Forthcoming Events

<table>
<thead>
<tr>
<th>Title of event</th>
<th>Date</th>
<th>Location</th>
<th>Organizer</th>
<th>Contact</th>
</tr>
</thead>
</table>
Tel: +44(0) 238 029 3223
Fax: +44(0) 238 029 2853
E-mail: wit@wessex.ac.uk
Internet: www.wessex.ac.uk |
| 24th World Conference on the Boundary Element Method and Meshless Solutions Seminar (BEM 24) | 17–19 June 2002 | Sintra, Portugal | Wessex Institute of Technology | Susan Hanley, Conference Secretariat, BEM 24, Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton SO40 7AA, UK
Tel: +44(0) 238 029 3223
Fax: +44(0) 238 029 2853
E-mail: shanley@wessex.ac.uk |
Tel: +44(0) 238 029 3223
Fax: +44(0) 238 029 2853
E-mail: wit@wessex.ac.uk
Internet: www.wessex.ac.uk |

Erratum

Determination of the optimum performance of gas turbines

Dr A. Guha (personal communication, 2001) has drawn my attention to a probable error in my joint paper with Professor Woods. It relates to the approximate calculation of efficiency described in the Appendix of the paper, leading to equation (66). This equation involves two small quantities, p/P and q/Q, the analytical forms of which were not given explicitly.

An algebraic error was indeed found in the first of these small quantities. When the corrected p/P is used to determine γ, as described in equation (51), there is a change in efficiency due to increased turbine mass flow. The corrected value of γ for the example quoted below this equation is positive instead of negative, as follows:

$\gamma = 1.69f = 0.0237$ for $f = 0.014$, instead of $\gamma = -1.25f = -0.0175$ for $f = 0.014$.

This correction means that the point shown by a square symbol for the f effect on the upper part of Fig. 7 of the paper was incorrectly located, as indeed was the point indicated by a triangle for all effects. The close agreement with the full computation of specific work remains correct but that for efficiency was fortuitous.

J H Horlock
Whittle Laboratory, University of Cambridge