to
increase wt and the decrease in g (which reduces the
temperature drop across the turbine) tending to decrease
wt. At lower pressure ratios, the effect of positive Dqin

therefore dominates, and it is found that Zn < ZA. It
should be remembered that the study, such as in F ig. 1,
is conducted with a � xed T 3. At high pressure ratios, T 2

comes closer to T 3 and the overall magnitude of qin

diminishes. At high pressure ratios, therefore, the effect
of Dwt dominates over that of Dqin and it is found that
Zn > ZA. F igure 1 shows that the Zn curve stays below ZA
at low pressure ratios but the Zn curve stays above ZA at
high pressure ratios, the crossing-over taking place at
about r ˆ ren . Thus Zf is negative.

Fig. 1 Variation of gas turbine thermal ef� ciency as a
function of pressure ratio for various mathematical
models. [All curves are numerically simulated as
detailed in section 2. For all calculations,
y ˆ T 3=T 1 ˆ 4, Zc ˆ 0:8, Zt ˆ 0:9, no pressure loss.
———, Zo given by equation (3); -----, ZA given by
equation (1); —— – ——, Zn given by equation (5);
—— – – – , Zf given by equation (6)]
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3.1 Comments on fn and jn

3.1.1 L inear perturbation analysis of reference [1]

A linear perturbation method determines analytically
the small departure from the air-standard results as each
effect (e.g. ‘n’ , ‘f ’ , ‘Dp’, etc.) is introduced in the
analysis. First consider the ‘n effect’ . The variations in
speci� c heat and speci� c heat ratio with temperature are
captured only approximately by using their average
values in the appropriate temperature ranges. Thus,
the various enthalpy differences in equation (5) are
evaluated as hg3 ¡ hg4 ˆ …cpg†34…T 3 ¡ T 4†, ha2 ¡ ha1

ˆ …cpa†12…T 2 ¡ T 1†, etc. With these approximations,
equation (5) then specializes into

Zn, ref1 ˆ …a=n†…1 ¡ 1=x n† ¡ …x ¡ 1†
…b ¡ 1†=n0 ¡ …x ¡ 1†

…11†

where a ˆ ZcZty, b ˆ 1 ‡ Zc…y ¡ 1†, n ˆ …cpa†12=…cpg†34
and n0 ˆ …cpa†12=…cpg†13. With the chosen values of
various parameters, a ˆ 2:88 and b ˆ 3:4. When there
is no variation in speci� c heat, n ˆ n0 ˆ 1 and equation
(11) reduces to the air-standard analysis given by
equation (1). The linear perturbation analysis [1] gives

fn, ref1 ˆ 0:4…1 ¡ n† …11a†
jn, ref1 ˆ 0:19…1 ¡ n† …11b†

Equations (11a) and (11b) are derived under the
assumption n ˆ 7=8 ˆ 0:875 and n0 ˆ 0:5…1 ‡ n†
ˆ 0:9375. With n ˆ 0:875, the two equations give
fn, ref 1 ˆ 0:05 and jn, ref 1 ˆ 0:024, as shown in Table 3.
Table 3 shows that the conclusion made in reference [1],
that maximum ef� ciency increases due to the ‘n effect’ , is
contradicted by the present numerical calculations. The
reasons for this discrepancy is explained next.

One advantage of the computer program used in this
study is that it can determine the exact values of n and n0

at each operating point. As the enthalpies are accurately
calculated in the program using equations (7) to (10), it
can numerically determine the average speci� c heat over
various temperature ranges. Present numerical calcula-
tions show that actual values of n and n0 vary with the
pressure ratio and various other parameters, such as
T 1, T3, Zc, Zt, etc. (Appendix 1). When the pressure ratio
is in the range 12–15, with other parameters � xed at
their chosen levels as in reference [1], the data in
Appendix 1 show that representative values may be
taken as n&0:9 and n0&0:935. When these values are
used directly in equation (11), then jn, eqn11 ˆ ¡ 0:0067
[jn, eqn11 is calculated from …Zn, eqn11 ¡ ZA†=ZA]. Thus, it
is found that jn is extremely sensitive to the values of n
and n0 and apparently innocuous changes in n and n0

bring qualitative changes in the value of jn . A mere 2.8
per cent decrease in n (from 0.9 to 0.875) in the example
causes a 530 per cent increase in jn, eqn11 (from ¡ 0:0067
to ‡ 0:0288). It should be remembered that jn, eqn11 ˆ
¡ 0:0067 is calculated using the actual value of x en

(ˆ 2:1495) calculated by the computer program. In
addition, equation (11) has been used directly to
evaluate the ef� ciency. With n ˆ 0:9, equation (11b)
would have given jn, ref1 ˆ 0:019 and equation (11a)
would have given fn; ref1 ˆ 0:04.

3.1.2 An improved linear perturbation analysis

Equations (11a) and (11b) are based on the assumption
n0 ˆ …n ‡ 1†=2. Data presented in Appendix 1 show that
this relation is not exactly valid at the relevant operating
points. Additionally, section 3.1.1 and Appendix 2 show
that jn depends very strongly on the values of n and n0.
Hence, the linearized analysis of reference [1] needs to be
reworked by keeping both n and n0 as separate entities.

Table 2 Numerically determined maximum ef� ciency conditions for various levels of modelling (for y ˆ 4; Zc ˆ 0:8; Zt ˆ 0:9)

Maximum ef� ciency j ˆ …Ze ¡ ZeA†=ZeA Optimum pressure ratio re x e ˆ r…g¡1†=g
e f ˆ …x e ¡ x eA†=x eA

Air standard ZeA ˆ 0:3149 12.34 2.0503
‘n effect’ Zen ˆ 0:3120 ¡ 0.0092 14.56 2.1495 0.048
‘f effect ’* Zef ˆ 0:3220 0.0225 12.65 2.0648 0.0071
‘…n ‡ f† effect’ Zeo ˆ 0:3186 0.012 14.9 2.1637 0.0553

* If ‰…1 ‡ f †hA3 ¡ hA2 Š is used as the heat input in equation (6) then j ˆ 0:0038, f ˆ 0:006.

Table 3 Comparison of present numerical calculations with linear analysis [1]

jn jf jn‡f jn ‡ jf fn ff fn‡f fn ‡ ff

Reference [1] 0.024* ¡ 0.017{ Assumed jn‡f ˆ jn ‡ jf 0.05* 0.012 Assumed fn‡f ˆ fn ‡ ff
Present numerical calculations ¡ 0.0092 0.0225 0.012 0.013 0.048 0.0071 0.0553 Near equality

demonstrated

* See section 3.1, Table 4.
{ 0.0237 in Erratum [6] (see section 3.4).
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When this is done, the following results are obtained:

fn, linear ˆ
…a ¡ b ‡ 1†x 2

eA ln x eA…1 ¡ n† ‡ a n0 ‡ n0

n
¡ 2

³ ´
x eA ¡ n0

n
¡ 1

³ ´
x 2

eA ‡ …1 ¡ n0†
µ ¶

2a…x eA ¡ b†
…12a†

jn, linear ˆ …x eA ¡ 1 ¡ ln x eA†…1 ¡ n†
…x eA ¡ 1†…1 ¡ x eA=a†

¡ …b ¡ 1†…1=n0 ¡ 1†
b ¡ x eA

…12b†

[While writing equation (12b) a simpli� cation is made.
The RHS of equation (12b) contained another term,
fn ‰…a=x eA ¡ x eA†=…a ¡ a=x eA ¡ x eA ‡ 1† ‡ x eA=…b ¡ x eA †Š;
the coef� cient within the brackets is found to be almost
identically zero under all combinations of y, Zc and Zt
that were tested. Thus equation (12b) does not explicitly
depend on fn .] With n ˆ 0:9 and n0 ˆ 0:935, equation
(12a) gives fn, linear ˆ 0:0377 and equation (12b) gives
jn, linear ˆ ¡ 0:0138. Equation (12b) produces the correct
sign for jn and brings its magnitude closer to the
numerical result than equation (11b).

A small change in n induces a much larger relative
change in …1 ¡ n† since n is close to 1. Both fn and jn
are very sensitive to small variations in n and n0

(Appendix 2). Accurate values of n and n0 depend on r,
T 3=T 1, Zc, Zt ,

P
Dp=p, T 1, p1 and the fuel (Appendix 1),

and they can only be determined by detailed numerical
computation such as the present one. Moreover, even
the use of exact values of n and n0 in the linear analysis
does not give exact values of fn and jn . The discrepancy
in the linear analysis would increase at a higher value of
turbine entry temperature (giving a higher optimum
pressure ratio) than the one used for the example
calculations.

3.1.3 Non-linear analytical solution

The error due to linearization itself (section 2.2.1) may
be eliminated by differentiating equation (11) directly.
However, before this is done, it is worth pointing out
that while writing equation (11) it was tacitly assumed in
reference [1] that g12 ˆ gA , where gA is the constant
isentropic exponent (speci� c heat ratio) used in the air-
standard analysis. In this work (as well as in reference
[1]) gA is taken as 1.4. The de� nition of the isentropic
temperature ratio, x , is based on gA…x ˆ r…gA ¡1†=gA †. All
calculations of x , f and j use this value of gA . On the
other hand, g12 is the (variable) average value of the
speci� c heat ratio appropriate for the compressor and
depends on the relevant temperature range and pressure
ratio. When this distinction is made between gA and g12,
equation (11) should be modi� ed to

Zn, analyt ˆ …a=n†…1 ¡ 1=x 0n† ¡ …x 0 ¡ 1†
…b ¡ 1†=n0 ¡ …x 0 ¡ 1†

…13†

by noting that x in Horlock and Woods’ equation

should be replaced by x 0, where

x 0 ˆ x …gA =g12†‰…g12¡1†=…gA¡1†Š …14†

Numerical calculations show that for the particular
example being considered g12 ˆ 1:388 (in the neighbour-
hood of the optimum pressure ratio). This gives
x ˆ x 01:0221. All values of fn calculated earlier by
linearized analysis including those quoted in reference
{1] do not employ this correction. Again, an apparently
innocuous change in the indices has a substantial effect
on the calculated value of fn .

In order to � nd the optimum condition, set
qZn, analyt=qx 0 ˆ 0. This gives

a
n

¡ b ¡ 1
n0

³ ´
x 0…n‡1† ¡ a…1 ‡ n†

n
x 0 ‡ a 1 ‡ b ¡ 1

n0

³ ´
ˆ 0

…15†

Equation (15) is solved by an iterative scheme. This
gives, for n ˆ 0:9 and n0 ˆ 0:935, x 0

en, analyt ˆ 2:12608,
x en, analyt ˆ 2:1618 and fn, analyt ˆ 0:054. jn, analyt is cal-
culated from …Zn, analyt ¡ ZA†=ZA. Table 4 shows the
comparison of various models discussed in section 3.1.

3.2 Accuracy of a standard, approximate method for
predicting the performance of gas turbines

Although it is desirable to use exact thermodynamic
properties of air and combustion products, such as equa-
tions (7) to (10) used in the present computer program,
often an approximate method of performance calculation
is undertaken, particularly for hand calculations. The
approximate method [1, 7, 8] is derived from the air-
standard analysis by employing various average values
of speci� c heat over appropriate range of temperatures.

Whittle makes the following interesting comment in
his book (p. xi) [8]:

When in jet engine design, greater accuracy was necessary
for detail design, I worked in pressure ratios, used g ˆ 1:4
for compression and g ˆ 1:33 for expansion and assumed
speci� c heats for combustion and expansion corresponding
to the temperature range concerned. I also allowed for the
increase of mass � ow in expansion due to fuel addition (in
the range 1.5–2%). The results, despite guesswork involved
in many of the assumptions, amply justi� ed these methods to
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the point where I was once rash enough to declare that ‘jet
engine design has become an exact science’. (This statement
was inspired by the fact that on the � rst test of the W2/500
engine every experimental point fell almost exactly on the
predicted curves of performance.)

It is recognized that equation (13) is a good example
of the approximate methods and its prediction, with
exact values of n and n0, would be the best that
approximate methods can reach. The present context
therefore offers an opportunity to assess the quantitative
measure of accuracy of the standard approximate
method, which is not available in the literature.

Figure 2 can be studied for the evaluation of accuracy
of equation (13). The solid curves in Fig. 2 are calculated
by equation (5) in conjunction with equations (7) to (10).
F igure 2 shows that equation (13) predicts a higher
maximum ef� ciency and higher optimum pressure ratio
than the accurate numerical calculations (this explains
the numbers found in Table 4). The error in the
prediction of equation (13) grows as the turbine entry
temperature increases. It should be noted that, in F ig. 2,
exact values of n and n0 are used at each point of
calculation, determined by the present computer pro-
gram. Obviously equations like (11) or (13) are of
maximum worth as a predictive tool only if they work
with reasonable accuracy with approximate (� xed)
values of n and n0. F igure 2 shows that even when exact
values of n and n0 are used at each point of calculation,
the prediction of equation (13) is not accurate, the error
increasing with increasing pressure ratio and turbine
entry temperature. Exact values of n and n0 ensure that
enthalpy differences are determined accurately for a
given temperature difference in the approximate model;
however, it is not possible then to simultaneously
satisfy the entropy equation exactly, particularly
when large pressure ratios and temperature differences
are involved. [The average ratio of speci� c heats
gav ˆ cp, av=…cp, av ¡ R †. The approximate theory assumes
that the equation, p=rgav ˆ constant, would specify the
isentropic condition. This would not give the same results
as setting sfinal ¡ sinitial ˆ 0 in equations (9) and (10).]

The above discussion shows that, although an average
speci� c heat and speci� c heat ratio may be used for
calculating turbine work, heat input and ef� ciency
approximately, there is dif� culty in using these equa-
tions [e.g. equation (11) or equation (13)] for calculating

small changes in these quantities, for the very reason that
the equations are approximate.

Other than the above dif� culty regarding speci� c heat
and the speci� c heat ratio, the approximate theories also

Table 4 Comparison of numerical and various analytical determinations of the ‘n effect’ (with
n ˆ 0:9 and n0 ˆ 0:935)

fn jn

Present numerical 0.048 ¡ 0.0092
Reference [1] 0.04 [equation (11a)] ‡ 0.019 [equation (11b)]
Present linear 0.0377 [equation (12a)] ¡ 0.0138 [equation (12b)]
Present non-linear analytical 0.054 [equation (15)] ¡ 0.006 [equation (13)]

(with x?x 0 correction)

Fig. 2 The assessment of the accuracy of a standard,
approximate method for predicting gas turbine
performance. [For all calculations, Zc ˆ 0:8, Zt ˆ
0:9, T l ˆ 288 K, no pressure loss. Exact values of n
and n0, determined from numerical simulation, are
used at each operating point while evaluating equation
(13), which is a standard, approximate method [1, 7, 8]
for predicting gas turbine performance]
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have the dif� culty of obtaining a good estimate of the
fuel–air ratio. Following Whittle’s suggestion, equation
(13) could be enhanced by considering the added fuel
mass that goes through the turbine. This gives

Zn‡f; analyt ˆ ‰a…1 ‡ f †=nŠ…171=x 0n†7…x 071†
…1 ‡ f †…b71†=n07…x 071†

Again, an approximate theory is of maximum worth as a
predictive tool if it works with reasonable accuracy with
approximate (� xed) value of f (reference [1] uses f ˆ
0.014). The next section discusses the effect of assuming
a � xed fuel–air ratio.

3.3 Comments on ff

Horlock and Woods [1] have assumed a constant value
of the fuel–air ratio … f ˆ 0:014† for the calculation of
ff . Instead of determining x ef from the linear perturba-
tion analysis, it can also be determined directly from
equation (6) by setting …qZf=qx †f ˆconstant ˆ 0. The result
is

x ef, analyt ˆ
¡Bf ¡

������������������������
B2

f ¡ 4A f Cf

q

2A f
…16†

where

A f ˆ a ¡ b ‡ 1

Bf ˆ ¡2a

Cf ˆ a‰1 ‡ …1 ‡ f †…b ¡ 1†Š

Equation (16) can be compared with equation (2). With
the values of various parameters chosen, this gives
x ef, analyt ˆ 2:0759, ref, analyt ˆ 12:89 and ff , analyt ˆ 0:012,
thus agreeing with the results of reference [1]. However,
numerical simulation shows that this value of ff is
inaccurate by about 100 per cent (Table 3).

In order to understand the reason for the discrepancy,
Zf is calculated from equation (6) in the computer
program in two different ways: � rstly, using accurate
values of the fuel–air ratio at each pressure ratio (as
done in F ig. 1) and, secondly, using a constant value
f ˆ 0:014 at all pressure ratios (as was done in the linear
perturbation analysis). The result is shown in F ig. 3,
which indicates that the peak of ef� ciency in the second
case indeed occurs at a pressure ratio of 12.89, giving
ff, f ˆconstant ˆ 0:012.

The moral is that although the actual change in the
fuel–air ratio with the pressure ratio near the optimum
point is small (being f ˆ 0:0142 at r ˆ 10:93 and f ˆ
0:0134 at r ˆ 12:88), this variation cannot be neglected
while determining the optimum value of the pressure
ratio. It is true that this inaccuracy would somewhat be
masked by other dominant effects (such as the ‘n effect’ )
in the overall calculation of the optimum pressure ratio,

but nevertheless the analytical theories are not too
successful in predicting ff itself. It is expected that the
error would increase with higher values of turbine entry
temperature than was used for these example calcula-
tions.

3.4 Comments on jf

Equation (16) gives xef, analyt ˆ 2:0759. Using this value
in equation (6) gives jf, analyt ˆ 0:0235, which is close to
the numerically calculated value 0.0225. (The difference
arises from the use of an approximate value for f in the
analysis and the inaccuracy in x ef as explained in section
3.3. Even though, for the chosen values of various
parameters, jf does not show much sensitivity to the
error in x ef , this may not be a universal fact.) This shows
that there is no physical explanation for why jf is
calculated to be a negative quantity in reference [1] (see
Table 3).

It has recently been traced [6] that there has been an
algebraic error in the determination of jf from the
general equation (66) of reference [1]. The reworking of
the linear analysis gives jf, linear ˆ ‡ 1:69 f instead of
jf, ref1 ˆ ¡ 1:25 f (which is equation (51) of reference
[1]). With this correction, the linear analysis gives
jf, linear ˆ 0:0237, bringing this in line with present
numerical calculations.

3.5 Validity of linear superposition

Horlock and Woods postulated (see reference [1], p. 251)
that, since the perturbation analyses are linear, the over-
all values of f and j can be calculated as a simple sum
of individual effects. Table 2 shows that, provided
equations (5), (6), (1) and (3) are used for various

Fig. 3 Variation of gas turbine thermal ef� ciency as a
function of pressure ratio; calculation of the ‘f effect’
in two ways. (For all calculations, y ˆ T 3=T 1 ˆ 4,
Zc ˆ 0:8, Zt ˆ 0:9, no pressure loss)
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ef� ciencies (thus ensuring that individual effects are
determined accurately), this assumption is approxim-
ately true. However, if the expression ‰…1 ‡ f †hA3 ¡ hA2Š
is used as the heat input in equation (6) [see the dis-
cussion after equation (6)], then Table 2 shows that
jn‡f 6ˆ jn ‡ jf . Thus, although following Horlock and
Woods, the changes in the value of ef� ciency from the
closed, air-standard cycle have been ascribed to the ‘n
effect’ , the ‘f effect’ , etc.; in reality, the particular value
of heat input used in the de� nition of rational overall
ef� ciency of an open-circuit plant [equation (3)] is also
responsible, to some extent, for the changes.

3.6 Effects of pressure loss and its combination with the
‘n effect’ and the ‘f effect’

It is a straightforward matter to calculate the effects of
pressure losses both in isolation as well as in conjunction
with all other effects. The turbine pressure ratio is lower
than the compressor pressure ratio by a factor
…1 ¡

P
Dp=p†, where

P
Dp=p is the total fractional

pressure loss in the combustion chamber, turbine
exhaust and other ducts. Assuming that

P
Dp=p ˆ 0:1,

as per reference [1], the present computer program
predicts that the effect of pressure loss alone is
given by Zp ˆ 0:28315, rep ˆ 12, fp ˆ ¡ 0:008 and
jp ˆ ¡ 0:1008. The pressure loss, with the assumed 10
per cent loss in the turbine pressure ratio, decreases the
maximum ef� ciency signi� cantly and decreases the
optimum pressure ratio slightly. The combined effect
…n ‡ f ‡ p† is determined by the computer program as
Zo ˆ 0:2889, re ˆ 14:5, f ˆ 0:047 and j ˆ ¡ 0:0826.
Since fn ‡ ff ‡ fp ˆ 0:048 ‡ 0:0071 ¡ 0:008 ˆ 0:0471
and jn ‡ jf ‡ jp ˆ ¡ 0:0092 ‡ 0:0225 ¡ 0:1008 ˆ
¡ 0:0875, the principle of superposition is again found
to be a reasonable assumption, provided that individual
effects are determined accurately.

Similar to the derivation of equations (15) and (16), it
is easy to formulate a more direct analytical procedure
instead of the linear perturbation analysis. The thermal
ef� ciency considering the pressure loss effect alone is
given by

Zp, analyt ˆ

T3

T1
1 ¡ 1

xk p

³ ´
Zt ¡

x ¡ 1
Zc

T 3

T 1
¡ x ¡ 1

Zc
¡ 1

…17†

where kp ˆ 1 ¡
P

Dp=p… †…ga ¡1†=ga . It is assumed while
deriving equation (17) that if the pressure ratio across
the compressor is r then the pressure ratio across the
turbine is …1 ¡

P
Dp=p†r. The maximum ef� ciency is

determined by the condition qZp, analyt=qx ˆ 0. This gives

x ep, analyt ˆ
¡Bp ¡

�������������������������
B2

p ¡ 4A pCp

q

2Ap
…18†

where

A p ˆ
T1

T3

1
Zc

‡
Zt

Zc
¡ 1

Zc

Bp ˆ ¡ 2
Zt

Zckp

Cp ˆ 1
kp

T 3

T 1
Zt ¡ Zt ‡ Zt

Zc

³ ´

Equation (18) can be compared with equation (2). Using
the assumed values for various parameters, equation
(18) gives x ep, analyt ˆ 2:0348, fp, analyt ˆ ¡ 0:0076 (com-
pared to the numerical solution ¡ 0.008 and
fp, ref 1 ˆ ¡ 0:007). Equation (17) then gives jp, analyt ˆ
¡ 0:1007 (compared to the numerical solution ¡ 0.1008
and jp, ref1 ˆ ¡ 0:094). An analytical theory, linear or
non-linear, is thus quite successful in predicting the
pressure loss effect …fp , jp†. The present direct method,
i.e. use of equations (17) and (18), is slightly more
accurate than the linear perturbation analysis.

3.7 Optimum turbine entry temperature

In the air-standard analysis, if the turbine entry
temperature is increased, keeping the pressure ratio
� xed, then the thermal ef� ciency rises continuously
and asymptotically to the product of Joule cycle
ef� ciency and the turbine isentropic ef� ciency [2]:

lim
T 3=T1??

ZA ˆ ZtZJoule …19†

In a real, open-circuit gas turbine, increasing turbine
entry temperature shows new behaviour. At each
pressure ratio, there exists an optimum turbine entry
temperature above which any further increase in T 3

reduces the thermal ef� ciency. The concept of optimum
turbine temperature is enunciated for the � rst time in
reference [2], which systematically explains the reasons
for its existence. This has important implications also
for the optimization of aircraft engines [9]. In aircraft
turbofan engines, the maximum thermal ef� ciency of the
whole engine occurs at a lower temperature than that at
which the maximum ef� ciency of the core engine occurs,
and the existence of the optimum turbine entry
temperature also gives rise to the existence of an
optimum bypass ratio. The magnitudes of the optimum
turbine entry temperature and optimum bypass ratio
depend on the isentropic ef� ciencies of the compressors
and turbines. At a � xed speci� c thrust and overall
pressure ratio, the optimum bypass ratio decreases
progressively as the component ef� ciencies are increased
[9]. Reference [9] gives a new, comprehensive optimiza-
tion method for aero gas turbine engines.

Figures 4a and b show the effect of increasing the
turbine entry temperature at � xed pressure ratios. Each
� gure contains three curves. One of them is calculated
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from equation (1) giving the air-standard ef� ciency. The
second is calculated from equations (3), (4), (7), (8), (9)
and (10), as described in section 2.2.2. This curve thus
shows the behaviour of a real, open-circuit gas turbine
plant when all ‘real’ effects except dissociation are
included. The third curve is calculated by GasTurb [4],
which calculates the speci� c heat of air and combustion
products as polynomials in temperatures. In addition,
GasTurb considers the effects of equilibrium dissocia-
tion while calculating the temperature rise due to
combustion. The temperature rise due to combustion
is tabulated for a reference pressure as a function of the
burner inlet temperature and fuel–air ratio. For
pressures other than the reference value a correction
factor is applied which again depends on the burner inlet
temperature and fuel–air ratio (p. 149 of reference [4]).

The accuracy of the predictions of the present
computer program can be judged from their general
agreement with GasTurb predictions in F ig. 4. Figure 4
thus provides a validation of the present numerical code.
(However, the ‘n’ , ‘f ’ and ‘Dp’ effects could not be studied
separately by GasTurb, which the present purpose-built
computer program makes possible.) Figures 4a and b also
offer the opportunity of studying the separate effects of
‘n’ , ‘f ’ and dissociation in determining the optimum
turbine temperature. At a low pressure ratio (F ig. 4a), the
n ‡ f effects themselves can cause the turning over of the
ef� ciency curve de� ning the optimum turbine entry
temperature. At a higher pressure ratio (Fig. 4b), the
‘n ‡ f effects’ signi� cantly slow down the change of
thermal ef� ciency with temperature, but the effects of
dissociation play an important role in de� ning the actual
magnitude of the optimum temperature.

In most references on gas turbine performance, various
ef� ciencies are plotted as a function of the pressure ratio,
keeping the turbine entry temperature as a parameter (as
done here in F igs 1 to 3). F igure 4 shows a new way of
analysis (as done in reference [2]) in which ef� ciencies are
plotted as a function of the turbine entry temperature,
keeping the pressure ratio as a parameter. This repre-
sentation, together with the modelling of all ‘real’ effects,
was important in establishing the existence of an
optimum turbine entry temperature (see Appendix 3).

4 CONCLUSIONS

Present numerical calculations, such as given in F ig. 1,
show that both the ‘n effect’ and the ‘f effect’ increase
the optimum pressure ratio at which maximum ef� -
ciency occurs, the in� uence of the ‘n effect’ in this regard
being the dominant one. The ‘n effect’ decreases the
maximum ef� ciency while the ‘f effect’ increases it, the
combined effect being a slight increase in maximum
ef� ciency. Pressure losses reduce the maximum ef� -
ciency signi� cantly and reduce the optimum pressure
ratio only slightly. The ‘n effect’ has the greatest
in� uence in changing the optimum pressure ratio, and
(depending on the loss coef� cient) pressure losses have
the greatest potential in changing the maximum
ef� ciency. Numerical calculations at other values of
T 3=T 1, Zc and Zt also showed these qualitative beha-
viours. The higher the ratio T3=T 1, the greater is the
difference between the ef� ciency predicted by the air-
standard analysis and that predicted by the real ‘cycle’
analysis. The numerical calculations can be used as the
benchmark solution to assess various analytical theories.

Inclusion of pressure losses in an analytical theory is
the most straightforward part, and as expected the linear
perturbation analysis gives reasonable approximate
answers for this effect. Section 3.1 and the Appendices,
however, explain that there are fundamental dif� culties
with the linear perturbation theory to predict the ‘n

Fig. 4 Variation of gas turbine thermal ef� ciency as a
function of turbine entry temperature. (For all cal-
culations, Zc ˆ 0:8, Zt ˆ 0:9, T 1 ˆ 288 K, p1 ˆ 1 bar,
no pressure loss)
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effect’ . The error in the linear analysis would grow as the
turbine entry temperature increases over the value used
in the example calculations. Instead of the linear
perturbation analysis, the direct, more accurate, analy-
tical relations derived here may also be used: equations
(6) and (16) for the ‘f effect’ alone, equations (17) and
(18) for pressure loss effects alone and equations (13)
and (15) for the ‘n effect’ alone.

Developing an analytical theory for the ‘n effect’ is the
most dif� cult part. Even though equations like (11) or (13)
involving various average speci� c heats are frequently
used to calculate approximate values of ef� ciency, work
done or heat input, predictions of small changes based on
them must be treated with caution. Section 3.2 and F ig. 2
enumerate the errors involved in this standard, approx-
imate method [1, 7, 8] for predicting gas turbine perfor-
mance, even when exact values of n and n0 are used at each
operating point. Obviously the approximate theories
would be useful as a predictive tool only if they work with
reasonable accuracy with approximate (� xed) values of n
and n0; fn and jn are very sensitive to parameters like n
and n0, for whose accurate determination a computational
program such as the present one is needed. It should be
noted that the present numerical calculations are valid at
all operating points (shown, for example, as complete
curves in F ig. 1), whereas a perturbation analysis
determines only the mathematical optimum point and
does not reveal, for example, how � at or sharp the curves
are near the optimum point. Actual design decisions
depend on such knowledge.

Table 2 shows that the combined in� uence of the ‘n
effect’ and the ‘f effect’ on the optimum pressure ratio is
signi� cant, but that on the maximum cycle ef� ciency is
modest. It would be improper to conclude from the
small values of f and j that the inclusion of ‘real’ effects
is unimportant. The present numerical calculations
shown in F igs 1 and 4 reveal that there are considerable
differences in actual performance curves (ef� ciency
versus pressure ratio and ef� ciency versus temperature)
between the air-standard analysis and the open-circuit
analysis with all ‘real’ effects. The numerical analysis of
open-circuit gas turbine plants with non-perfect gases
shows the existence of an optimum turbine entry
temperature. F igure 4 shows the individual and com-
bined contribution of ‘n ‡ f effects’ and dissociation
towards the establishment of the optimum temperature.
The optimum temperature increases with an increasing
pressure ratio. There is no counterpart of the optimum
turbine entry temperature in the air-standard analysis
with constant speci� c heat [2].
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APPENDIX 1

Typical variations of n and n0 determined by numerical
simulation of gas turbine performance

F igure 5 shows typical variations in n and n0 with
pressure ratio, at two different temperature ratios. These
are calculated by the present computer program
employing equations (3) and (4) and (7) to (10) and
the method of section 2. Numerical calculations, not
shown here, reveal that n and n0 also depend on
Zc, Zt,

P
Dp=p, T 1, p1 and the fuel.

It is of historical interest to refer to Whittle’s
comment mentioned in section 3.2 of using g ˆ 1:4 for
air and g ˆ 1:33 for combustion gases. The gas tables
(e.g. by Jamison and Mordell) were based on these
assumptions and widely used by the industry in the
1950s and 1960s. Since cp ˆ gR=…g ¡ 1† and since
R g & R a with kerosene as a fuel [3], these assumptions
directly lead to the value n ˆ 3:5=4 ˆ 0:875, which
forms the basis of the choice in reference [1].

It can be seen from Fig. 5 that at y ˆ 4 and low
pressure ratios …*7†, n ˆ 0:875, the value used in
reference [1], is a good choice. Similarly, the ratio
2n0=…1 ‡ n† is not very far from unity, a condition on
which the linear relations of reference [1] are based. For
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example, in the range of pressure ratio 12–15, F ig. 5
shows that representative values are n ˆ 0:9 and
n0 ˆ 0:935, for which 2n0=…1 ‡ n† ˆ 0:9842. However,
Appendix 2 shows that this small departure from unity
of the ratio has drastic consequences on jn (calculated

by the linear perturbation analysis) and to a smaller
extent on fn .

APPENDIX 2

Parametric analysis of the sensitivity of n and }n to
parameters n and n0

The present computer program was used to determine
the sensitivity of fn and jn to the two parameters n and
n0. The analytical procedure would be of maximum use
if the dependence were found to be weak. Table 5 gives a
representative set of results. The following conclusions
can be made:

1. Both fn and jn depend strongly on n and n0.
Particularly, the dependence of jn is dramatic.

2. With approximate choices of n and n0, there may be
as high an error as 100 per cent in fn , but fn is
always positive (for reasonable choices of n and n0);
jn , on the other hand, changes sign.

3. If n is increased, keeping n0 � xed, both fn and jn
decrease.

Table 5 Sensitivity of fn and jn to parameters n and n0

n 2n0=…1 ‡ n† n0 n0=n fn [equation (12a)] jn [equation (12b)]

0.87 0.97 0.9069 1.0425 0.0459 ¡ 0.0397
0.87 0.98 0.9163 1.0532 0.0508 ¡ 0.0197
0.87 0.99 0.9256 1.064 0.0557 ¡ 0.0001
0.87 1 0.935 1.0747 0.0607 0.0192
0.87 1.01 0.9443 1.0855 0.0656 0.038

0.88 0.97 0.9118 1.0361 0.0408 ¡ 0.0402
0.88 0.98 0.9212 1.0468 0.0456 ¡ 0.0203
0.88 0.99 0.9306 1.0575 0.0505 ¡ 0.0008
0.88 1 0.94 1.0682 0.0554 0.0183
0.88 1.01 0.9494 1.0789 0.0602 0.037

0.89 0.97 0.9166 1.0299 0.0358 ¡ 0.0409
0.89 0.98 0.9261 1.0406 0.0406 ¡ 0.0211
0.89 0.99 0.9355 1.0512 0.0454 ¡ 0.0017
0.89 1 0.945 1.0618 0.0502 0.0173
0.89 1.01 0.9544 1.0724 0.055 0.0359

0.90 0.97 0.9215 1.0239 0.031 ¡ 0.0417
0.90 0.98 0.931 1.0344 0.0357 ¡ 0.022
0.90 0.99 0.9405 1.045 0.0404 ¡ 0.0027
0.90 1 0.95 1.0556 0.0451 0.0162
0.90 1.01 0.9595 1.0661 0.0499 0.0348

0.91 0.97 0.9263 1.018 0.0262 ¡ 0.0425
0.91 0.98 0.9359 1.0285 0.0309 ¡ 0.0229
0.91 0.99 0.9454 1.039 0.0355 ¡ 0.0038
0.91 1 0.955 1.0495 0.0402 0.0151
0.91 1.01 0.9645 1.0599 0.0448 0.0335

0.92 0.97 0.9312 1.0122 0.0216 ¡ 0.0435
0.92 0.98 0.9408 1.0226 0.0262 ¡ 0.024
0.92 0.99 0.9504 1.033 0.0308 ¡ 0.0049
0.92 1 0.96 1.0435 0.0353 0.0138
0.92 1.01 0.9696 1.0539 0.0399 0.0321

Fig. 5 Typical variations in n and n0. (For all calculations,
Zc ˆ 0:8, Zt ˆ 0:9, T 1 ˆ 288 K, no pressure loss)
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4. If n0 is increased, keeping n � xed, both fn and jn
increase.

5. jn predominantly scales with 2n0=…1 ‡ n†:
jn & f1 2n0=…1 ‡ n†‰ Š.

6. fn predominantly depends on n0=n: fn & f2…n0=n†.

APPENDIX 3

Optimization at a � xed pressure ratio versus optimization
at a � xed turbine entry temperature

It is recalled that if the working medium is a perfect gas
then, at � xed pressure ratios, there is no optimum
turbine entry temperature (TET) and with an increasing
TET the thermal ef� ciency asymptotically approaches a
limiting value [2] limT 3=T1?? ZA ˆ ZtZJoule [equation
(19)]. The thermal ef� ciency continuously improves
with an increasing temperature ratio (though the rate
of improvement would diminish at higher tempera-
tures). This would seem to suggest that as high a TET as
possible should be used.

Obviously the temperature resistance of the material
would set a practical limit to the TET. Use of cooling air
allows the gas temperature to be higher than the melting
point of the turbine blade material, but the use of
cooling air has also a detrimental effect on the work
output. At a � xed cooling technology, there is therefore
a limit to what percentage of � ow can be used for this
purpose. Nevertheless, if the perfect blade material
could be found, there is no limit to the TET set by
thermodynamics if the working medium were a perfect
gas. Thus the optimum TET discussed in this paper is set
by the thermodynamics of non-perfect gases, and is
separate from the well-known material restriction on the
usable maximum temperature.

The solid lines in F ig. 6 show the performance taking
into account the internal combustion and real gas
effects, including dissociation. The dashed lines give
the perfect gas limits given by equation (19). The
following conclusions can be drawn:

1. Corresponding to each pressure ratio, there is an
optimum temperature ratio. Any further increase in
the turbine entry temperature reduces the thermal
ef� ciency.

2. The limiting thermal ef� ciency given by equation (19)
is never reached. At any pressure ratio, the maximum
possible ef� ciency with real gas is 15–20 per cent
lower than the maximum possible value in a perfect
gas, as predicted by equation (19). The maximum
possible ef� ciency increases with the increasing
pressure ratio.

3. The optimum temperature ratio (for maximum
ef� ciency) increases with the increasing pressure
ratio. However, at higher pressure ratios, the curves
of Zo versus T 3 become � atter. Thus, choosing a value

of T 3 slightly lower than the optimum might not
affect the thermal ef� ciency signi� cantly.

4. The performance with the perfect gases can be
described completely in terms of the non-dimensional
parameter–temperature ratio …T 3=T 1†. For real gases,
the absolute value of T 3 is also important. The
absolute level of pressure also becomes relevant for
calculation of dissociation.

It is to be noted that, although the thermal ef� ciency
would decrease if T 3 is any higher than its optimum
value, the speci� c power output continues to increase as
T 3 is increased at a � xed pressure ratio. The value of the
optimum temperature would change slightly if the
effects of blade cooling, pressure losses in the ducts
and combustion chamber, etc., are taken into account.

An interesting situation arises from the existence of
the optimum turbine entry temperature. The optimiza-
tion can be performed in two different ways: at each
value of the TET, the pressure ratio is chosen such that
the thermal ef� ciency is maximized (method I) and at
each value of the pressure ratio, the TET is chosen such
that the thermal ef� ciency is maximized (method II).
F igure 7a shows the optimum relations between the
TET and the pressure ratio obtained by these two
methods and F ig. 7b shows the corresponding thermal
ef� ciencies. (The calculations shown in F ig. 7 are
performed assuming no blade cooling, but similar
qualitative variations would be obtained with other
assumptions about the level of cooling technology and
amount of coolant.) Almost all previous references
(except references [2] and [9]) seem to have considered

Fig. 6 Variation of thermal ef� ciency with the turbine entry
temperature in a real gas turbine power plant
including component losses, internal combustion
and real gas properties. (Solid lines are calculated
by GasTurb. Zc ˆ Zt ˆ 0:9, T 1 ˆ 288:15 K ; p1 ˆ
1:013 bar, Qcv ˆ 43:12 MJ=kg, C14:3H 27:8 in air)
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only method I. This approach only provides a partial
picture. Figure 7a shows that the lower line obtained by
method I does not have to be the preferred optimal
relation between the pressure ratio and the TET that
previous works seem to suggest. The only prohibition
that can be speci� ed with certainty is that, from
considerations of thermal ef� ciency, the operating point
should not lie below the lower line or above the upper
line in Fig. 7a.

It is easy to see that if a value of pressure ratio r is
optimum at a given temperature ratio rT , then the

same value of rT is not the optimum temperature ratio
if the pressure ratio was � xed at the same r. For
example, with the assumed values of parameters as
shown in Fig. 7, the optimum pressure ratio at T 3 ˆ
1150 K is about 20 but the optimum T 3 at a pressure
ratio of 20 is about 1700 K (the thermal ef� ciency is
higher for the latter combination). The actual values
adopted in a design would depend on whether the
design is more limited by practically attainable values
of the pressure ratio or that of the turbine entry
temperature.

Fig. 7 Optimum relations between the pressure ratio and the turbine entry temperature, and corresponding
thermal ef� ciencies obtained by two different numerical optimization methods, both performed by
GasTurb (Zc ˆ Zt ˆ 0:9, T 1 ˆ 288:15 K, p1 ˆ 1:013 bar, Qcv ˆ 43:12 MJ=kg, C14:3H 27:8 in air)
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