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A non-dimensional study of the
flow through co-rotating discs and
performance optimization of a
Tesla disc turbine

Abhijit Guha and Sayantan Sengupta

Abstract

This article presents a systematic and comprehensive computational fluid dynamic study for co-rotating discs and, Tesla

turbines, in which the full benefit of similitude and scaling is extracted by expressing the results and analyses in terms of

carefully formulated non-dimensional numbers—five input parameters and three output parameters. The work formu-

lates a systematic design methodology for the optimum selection of input parameters for the rotor of a Tesla disc turbine

that would satisfy practical constraints and deliver high values of power and efficiency. Many subtle flow physics (e.g. the

identification of dynamic similarity number, inlet tangential speed ratio and inlet flow angle as the three most important

non-dimensional input parameters, the secondary role of aspect ratio as a separate quantity independent of dynamic

similarity number, and, the variation in the four fundamental components of the radial pressure difference) are critically

explained. The present study establishes, for the first time, that unlike the flow in a conventional turbomachine in which

fluid friction plays only a detrimental role, fluid friction plays a dual role in a Tesla disc turbine—a detrimental role in

increasing the radial pressure drop (thus tending to decrease the efficiency) and a beneficial role by providing the sole

mechanism for power production. This dual role is comprehensively analyzed and quantified in this work. The balance

between this dual role of fluid friction gives rise to the optimum values of dynamic similarity number and inlet tangential

speed ratio that maximize efficiency.
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Introduction

In a recent article,1 a systematic study of similitude
and scaling laws was undertaken for the flow through
co-rotating discs with inflow, which is found in a
Tesla disc turbine. This study1 established, through
careful formulation and powerful demonstration, the
required non-dimensional numbers for describing the
flow and for evaluating the performance—five input

parameters (r̂o, b̂, �, �, Ds) and three output param-

eters ( _̂W, �p̂io, �) in total. The actual quantitative

dependence of the fluid dynamics and performance

on the input variables such as Ds, �, and b̂ has been

determined here through a comprehensive set of com-

putations which involve about 1000 separate compu-

tational fluid dynamic (CFD) simulations, each run to

a high degree of convergence (the ‘‘scaled’’ residual

for all conserved variables is set as 10–10, which is

much smaller than what is normally set in much of

the reported CFD work). This comprehensiveness and
precision have helped us to formulate generic prin-
ciples, identify subtle physical mechanisms, and
develop optimisation strategies.

The principle of similitude established in Guha and
Sengupta1 is summarized below for ready reference.
For geometric similarity between the model tested and
the prototype to be designed, the radius ratio r̂o and
aspect ratio b̂ of the model should be the same as that
of the prototype. For kinematic similarity between a
geometrically similar model and the prototype, the
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tangential speed ratio at inlet � and the flow angle at
inlet � of the model should be the same as those of the
prototype. After achieving both geometric and kine-
matic similarities, the attainment of dynamic similar-
ity further requires that the dynamic similarity
number Ds used for the model should be the same
as that of the prototype. When dynamic similarity is
achieved, the principle of similitude enunciates that
the power coefficient _̂W and the pressure difference
coefficient �p̂io of a model would be the same as
those of the prototype.

A Tesla disc turbine is a power producing device
which was invented by the famous scientist Nikola
Tesla in 1913.2 Hundred years after the invention of
Tesla turbine, it is still not a favorite candidate in the
power industry. A major drawback is the low effi-
ciency of several experimental machines built and
tested in various parts of the world. A Tesla disc tur-
bine has two major components, namely the inlet
nozzle assembly and the rotor. Guha and Smiley3

developed an improved design of the nozzle, greatly
improving the efficiency and achieving uniformity in
the velocity profile of the jet. (The loss in the nozzle is
generally recognized4,5 as a major source of loss in the
conventional designs of a Tesla turbine.) In this paper,
a detailed investigation is conducted with the aim to
design an efficient rotor. Unlike a bladed turbine
(many details and a systematic optimization study on
gas turbines are presented in Guha6,7), the rotor of a
Tesla turbine is constructed by a series of flat, parallel,
co-rotating discs which are attached to a central shaft.
The inter-disc-spacing is usually small (of the order of
100 mm). The working fluid, which is injected nearly
tangentially to the periphery of the rotor, passes
through the narrow inter-disc-spacings moving spirally
towards the exhaust-port located at the disc-center.
There is a stationary housing surrounding the rotor.
A small radial and axial clearance is maintained
between the rotor and the stationary housing. The
Tesla disc turbine has several advantages. Other than
its manufacturing simplicity and low cost, the Tesla
disc turbine is capable of generating power with a var-
iety of working media like Newtonian fluids, non-
Newtonian fluids, mixed fluids, and two-phase mix-
tures (a body of relevant physics of two-phase flow is
available in Guha8,9). In the case of nonconventional
fuels like biomass, which produce solid particles, or, in
the case of low quality wet steam operating condition
producing vapor–droplet mixture (which may be
encountered while utilizing geothermal energy or
low-grade waste heat energy), conventional turbines
may suffer from blade erosion. In such operating con-
ditions, a bladeless Tesla turbine may be suitable due
to its self-cleaning nature.

A summary of the major investigations up to 1991
regarding a Tesla disc turbine is found in the study by
Rice.5 Experimental, theoretical, and computational
studies are still being reported in this field. Detailed
experimental studies are available in Guha and

Smiley,3 Lemma et al.,10 and Hoya and Guha.11 An
effective technique for measuring the net power
output and overall loss called the angular acceleration
method was developed by Hoya and Guha,11 which is
particularly useful for high angular speed and low-
torque operating conditions. Theoretical approaches
for predicting the performance of a Tesla disc turbine
are discussed in various references.12–15 A computa-
tional study regarding the Tesla disc turbine is
reported in Sengupta and Guha.16 Descriptions of
various investigations regarding the flow in and per-
formance of a Tesla disc turbine are also available in
many dissertations.17–25 A systematic attempt of
experimentally determining (hence optimizing) tur-
bine performance as functions of various parameters
such as disc spacing, number of discs, inlet flow angle,
nozzle area, rotational speed, etc. is described in
McGarey and Monson.22 The present non-dimen-
sional optimization study is however comprehensive
and unique; we could not find a similar study in the
available literature including the dissertations.17–25

Studies of flow above a rotating disc,26–29 flow
between a stator and a rotor,30–33 and flow through
co-rotating discs34–36 are worth mentioning here since
the subject-matter is connected. The fluid dynamics of
the flow through the co-rotating discs of a Tesla disc
turbine, however, is not as widely discussed as it is for
the von Kármán’s flow26 and the Batchelor’s flow.30

Guha and Sengupta13 explained some interesting and
intriguing fluid dynamic aspects (e.g. flow reversal,
complex pathlines, subtle role of Coriolis acceleration,
etc.), which are involved in the flow through co-rotat-
ing discs of a Tesla disc turbine. The fluid dynamics of
work transfer from the working fluid to disc-surfaces
for this rotating-flow is given in Guha and
Sengupta.15

In this paper, the power of similitude and dimen-
sional analysis is combined with the power of compu-
tational fluid dynamics to formulate, from a large set
of accurate numerical simulations, a generalized pro-
cedure for designing the best possible rotor of a Tesla
disc turbine. The synthesis of physical principles for
the fluid flow within co-rotating discs leads to design
optimization of Tesla disc turbines, thus establishing
here a connection between the interest of a fluid
dynamicist and the goal of an engineer. Unlike the
flow in a conventional turbomachine in which fluid
friction plays only a detrimental role, fluid friction
plays a dual role in a Tesla disc turbine—a detrimen-
tal role in increasing the radial pressure drop (thus
tending to decrease the efficiency) and a beneficial
role by providing the sole mechanism for power pro-
duction. This dual role is comprehensively analysed
and quantified in this work.

Mathematical formulation

In this section, a mathematical analysis for flow
through co-rotating discs of a Tesla disc turbine is
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provided. This theoretical framework is required for
the physical interpretation and understanding of the
numerical results generated through CFD simula-
tions. Figure 1(a) shows the physical configuration
showing two circular rotor discs separated axially
(i.e. in the z-direction) by a distance b. The rotor
inlet is situated along the periphery of the discs (i.e.
at radius ri). The rotor outlet is at the center of the
discs (at radius ro).

This section is divided into four subsections. In the
first section, governing differential equations and suit-
able boundary conditions for flow through the
co-rotating discs are provided. In the second, the com-
ponents of radial pressure difference in a relative
frame of reference are identified. In the third, the
appropriate non-dimensional numbers to describe
the present flow physics are provided. Finally, the
definitions of power output and efficiency of a Tesla
turbine are given.

Governing equations and boundary conditions

The analysis is based on Navier–Stokes equations in
cylindrical coordinate system for steady, laminar,
incompressible, axisymmetric flow of a Newtonian
fluid with constant density and viscosity. The assumed

orientation of the discs is such that gravity acts in the
negative z-direction, i.e. both g� and gr are zero. The
governing equations1 are given as follows
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Equations (1) to (4) are solved for the following
boundary conditions

at z ¼ 0 and b, Ur ¼ 0, U� ¼ �r, Uz ¼ 0 ð5Þ

at r ¼ ri, Ur ¼ Ur,i, U� ¼ U�,i, Uz ¼ 0 ð6Þ

at r ¼ ro, p ¼ 0 ð7Þ

The surfaces of the two discs are at z ¼ 0 and z ¼ b;
equation (5) refers to the no-slip and no-penetration
boundary conditions. At the outlet, a zero gauge pres-
sure is specified (equation (7)). At the inlet, three com-
ponents of velocity are specified (equation (6)).
In equation (6), both the radial velocity Ur,i and the
tangential velocity U�,i are independent of �. We con-
sider axisymmetric inflow condition all along the per-
iphery of the rotor. For a Tesla disc turbine,
axisymmetric flow can be either approached by
increasing the number of discrete nozzles at rotor
inlet or achieved by using a plenum chamber at the
rotor inlet. Previous researchers used both methods
in their experimental studies. We adopt the physical
configuration of the experimental set-up given in
Lemma et al.10 in which a plenum chamber is used to
achieve axisymmetric inflow condition. In this practic-
able way, we keep our focus here on the important
question about how to design the best possible rotor
of a Tesla disc turbine, segregating it from the issue of
nozzle–rotor interaction in the case of a small number
of discrete nozzles. Almost all of the published journal
articles use the axisymmetric inflow condition for the-
oretical modeling. In a previous publication,12 we have
demonstrated that our theoretical predictions for tur-
bine performance match well with the experimental
results.
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Figure 1. Schematic diagram of the physical configuration, 2D

computational domain, and computational mesh: (a) the phys-

ical configuration of a Tesla disc turbine showing only two discs;

(b) 2D computational domain (ABCD) used in the axisym-

metric CFD simulations; (c) details of mesh near the inlet. (The

gap within the two discs, in relation to the radius, is exagger-

ated in the sketch for clarity.)
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Components of radial pressure difference in a
relative frame of reference

Consider a relative frame of reference in which the
observer is rotating at the same angular velocity as
that of the disc, denoted by �. The relations between
the components of velocity in absolute frame (Ur, Uz,
and U�) and the components of velocity in the relative
frame (Vr, Vz, and V�) are as follows

Ur ¼ Vr; Uz ¼ Vz; U� ¼ ðV� þ�rÞ ð8Þ

Substituting equation (8) into equation (2), the fol-
lowing equation is obtained
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Equation (9) can be interpreted as a relation
between the radial pressure gradient (@p@r) and the
terms obtained from various forces. The integral
form of equation (9) is as follows
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Various terms in equation (10) are expressed below
with their physical interpretations.
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The overall pressure difference between outlet and
inlet is denoted by �pio. Equations (12) to (15) show
the expressions of various components of �pio. In
equation (12), �pio,inertia indicates the pressure differ-
ence due to inertia force (the contributions of Coriolis
and centrifugal forces are taken separately, and these
are not included in �pio,inertia). In equation (13),
�pio,Coriolis signifies the pressure difference due to
Coriolis force; in equation (14), �pio,centrifugal signifies
the pressure difference due to centrifugal force; and, in
equation (15), �pio,viscous indicates pressure difference
due to viscous force.

Non-dimensional numbers and non-dimensional
equations

A systematic dimensional analysis, a similitude study,
and, the proper scaling laws for arriving at simplified
conservation equations are provided in Guha and
Sengupta.1 In the study,1 seven non-dimensional
numbers of importance (for a Tesla disc turbine)
have been identified

Radius ratio: r̂o ¼
ro
ri

ð16Þ

Aspect ratio: b̂ ¼
b

ri
ð17Þ

Tangential speed ratio at inlet: � ¼
�U�,i
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Power coefficient: _̂W ¼
_W

ð� �Ur,i

�� ��3r2i Þ ð21Þ

Pressure difference coefficient: �p̂io ¼
�pio

� �U2
�,i
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In the CFD simulations, r̂o, b̂, �, �, and Ds are used

as the input; and _̂W and �p̂io are the output. In
equations (18) to (22), sectional average values of the
tangential and radial velocities, denoted by the symbol
overbar, are used. U�ðrÞ is defined as U�ðrÞ ¼
ð1=bÞ

R b
0 U�dz and UrðrÞ is defined as
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UrðrÞ ¼ ð1=bÞ
R b
0 Urdz. Thus, in equations (18) to (22),

U�,i is the value of U�ðrÞ at the inlet, i.e. at r ¼ ri.
Similarly, Ur,i is the value of UrðrÞ at the inlet, i.e. at
r ¼ ri.

In addition to the above non-dimensional num-
bers, the following non-dimensional variables are pro-
vided as follows1
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These non-dimensional variables (equation (23))
and the above nondimensional numbers (equations
(16) to (22)) are used to represent the conservation
equations (1) to (4) in a non-dimensional form. The
non-dimensional equation set is given below.
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@Ûr

@ẑ
�

Û2
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In equation (27), p0 is the modified pressure, which
is equal to p� �gzzð Þ.

Power output and efficiency of a Tesla turbine

The power output due to viscous drag for the fluid
flow between two successive discs can be expressed as
_W ¼ 2�shear�, where �shear is the torque produced by
one side of a single disc.15 In reality, a Tesla turbine
consists of multiple discs. The total power output of a
rotor consisting of n discs is given by

_W ¼ 2ðn�1Þ�shear� ð28Þ

All results given in the present paper correspond to
n ¼ 2.

Sengupta and Guha12 have given a closed-form
analytical solution of equations (24) to (27) by invok-
ing several assumptions (such as, the velocity distri-
butions at inlet are parabolic, the value of Ds is small,
etc.). The analytical solution was validated with the
experimental data given in Lemma et al.10 According
to the analytical theory, the closed-form expression
for �shear can be expressed in terms of Ds, �, and r̂o
as follows
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12
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(There is a typographical error in the equation for
�shear given in Guha and Sengupta1 where Ds got
replaced, by mistake, by �Ds.) The accuracy of
equation (29), for small values of Ds, is established
in the Appendix. The present CFD simulations pro-
vide numerical values of �shear for the entire ranges of
non-dimensional parameters.

Previous researchers defined the efficiency (�) of a
Tesla turbine in various ways.11 From these possibi-
lities, the following definition of efficiency is adopted
here for the numerical illustrations

� ¼
_W

Q pi þ 0:5� U2
�,i þU2

r,i

� �� � ð30Þ

In equation (30), Q (¼ �2
ribUr,i) is the volume
flow rate between two successive discs; and
ðpi þ 0:5�ðU2

�,i þU2
r,iÞÞ is the gauge value of total pres-

sure at inlet. In the CFD simulations, a zero gauge
pressure is specified at the outlet i.e. po ¼ 0 Pa; and,
the gauge pressure at the inlet (pi) is obtained as the
output. With the particular value specified at the
outlet boundary, the inlet gauge pressure becomes
equal to the overall pressure difference between the
outlet and the inlet i.e. pi ¼ �pio

�� ��. The denominator
of equation (30) signifies the power input to the rotor.

CFD Simulations

Figure 1(a) shows the relevant fluid flow domain,
which is three dimensional. However, considering
the axisymmetry of the flow field (see section
‘‘Governing equations and boundary conditions’’),
the present computation has been performed in a
two-dimensional geometry with appropriate equa-
tions for axisymmetric flow (equations (1) to (4)).
The two-dimensional geometry is a r� z plane
between the two discs. It is to be remembered that
the axisymmetric assumption means that the
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circumferential gradients of all flow variables are zero,
there is no requirement that the circumferential or tan-
gential velocity is zero. In fact, the tangential velocity
plays a crucial role in the fluid dynamics of Tesla disc
turbine. Note that the axisymmetric version of the con-
servation equations, namely equations (1) to (4), con-
tains all three components of the velocity, namely the
radial component Ur, tangential component U�, and z-
component Uz. Accordingly, boundary values for the
three components are specified at the inlet face CD
shown in Figure 1(b). The solution of equations (1)
to (4) then determines the three components at all
other points of the r� z plane shown in Figure 1(b).

The governing equations are solved by a commer-
cially available CFD software Fluent 6.3.26. Two-
dimensional, steady, double precision, pressure
based and implicit solver is used. The velocity formu-
lation is in the absolute frame of reference.
‘‘Axisymmetric swirl model’’37 is utilized to solve the
flow field. We consider laminar flow (a discussion on
the transition from laminar to turbulence within the
inter-disc-spacing of a Tesla turbine is given in Guha
and Sengupta;13,15 the flow remains laminar unless Ds
exceeds 10; in the present study, Ds is kept much less
than 10). The SIMPLE algorithm, with second order
upwind scheme for momentum and the ‘‘Standard’’37

pressure interpolation scheme, is used. Under-
relaxation factors for momentum (radial and axial
components), swirl (tangential component), pressure,
density, and body force are selected as 0.7, 0.9, 0.3, 1,
and 1, respectively. The convergence criterion for the
maximum ‘‘scaled’’ residual37 for all conserved vari-
ables is set as 10–10.

The geometry of the computational domain and the
grid (in r and z directions) are constructed by a com-
mercially available software GAMBIT 2.4.6. We con-
sider the flow within two successive discs separated by
a small gap (b). Each disc has an inlet radius (ri) and an
outlet radius (ro). The boundary conditions (equations
(5) to (7)) given in section ‘‘Governing equations and
boundary conditions’’ are implemented in the axisym-
metric CFD simulations in the following way. Figure
1(b) shows the axisymmetric computational domain. In
Figure 1(b), AB is the outlet (at r ¼ ro), CD is the inlet
(at r ¼ ri), BC is the lower disc surface (z ¼ 0), and AD
is the upper disc surface (z ¼ b). At the inlet, both
tangential and radial components of velocity are speci-
fied (equation (6)); and the z-component of velocity is

zero (equation (6)). The outlet boundary condition is
modeled by the ‘‘pressure outlet’’ option offered by
Fluent, with zero gauge pressure (equation (7)). No-
slip (for Ur and U�) and no-penetration (for Uz)
boundary conditions (equation (5)) are applied on the
disc surfaces. A nonzero rotational speed (�) of the
discs is also set.

A grid independence test has been carried out
(Table 1 showing a few pertinent details), and based
on this study, a total 12,500 ð125� 100Þ mapped,
quadrilateral computational cells are used for the
results presented in this paper. The grids are distrib-
uted in r - and z-directions in accordance with the dif-
ference in the flow physics in the two directions. The
grid distribution in the z-direction is nonuniform with
very small grid size close to the surfaces of the two
discs (to capture the velocity gradient on the surface
accurately) and with progressively larger grid size as
one moves away from the surfaces to the middle of the
inter-disc gap (with a successive ratio of 1.05). In
order to properly capture the rapid change of velocity
profiles near the inlet,15 the grids in the radial direc-
tion are divided into two zones—nonuniform and
uniform. Near the inlet, nonuniform boundary-
layer-type grids with 25 rows in the radial direction
are used (Figure 1(c)). The size of the first grid is
0.001mm and the successive ratio of the geometric
progression series is 1.2. The rest of the radial extent
up to the outlet is meshed uniformly with 100 grid
points. The non-dimensional parameters for obtain-
ing the results shown in Table 1 are given in the cap-
tion of Table 1. The table shows the computed values
of two important output parameters �p̂io (pressure

difference coefficient) and _̂W (power coefficient) for

three different grid distributions (coarse, standard

and fine). As the grid is changed from coarse to stand-

ard �p̂io changes by �0.10307% and _̂W changes by
�0.28388%. These values are respectively 0.020716%
and 0.087567% as the grid is changed from standard

to fine. Thus, a marginal change of �p̂io and _̂W is
observed after attaining the ‘‘standard’’ grid distribu-
tion containing 12,500 computational cells
(125� 100). On the basis of the grid independence
test, all results given in this paper are obtained by
using the grid distribution of 125� 100.

In order to achieve a comprehensive study of the
various non-dimensional numbers, an extraordinarily

Table 1. Grid independence test (for r̂o ¼ 0:528, b̂ ¼ 0:008, � ¼ 1:25, � ¼ 6:2�, Ds ¼ 1:26 and UVDI).

Grid

distribution

Number of grids in

the r- and z-directions

Total number

of grids

Pressure difference

coefficient, �p̂io

Power

coefficient, _̂W

Coarse ð75� 50Þ 3750 �0.615182 1.941514

Standard ð125� 100Þ 12500 �0.615817 1.947041

Fine ð200� 150Þ 30000 �0.615944 1.948746

Results are shown to 6 decimal places so that the smallness of the difference between the solutions with standard and fine grids can be appreciated.

UVDI: Uniform velocity distribution at inlet.
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large number of separate computational simulations
(of the order 1000) has been performed in the present
work. Hence, the method of three-dimensional CFD
simulation for flow through co-rotating discs
described in Sengupta and Guha16 has not been
attempted here for the 1000 or so cases. Instead, we
have exploited the expected axisymmetry of the flow
field, by invoking the ‘‘axisymmetric swirl model’’
available in Fluent. However, before embarking
upon a large scale study using this Fluent module
(for which we did not have previous experience), we
have assessed its predictions by comparing them
against full three-dimensional computations (with
100� 190� 120 grid points respectively in the r, �, z
directions16) for a limited number of cases. Table 2
shows the details of such a comparison. It can be seen
that the axisymmetric computations can predict �p̂io
within 0.01% and _̂W within 0.02% of the respective
values predicted by the three-dimensional simulations.

Figure 2 represents outline features of a typical
flow-field between two consecutive discs of a Tesla
disc turbine with axisymmetric inflow boundary cond-
tion. Figure 2(a) shows the absolute pathlines on the
middle r� � plane (at z ¼ b=2) between the two discs.
The results correspond to a steady state for which a
pathline and a streamline drawn through a common
point are superposed. The absolute pathlines are of
spiral shape due to the simultaneous existence of
radial as well as tangential velocity components (the
z-component of velocity is zero on the middle plane).
Various characteristics of pathlines are explained in
Sengupta and Guha.16 Figure 2(b) shows the vari-
ation in non-dimensional pressure, p̂, within the
inter-disc-spacing. It can be observed that the z-vari-
ation of p̂ is negligible (for the representative small
Ds). This flow feature is consistent with the reduced
z-momentum equation @p=@z � 0 considered in
Sengupta and Guha12 for developing a simple
theory. Figure 2(b) also exhibits the fact that p̂
decreases in the negative r-direction i.e. from the
inlet to the outlet. Figure 2(c) shows the variation in
Û� within the inter-disc-spacing. The value of Û� is 1
on the disc surfaces (i.e. at ẑ ¼ 0 and ẑ ¼ 1) due to the

no slip condition. Û� increases towards the middle-
plane i.e. towards ẑ ¼ 0:5. Figure 2(c) shows Û�

monotonically decreases towards the outlet (though
there may be cases in which Û� initially decreases as
one moves radially inward from the inlet but increases
near the outlet15). Both the z and r variations in Ûr are
displayed in Figure 2(d). Ûr is zero on the disc sur-
faces (i.e. at ẑ ¼ 0 and ẑ ¼ 1) due to the no slip condi-
tion. For the selected small value of Ds, the z� profile
of Ûr is parabolic. Ûr then increases monotonically
towards the middle-plane i.e. towards ẑ ¼ 0:5 as one
moves away from either disc surface. However, a
more complex z� profile of Ûr may be obtained
when Ds is large. In the CFD simulations, we found
that with increasing Ds, the z -profile of Ûr would
change from parabolic to flat to W-shaped. (These
details are not reported here since the primary pur-
pose of the present study is performance optimization
of Tesla disc turbines, which is considered in section
‘‘Results and discussion’’.) The r-variation in Ûr (for a
parabolic profile) is such that Ûr increases towards the
outlet, as shown in Figure 2(d). This variation is con-
sistent with the incompressible continuity equation
since the flow cross-sectional area (2
rb) decreases
with decreasing radius.

Results and discussion

Equations (16) to (20) show that there are five non-
dimensional parameters r̂o, b̂, �, Ds, and �, which
govern the fluid dynamics of the flow through co-
rotating discs and the performance of a Tesla turbine.
Each of these five input parameters is varied in the
CFD simulations; and, Table 3 presents the ranges of
their variations. It is to be recognized that the same
dimensional quantity may be involved in more than
one non-dimensional numbers. As an example, b, the
gap between two consecutive discs, appears both in
aspect ratio, b̂, and dynamic similarity number, Ds.
Therefore, a non-dimensional study, in which the
effect of varying a non-dimensional number is to be
found while keeping other non-dimensional numbers
fixed, can be performed in a number of ways.

Table 2. Verification of CFD simulations based on the axisymmetric formulation (for r̂o ¼ 0:528, b̂ ¼ 0:008, � ¼ 1:25, � ¼ 6:2�,
Ds ¼ 1:26).

Velocity distributions at inlet Method

Pressure difference

coefficient, �p̂io

Power

coefficient, _̂W

UVDI

ðU�,i ¼ U�,i and Ur,i ¼ Ur,iÞ

CFD simulation based on the

axisymmetric formulation

�0.615817 1.947041

Three-dimensional CFD simulation �0.615899 1.947484

PVDI

ðU�,i ¼ V�,i 6ðz=bÞ 1�z=bð Þ½ � þ�ri

and Ur,i ¼ Ur,i 6ðz=bÞ 1�z=bð Þ½ �Þ

CFD simulation based on the

axisymmetric formulation

�0.637421 2.059629

Three-dimensional CFD simulation �0.637501 2.060065

Results are shown to 6 decimal places so that the smallness of the difference between axisymmetric and 3D simulations can be appreciated.

CFD: computational fluid dynamics; UVDI: uniform velocity distribution at inlet; PVDI: parabolic velocity distribution at inlet.
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Suppose we want to study the effect of dynamic simi-
larity number. In a computational study, this can be
achieved simply by altering the fluid viscosity �, since
equations (16) to (20) show that � appears only in the

definition of Ds. Therefore, Ds can be varied very
simply by this method while keeping all other non-
dimensional numbers fixed. This is the method
adopted in the present study. On the other hand, if
one is to embark upon an experimental study on the
non-dimensional performance of a Tesla turbine, this
method alone may not be sufficient or appropriate as
the available values of � will be restricted by the
values of a real property of suitable fluids. Hence, a
number of (raw) dimensional quantities may need to
be simultaneously adjusted to vary Ds continuously
while keeping other non-dimensional numbers fixed.

The role of radial pressure difference in determin-
ing the performance of a Tesla disc turbine is critically
assessed in the following sections. The components of
overall pressure difference are defined in section

Figure 2. Flow field between two consecutive discs of a Tesla turbine: (a) absolute pathlines (i.e. the same as streamlines under

steady state) calculated on the middle plane between the two discs; (b) contours of non-dimensional static pressure; (c) contours of

non-dimensional absolute tangential velocity; (d) contours of non-dimensional radial velocity (for r̂o ¼ 0:528, b̂ ¼ 0:0046, � ¼ 1:37,

� ¼ 6:2�, Ds ¼ 0:42, and PVDI).

Table 3. Ranges of the tested input parameters for the pre-

sent CFD simulations.

Input parameter Symbol

Minimum

value

Maximum

value

Radius ratio r̂o 0.3 0.7

Aspect ratio b̂ 0.004 0.016

Flow angle at inlet � 0:5� 10�

Tangential speed ratio at inlet � 0.4 4.7

Dynamic similarity number Ds 0.15 2.5
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‘‘Components of radial pressure difference in a rela-
tive frame of reference’’ (equations (12) to (15)). These
components are non-dimensionalized as follows

�p̂io,inertia � �pio,inertia=� �U2
�,i

�p̂io,Coriolis � �pio,Coriolis=� �U2
�,i

�p̂io,centrifugal � �pio,centrifugal=� �U2
�,i

�p̂io,viscous � �pio,viscous=� �U2
�,i

ð31Þ

It is shown here how the overall pressure difference
coefficient �p̂io (equation (22)) and the relative mag-
nitudes of its various components (equation (31)) vary
over a range of Ds (section ‘‘Role of dynamic similar-
ity number (Ds)’’) and over a range of � (section
‘‘Role of tangential speed ratio at inlet (g)’’). We
have given emphasis not only on the overall magni-
tude of the radial pressure difference but also on the
mechanisms of how this pressure difference takes
place, since this understanding is of fundamental
importance and may be the key to future improved
designs.

Role of dynamic similarity number (Ds)

The effect of change in Ds on the performance of a
Tesla turbine is investigated in this section, while
keeping all other non-dimensional numbers fixed.
The discussion given in this section therefore corres-
ponds to a particular value of �, i.e. � ¼ 1:37 (why
this value of � is selected here can be appreciated after
the results of sections ‘‘Role of tangential speed ratio
at inlet (g)’’, ‘‘Role of aspect ratio (b̂)’’, and ‘‘Role of
radius ratio (r̂o)’’ are explained).

Figure 3 shows that the power coefficient _̂W

increases with a decrease in Ds. The increase in _̂W

may not necessarily imply an increase in the absolute

value of power output _W. It is so because the flow

parameters � and �Ur,i

�� �� in the denominator of _̂W are

also present in the expression of Ds; and, the denom-

inator of _̂W may vary with a change in Ds depending
on which dimensional input quantities are altered to
achieve the given change in Ds. Equation (20) shows

that a possible way to decrease Ds, without varying

the denominator of _̂W, is to increase the dynamic vis-
cosity �. The physical interpretation is then that the
power output _W of a Tesla disc turbine can be
increased by using a more viscous fluid. It is, however,
established in the present study that even though the
power coefficient continuously increases with decreas-
ing Ds, there may be unacceptable penalty in the two
other important parameters of performance—radial
pressure drop and efficiency—if Ds is decreased
below a critical value. The influence of Ds on �p̂io
and � is therefore critically assessed below.

Figure 4 shows the variation of �p̂io and � with Ds.
It can be seen that the curve corresponding to the
variation of �p̂io is bucket-shaped. The magnitude
of �p̂io is minimum at around Ds ¼ 0:56. For both
small and large values of Ds, �p̂io is large. On the
other hand, the curve corresponding to � versus Ds
is inverted bucket-shaped. The maximum � occurs
approximately at Ds ¼ 0:43. Any further increase or
decrease in Ds leads to a decrease in �.

The variation of � versus Ds can be explained with
the help of equation (30), Figure 3 ( _̂W vs. Ds curve)
and Figure 4 (�p̂io vs. Ds curve). First, consider equa-
tion (30). Equation (30) shows that � is the ratio of _W
to Qðpi þ 0:5�ðU2

�,i þU2
r,iÞÞ. Now, divide both numer-

ator and denominator of equation (30) by ð� �Ur,i

�� ��3r2i Þ.
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As a result, the numerator becomes _̂W and the
denominator becomes C1�p̂io þ C2. In the present

case, both C1 and C2 are constants. The curve corres-

ponding to _̂W versus Ds shows that _̂W always
decreases with an increase in Ds. On the other hand,
the curve corresponding to �p̂io versus Ds shows that
when Ds is greater than 0.56, �p̂io increases with an

increase in Ds. Consequently, when Ds4 0:56 the

variation of both �p̂io and _̂W causes a decrease in �.

When Ds is less than 0.56, �p̂io tries to decrease �

whereas, _̂W tries to increase �. The competition

between �p̂io and _̂W is reflected in Figure 4 which
shows that the maxima of � versus Ds curve occurs
at a smaller Ds (Ds ¼ 0:43) than the Ds corresponding
to the minima of �p̂io versus Ds curve (i.e. Ds ¼ 0:56).
When Ds is less than 0.43, the effect of increase in �p̂io
overtakes the effect of increase in _̂W, therefore,
� decreases.

Figure 5 shows the variation of �p̂io and its four
components �p̂io,inertia, �p̂io,Coriolis, �p̂io,centrifugal and
�p̂io,viscous with Ds. The following observations can
be made from Figure 5. �p̂io,centrifugal does not vary
with a change in Ds (Equations (14) and (31) show
that �p̂io,centrifugal depends on r̂o and �. Both r̂o and �
are fixed in this case.). Secondly, with an increase in
Ds, the magnitudes of both �p̂io,inertia and �p̂io,Coriolis
increase; whereas, the magnitude of �p̂io,viscous
decreases. Thirdly, at a small value of Ds, the values
of both �p̂io,inertia and �p̂io,Coriolis are small, whereas
the value of �p̂io,viscous is large. Finally, at a large Ds,

the magnitudes of both �p̂io,inertia and �p̂io,Coriolis over-
takes the magnitude of �p̂io,viscous.

It can be summarised that at a small value ofDs, the
large magnitude of �p̂io occurs because of the large
�p̂io,viscous. On the other hand, at a comparatively
greater Ds, a large magnitude of �p̂io occurs from a
combined effect of �p̂io,inertia, �p̂io,Coriolis and
�p̂io,centrifugal. Thus, the bucket-shape of �p̂io versus
Ds curve, as shown in Figure 4, is obtained. The pre-
sent study reveals that adding more and more friction
either by reducing inter-disc-spacing or by using a fluid
of higher viscosity may produce an adverse effect on
the performance of a Tesla disc turbine. This is so
because with an increase in friction, Ds decreases;
and at a small Ds, �p̂io is large (i.e. for large
�p̂io,viscous). Figure 4 shows that the efficiency decreases

rapidly below a critical value of Ds. (It is stated previ-

ously that although _̂W increases with a decrease in Ds
there is a penalty when Ds is below a critical value.) A
Tesla disc turbine is sometimes referred to as ‘‘friction
turbine’’. However, the above detrimental role of fric-
tion regarding the performance of a Tesla turbine is not
discussed in the previous literature.

Role of tangential speed ratio at inlet (�)

The effect of change in � on the performance of a
Tesla turbine is investigated in this section. The
study given in the previous section showed that the
efficiency is maximum when Ds ¼ 0:43. Therefore, Ds
is kept fixed at this value (Ds ¼ 0:43), as � is varied.
Additionally, r̂o, b̂, and � are assumed to be fixed. � is
defined by equation (18): � ¼ �U�,i= �rið Þ. The absolute
tangential velocity at the inlet of the rotor, �U�,i, is
fixed by the design of the nozzle and, ri is fixed for a
particular rotor. Therefore, in order to understand the
fluid dynamics of the rotational flow, � in this study is
varied by altering the rotational speed �.

Figure 6 shows that decreasing � (i.e. increasing �)

up to a certain value leads to an increase in _̂W. For

further decrease in �, _̂W decreases. Equation (28)
shows that the power output _W is a product of the
rotational speed of the disc (�) and the torque pro-
duced by viscous drag (�shear). For fixed geometry,
fluid and U�,i, �shear decreases with an increase in �.
Usually, the effect of increase in � overtakes the effect
of decrease in �shear, and hence the power output _W
increases with increasing � (i.e. decreasing �). This
trend may get reversed under flow reversal conditions
(which happens for �5 1, see Guha and Sengupta13)
when a part of the disc near inlet, instead of produ-
cing power, absorbs power. Therefore, for �5 1, a
condition may reach such that any further decrease
in � decreases the power output _W. (Observe, in
Figure 6, the variation of _̂W for �5 1.)

Figure 6 also shows the variation of �p̂io with �. It
can be seen that �p̂io increases with a decrease in �;
and the rate of the increase in �p̂io is greater at com-
paratively smaller values of �. The explanation behind

Figure 5. Predicted contribution of various forces to pro-

duce the overall pressure difference between outlet and inlet:

effect of Ds. (CFD simulations are performed for r̂o ¼ 0:528,

b̂ ¼ 0:008, � ¼ 1:37, � ¼ 6:2�, and PVDI. Pressure differences

are non-dimensionalized by � �U2
�,i. Each curve contains data from

50 separate CFD simulations, with appropriate higher reso-

lution close to the minima. The bullets are used only for easy

recognition of the various curves.)
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such trend is given later in this paper (while discussing
the contribution of various components of �p̂io over a
range of �).

Figure 7 shows the variation of � with �. The curve
corresponding to � versus � is inverted bucket shaped.
The maximum � occurs at � ¼ 1:37 (the value of �
corresponding to the maximum � is greater than 1
and close to 1). If � is decreased below this optimum
value, particularly when flow reversal occurs, �
decreases steeply. Similarly, when � is increased
above the optimum value, � decreases considerably

(though may not be as steeply as before). Such vari-
ation in � may be explained in the following way.
When � is greater than 2, Figure 6 shows that, with
an increase in �, the rate of decrease in _̂W is much
greater than the rate of decrease in �p̂io.
Consequently, the value of � decreases. On the other
hand, when � is less than 1, �p̂io increases drastically.

Moreover, with a decrease in �, the rate of increase in
_̂W decreases when � is close to 1; and, _̂W starts
decreasing when � is less than 0.85. Thus, � is suffi-
ciently small at � � 1, and decreases rapidly when
�5 0:85.

Figure 8 shows the contribution of various compo-
nents of �p̂io over a range of �. The following obser-
vations can be made from Figure 8. �p̂io,viscous varies
insignificantly as compared to the other components
of �p̂io. (This can be explained by equation (25),
which shows that � is not present in the viscous
term. Moreover, it is found in the CFD simulations
that the radial velocity field within the inter-disc-
spacing of a Tesla turbine is weakly dependent on
�.) Secondly, the magnitude of �p̂io,centrifugal increases
rapidly with a decrease in �. At small �, �p̂io,centrifugal
is the major contributor. (Equations (14) and (31)
show that �p̂io,centrifugal is inversely proportional to
the square of �. The rapid increase of �p̂io at
small �, as found in Figure 6, is because of the
rapid increase of �p̂io,centrifugal.) Finally, for the
selected Ds, both �p̂io,Coriolis and �p̂io,inertia are small,
which is consistent with the message contained in
Figure 5. This figure also suggests that if the curves
in Figure 8 were redrawn at a high value of Ds, then
the inertial and Coriolis components of pressure drop
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Figure 6. Variation in power coefficient _̂W and pressure dif-

ference coefficient �p̂io with tangential speed ratio at inlet �
obtained by the present CFD simulations. (For r̂o ¼ 0:528,

b̂ ¼ 0:008, Ds ¼ 0:43, � ¼ 6:2�, and PVDI. Pressure differences

are non-dimensionalized by � �U2
�,i. Each curve contains data from

50 separate CFD simulations, with appropriate higher reso-

lution close to the maxima in power coefficient.)

Keys:– – –�p̂io; –––– _̂W).

Figure 8. Predicted contribution of various forces to pro-

duce the overall pressure difference between outlet and inlet:

effect of �. (CFD simulations are performed for r̂o ¼ 0:528,

b̂ ¼ 0:008, Ds ¼ 0:43, � ¼ 6:2�, and PVDI. Pressure differences

are non-dimensionalized by � �U2
�,i. Each curve contains data from

50 separate CFD simulations. The bullets are used only for easy

recognition of the various curves.)
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can be appreciably large. Returning to the computa-
tions of Figure 8, it is found that as � decreases from a
large value, the magnitude of �p̂io,inertia decreases and
the magnitude of �p̂io,Coriolis increases, though both
trends reverse below certain small values of � (the
reversal in �p̂io,inertia is visible in Figure 8, the reversal
in �p̂io,Coriolis could be seen if the lower limit of
abscissa is extended below 0.53).

�pio,Coriolis depends on the product of V� and �
(equation (13)). With a decrease in �, the magnitude
of �pio,Coriolis increases mainly because of an increase
in �, and below a certain �, the magnitude of
�pio,Coriolis decreases mainly because of a decrease in
V�,i (V�,i is the value of V� at inlet). However, while
estimating �pio,Coriolis one should also take the radial
variation of V� into account because �pio,Coriolis is an
integrated value covering the full radial extent
between the inlet and the outlet. Guha and
Sengupta13 explained the fluid dynamics for the
radial variation of V� at various values of �. They
showed that, depending on the relative magnitude of
various forces, two different trends are possible in the
radial variation of V�. In one case, with decreasing
radius from the inlet, V� decreases to a minimum at
a certain radius (whose value depends on Ds and �,
and would be observable only if the value of this
radius is greater than the outlet radius used in the
particular design) and then onwards increases. This
happens when � is sufficiently greater than 1. In the
other case, V� continuously increases with a decrease
in radius (i.e. from inlet to outlet). This happens either
when � is less than 1 or when � is close to 1.

The existence of the optimum values of � for max-
imum power _W (Figure 6) and for maximum efficiency
� (Figure 7) can be explained from a simple theory. It
has been postulated in Hoya and Guha11 and demon-
strated through present CFD simulations (Appendix 1)
that �shear � c1 � c2�. The analytical expression for
the torque, equation (29) which is valid for a small
inter-disc spacing where a parabolic velocity distribu-
tion is a good assumption, shows that the variation of
�shear with � is exactly linear (Appendix 1). Therefore,
_W ¼ �shear� ¼ c1�� c2�

2. The optimum � for max-
imum power output is therefore obtained by setting
@ _W=@� ¼ 0. This gives, �optimum, max power ¼ c1=2c2.
When appropriate values are substituted it is found
that �optimum,max power ¼ 0:96; this compares well with
�optimum, max power ¼ 0:96 determined directly through
CFD simulations. Since, �p̂io changes mainly because
of the centrifugal component at low value of � (i.e.
high �), the pressure difference would be approxi-
mately given by �pio � c3 þ c4�

2. For maximum �,
@�=@� ¼ 0. This would set the optimum value of rota-
tional speed, �optimum, max � (i.e. non-dimensional
�optimum). When this algebra is carried out,

�optimum, max � ¼
ac
b ½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

a2c

q
� 1�, where a ¼ c2=c1,

b ¼ c4=c1, c ¼ ½c3 þ 0:5�ðU2
�,i þU2

r,iÞ�=c1. When the

values are substituted it is found that

�optimum, max � ¼ 1:35; this compares well with
�optimum, max � ¼ 1:37 determined directly through CFD
simulations.

Role of aspect ratio (b̂)

In this study, we focus our attention to the two most
important non-dimensional numbers that control the
flow field and efficiency, namely Ds and �. At the first
thought, it appears that b̂ should also play an import-
ant role since the relative proximity of two disc sur-
faces would influence the value of shear stress and
hence the torque and work output. However, equation
(20) shows that the expression of b̂ is included in the
definition ofDs. Since the systematic dimensional ana-
lysis of Guha and Sengupta1 has produced both Ds
and b̂ as two separate non-dimensional numbers, we
need to reflect on their separate roles. On the basis of a
very large number of computational simulations, in
which Ds and b̂ were independently varied over
respective relevant ranges, it was found that when b̂
is varied but Ds is held constant (by making compen-
sating changes in b, �Ur,i

�� �� and 	), there is only a little
change in the non-dimensional flow field (e.g. in Û�,
Ûr, or p̂ as a function of ẑ and r̂) within the co-rotating
discs of a Tesla turbine. Results of these additional
computations are not displayed in this paper since
the non-dimensional curves corresponding to various
b̂ nearly superpose on one another. On the other hand,
if b̂ is fixed but Ds is varied then large changes happen
both in the flow field and in the performance. Thus, we
make the important conclusion that the primary role
of aspect ratio b̂ is contained in the dynamic similarity
number Ds. The role of b̂ as a separate non-dimen-
sional number, independent of Ds, is secondary in
determining the non-dimensional flow field. This
subtle dynamics can be appreciated from a study of
the three momentum equations (25) to (27) in which,
outside Ds, b̂ independently appears as a squared
quantity. Since b̂ for a practical Tesla turbine is a
small quantity, square of b̂ is even smaller. This
provides the mathematical explanation for why the
independent role of b̂, outside Ds, on the flow field is
secondary. A physical reasoning may be constructed as
follows. Equation (20) shows that Ds is a product of
the aspect ratio b̂ and the term �Ur,i

�� ��b=	. The term
�Ur,i

�� ��b=	 can be interpreted as a Reynolds number
based on the average radial velocity at inlet and the
inter-disc-spacing. Therefore, in order to keep Ds
fixed, an increase in b̂ must be accompanied by a
corresponding decrease in the Reynolds number

�Ur,i

�� ��b=	, and vice versa. (As an example, if the
aspect ratio b̂ is increased by increasing the inter-
disc-spacing b, then the Reynolds number can be
decreased by increasing 	, i.e. by using a more vis-
cous fluid.) Due to these two counteracting effects,
the non-dimensional flow field does not change
appreciably. For most computations reported here,
it is assumed that b̂ ¼ 0:008.
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Having determined the effect of b̂ on the flow field
we turn our attention to its effect on the performance
parameters. For the simplicity of argument, it is
assumed that b̂ is altered by altering b (keeping ri
fixed). The additional computations (mentioned
above) showed that the pressure difference coefficient

�p̂io and the efficiency � are nearly independent of b̂,

but the power coefficient _̂W increases (nearly) linearly
with increasing b̂ (at fixed Ds). We have explained in
the previous paragraph that p̂ is nearly independent of
b̂, therefore �p̂io is also independent of b̂. A casual
glance at equations (28) and (29) may suggest that the
power output would decrease with increasing b, since
according to equation (29) b appears in the denomin-
ator of the torque �shear. The explanation for why the
opposite happens is quite subtle. Since the four other
non-dimensional numbers, namely r̂o, �, �, and Ds,
are to be kept constant as b̂ is varied, equations (16) to
(20) show that the easiest way to achieve this is to
keep all dimensional variables fixed except b and 	.
In order to keep Ds fixed, 	 (hence, � for fixed �) must

be varied such that � / b2. Equations (29) and (28)

then show why _̂W increases (nearly) linearly with
increasing b̂. Since both _W / b and Q / b,
approximately, in equation (30), the efficiency � is
nearly independent of b̂.

Role of radius ratio (r̂o)

For saving space, a short summary of the effect of
varying radius ratio, while keeping other non-dimen-
sional numbers fixed (Ds ¼ 0:43, � ¼ 1:37, b̂ ¼ 0:008,
� ¼ 6:2�), is given in Table 4. It can be concluded that,
with decreasing r̂o (i.e. with increasing radial extent of

the disc surface), both pressure difference coefficient

�p̂io and power coefficient _̂W increase. As a result, the
efficiency � shows a maxima at a certain value of r̂o.
It can also be seen that, although there is an optimum
value of r̂o for maximum efficiency, the dependence of
efficiency on radius ratio is rather weak.

Surface representation of efficiency (�)

In sections ‘‘Role of dynamic similarity number (Ds)’’
and ‘‘Role of tangential speed ratio at inlet (g)’’, the

subtle role of Ds and � in determining the perform-
ance of a Tesla disc turbine is discussed. The perform-
ance curves, shown in both the sections, are obtained
when either Ds is fixed or � is fixed. In the present
section, it is shown how the efficiency of a Tesla disc
turbine varies when Ds and � vary simultaneously. An
initial survey of such calculations was performed at
various values of radius ratio r̂o; from such calcula-
tions it is established that r̂o ¼ 0:63 gives the highest
value of maximum efficiency. Now, several hundreds
of further computations were performed at finer inter-
vals in Ds and �, while keeping the three other non-
dimensional numbers fixed (r̂o ¼ 0:63, b̂ ¼ 0:008,
� ¼ 6:2�). Figure 9 shows a surface, which represents
the variation of efficiency over a range of Ds and �.
Thus, the peak of the surface indicates the point of
maximum efficiency over the range of Ds and �. The
maximum efficiency (�max ¼ 0:552) is attained at
Ds ¼ 0:39 and � ¼ 1:45. In course of the present
investigation, it is found that it is not possible to
achieve another maxima by any further changes in
Ds, � , r̂o or b̂, so long as � is kept fixed (the effect
of varying � is shown in section ‘‘Role of flow angle at
inlet (a)’’).

Reflection on real designs

Hoya and Guha11 reported a flexible test rig in which
it was possible to vary, among many of the input vari-
ables, the inter-disc-spacing b. In their experimental
set up, it is possible to vary Ds within a wide range,
which contains the optimum values of Ds described in
previous sections. The minimum value of Ds used in
the experiment of Lemma et al.10 is, however,
approximately 3.6. This value is large compared to

Figure 9. A surface representation of efficiency � of a Tesla

disc turbine over a range of dynamic similarity number Ds and

tangential speed ratio at inlet �: prediction of present CFD

simulations. (For r̂o ¼ 0:63, b̂ ¼ 0:008, � ¼ 6:2� and PVDI.

About 400 separate CFD simulations are performed to con-

struct the surface.)

Table 4. Variation of performance parameters with radius

ratio (for Ds ¼ 0:43, � ¼ 1:37, � ¼ 6:2�, b̂ ¼ 0:008, and PVDI).

r̂o �p̂io
_̂W �

0.3 �0.919405 2.857994 0.469539

0.4 �0.718222 2.696741 0.515862

0.528 �0.532810 2.423864 0.546430

0.6 �0.445010 2.236899 0.550843

0.7 �0.333082 1.934666 0.539977

PVDI: parabolic velocity distribution at inlet.

Guha and Sengupta 733



the optimum value found in the present study.
Achievable modification in the fewest parameters
that can bring the Ds value close to optimum is dis-
cussed below.

Let us maintain the dimensions of the rotor (i.e.
ri ¼ 25mm, ro ¼ 13:2mm, r̂o ¼ 0:528), and the
same fluid (i.e. air with �¼1.79�10–5 kg/(ms) and
� ¼ 1:225 kg/m3). Lemma et al.10 reported the per-
formance of their turbine at various inlet gauge pres-
sure conditions. Now, consider a particular case
(among these cases) for which the inlet gauge pressure
is 0.113 bar. For this case, the values of absolute fluid
velocities at inlet (i.e. �U�,i ¼ 106m/s, �Ur,i

�� �� ¼ 11:5m/s,
� ¼ 6:2�) are obtained by the method described in
Sengupta and Guha.12 The present study given in sec-
tions ‘‘Role of dynamic similarity number (Ds)’’ and
‘‘Role of tangential speed ratio at inlet (g)’’ showed
that, with these values of � and r̂o, a maximum effi-
ciency of �max ¼ 0:546 can be obtained if Ds ¼ 0:43
and � ¼ 1:37 are maintained. These can be achieved
with � ¼ 3095 rad=s and b¼117 mm (which corres-
ponds to b̂ ¼ 0:0047).

Role of flow angle at inlet (�)

The collected wisdom accrued from the design experi-
ence of Tesla turbines over many years is that, for
obtaining a good performance, the fluid should enter
the rotor nearly tangentially. The detailed experimen-
tal study reported inMcGarey andMonson,22 in which
the nozzle angle or the flow angle at inlet to the rotor
was systematically varied, also concluded the same.
For all computations described so far in this paper,
we have assumed � ¼ 6:2� (i.e. 0.11 radian), the value
adopted in the design of Lemma et al.,10 see previous
section. In this section, we therefore undertake a com-
putational study of the effect of varying � for the sake
of completeness.

Figure 10 shows how the computed efficiency
depends on �. It is found that the computed efficiency
increases continuously with decreasing �. It should be
mentioned that the present computations are per-
formed for the isolated rotor; one may need to con-
sider the whole assembly as the computational
domain when � is small. In order to keep the same
mass flow rate as � is varied, the radial velocity at inlet
Ur,i is kept constant in the present computations.
Since, tan� � �, when � is small and expressed in
radian, U�,i / 1=�. It is expected that, under the cir-
cumstances, _W will scale with U2

�,i. It is therefore pre-
dicted that _W / 1=�2, i.e. if the flow angle at inlet to
the rotor is halved, the power output would be
doubled. This theoretical prediction is borne out by
the CFD simulations. The variation of _W versus �
would therefore be steeper at small angle, since the
same change in angle, ��, would represent a larger
fraction of � when � is smaller. The special form of
abscissa in Figure 10 is chosen to display finer reso-
lution at small values of �.

The computations shown in Figure 10 are per-
formed at fixed values of Ds and �. In order to com-
plete the present non-dimensional study, two more
questions need to be answered: (i) how the optimum
values of Ds and � change with varying angle �, and
(ii) how the efficiency behaves in the neighborhoods of
optimum values of Ds and �. Many further computa-
tions showed that the optimum value of � does not
appreciably change with varying �, the optimum
remaining at � ¼ 1:45 (section ‘‘Surface representa-
tion of efficiency (Z)’’). The optimum of Ds, however,
decreases with decreasing �. The variation of � with
Ds, in the neighbourhood of respective optimum Ds,
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Figure 10. Variation in efficiency � with flow angle at inlet �
(in degree) obtained by the present CFD simulations (for

r̂o ¼ 0:63, b̂ ¼ 0:008, � ¼ 1:45, and PVDI). Keys: –––– with

Ds ¼ 0:39; 	 with optimum values of Ds at respective angles.
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Figure 11. Variation of efficiency � in the neighborhood of

the optimum dynamic similarity number Ds: prediction of pre-

sent CFD simulations at three different flow angles at inlet (for

r̂o ¼ 0:63, b̂ ¼ 0:008, � ¼ 1:45, and PVDI).
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is shown in Figure 11 for three different values of �.
The optimum values of Ds and maximum values effi-
ciency are (0.2, 0.688), (0.39, 0.552), and (0.59, 0.43)
respectively at � ¼ 3�, � ¼ 6:2�, and � ¼ 10�. The
three points are also superposed (as filled circles) in
Figure 10 so that one can appreciate the effect of
optimizing Ds at various angles �.

Figure 11 shows that the efficiency curves are rea-
sonably flat, particularly at higher angles �, in the
neighborhood of optimum Ds. This has design impli-
cation in that the penalty for small deviation from the
exact optimum value of Ds may not be too severe on
the efficiency.

Conclusion

A systematic CFD study is presented for understand-
ing the flow through co-rotating discs and for predict-
ing the performance of a Tesla disc turbine. The full
benefit of similitude and scaling is extracted by
expressing the results and analyses in terms of care-
fully formulated non-dimensional numbers—five

input parameters (r̂o, b̂, �, �, Ds) and three output

parameters ( _̂W, �p̂io, �). A quantitative methodology
is established to design the best possible rotor of a
Tesla disc turbine. Many subtle flow physics (e.g.
the dual role of fluid friction, the identification of
Ds, �, and � as the three most important non-dimen-
sional input parameters, the secondary role of aspect
ratio as a separate quantity independent of the
dynamic similarity number in determining flow field
and efficiency, and the variation in the four funda-
mental components of the radial pressure difference)
are critically explained for the first time in this paper.
The work establishes a systematic design method-
ology for the optimum selection of input parameters
for a Tesla disc turbine that would satisfy practical
constraints and deliver high value of power and effi-
ciency. As an illustrative example (with r̂o ¼ 0:63), it
is shown that for an inlet flow angle � ¼ 6:2�, the
maximum rotor efficiency (�max ¼ 0:552) is obtained
when Ds ¼ 0:39 and � ¼ 1:45. At an inlet flow angle
� ¼ 3�, an increased maximum rotor efficiency
(�max ¼ 0:688) may be obtained with the following
optimum combinations of Ds and �: Ds ¼ 0:2,
� ¼ 1:45.

The dependence of the fluid dynamics and per-
formance on the input variables such as Ds, �, and
b̂ has been determined here through a comprehensive
set of computations which involve about 1000 separ-
ate simulations, each run to a high degree of conver-
gence (the ‘‘scaled’’ residual for all conserved
variables is set as 10–10, which is much smaller than
what is normally set in much of the reported CFD
work). This comprehensiveness and precision have
helped us to formulate generic principles and identify
subtle physical mechanisms.

Thus, for example, we have given emphasis not
only on the overall magnitude of the radial pressure

difference but also on the mechanisms of how this
pressure difference takes place. It is established that
�p̂io,viscous depends predominately on Ds; �p̂io,centrifugal
depends predominately on �; and �p̂io,inertia and
�p̂io,Coriolis depends on both Ds and � (see Figures 5
and 8). Such understanding is of fundamental import-
ance and may be the key to future improved designs.

In addition to the computational optimization, the
analytical route is also taken wherever possible for
deeper physical interpretation. As an example,
simple analytical formulae for the optimum values
of � (for maximum power or efficiency) are derived,
the predictions of which match well with the numer-
ically determined values.

Usually the Tesla disc turbine is described as a
‘‘friction turbine’’ implying the positive role played
by fluid friction since it increases the power output.
The present study, for the first time, establishes the
qualitative and quantitative cost of fluid friction and
how the optimum design evolves as a balance between
this dual role of friction in the Tesla disc turbine. It is

shown that, as Ds decreases, although the power coef-

ficient _̂W continuously increases, the magnitude of
pressure difference coefficient �p̂io (which appears in
the denominator of efficiency �) passes through a
minima, primarily for a large combined value of
�p̂io,Coriolis
�� ��, �p̂io,inertia

�� ��, and �p̂io,centrifugal
�� �� at large

values of Ds and for a large increase in �p̂io,viscous
�� �� at

small values of Ds. As � decreases, the power coeffi-
cient _̂W increases (until the power curve passes through
a maxima when � is close to unity), but the magnitude
of the pressure difference coefficient �p̂io also increases,
primarily for a large increase in �p̂io,centrifugal

�� �� at small
values of �. The balance between these two opposing
effects of fluid friction gives rise to the optimum values
of Ds and � that maximize �.
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Computation of the flow between two rotating coaxial
disks: Multiplicity of steady-state solutions. J Fluid
Mech 1981; 108: 227–240.

35. Tzeng HM and Humphrey JA. Corotating disk flow in
an axisymmetric enclosure with and without a bluff

body. Int J Heat Fluid Flow 1991; 12: 194–201.

36. Gauthier G, Gondret P, Moisy F, et al. Instabilities in
the flow between co- and counter-rotating disks. J Fluid
Mech 2002; 473: 1–21.

37. Fluent 6.3 User’s guide. Lebanon, NH, USA: Fluent
Inc., 2006.

Appendix

Notation

b spacing between two discs (m)
b̂ aspect ratio, b̂ � b=ri
Ds dynamic similarity number,

Ds � b=rið Þ �Ur,i

�� ��b=	� �
g acceleration due to gravity (m/s2)
p pressure (gauge value) (Pa)
p0 modified pressure, p0 � p� �gzz (Pa)
p̂ non-dimensional gauge pressure,

p̂ � p=� �U2
�,i

r radius (m)
r̂ non-dimensional radius, r̂ � r=ri
r̂o radius ratio, r̂o � ro=ri
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U absolute velocity of fluid (m/s)
Û� non-dimensional U�, Û� � U�=�ri
Ûr non-dimensional Ur, Ûr � Ur= �Ur,i

�� ��
V relative velocity of fluid (m/s)
_W power output (W)
_̂W power coefficient, _̂W � _W=ð� �Ur,i

�� ��3r2i Þ
z height above the lower disc surface (m)
ẑ non-dimensional z, ẑ � z=b

� flow angle at inlet,
� � tan�1 �Ur,i

�� ��= �U�,i

� �
�pio overall pressure difference between

outlet and inlet (Pa)
�p̂io pressure difference coefficient,

�p̂io � �pio= � �U2
�,i

� �
� tangential speed ratio at inlet,

� � �U�,i= �rið Þ

�shear torque produced by one side of a single
disc (N m)

� efficiency
� azimuthal direction in cylindrical co-

ordinate system (rad)
� viscosity of the working fluid (kg/m s)
	 kinematic viscosity of working fluid

(m2/s)
� density of the working fluid (kg/m3)
V rotational speed of the disc (rad/s)

Subscript

i at rotor inlet
o at rotor outlet
r component along the r-direction
z component along the z-direction
� component along the �-direction

Superscript

ðÞ sectional-averaged flow variables,
XðrÞ � ð1=bÞ

R b
0 XðrÞdz

Appendix 1

Theoretical derivation of the linear relationship
between �shear and �

The tangential speed ratio at inlet is defined by the
equation � ¼ �U�,i=�ri. It was mentioned in section
‘‘Role of tangential speed ratio at inlet (g)’’ that, � in
this study is varied by altering the rotational speed �.
In the same section, the existence of the optimum
values of � for maximum power _W (Figure 6) and
for maximum efficiency � (Figure 7) has been
explained from a simple theory. The presented
theory is based on the relation �shear � c1 � c2�,

which has been postulated in Hoya and Guha.11 The
following analysis gives a mathematical derivation of
this linear relationship by using equation (29).

From equation (8), V�,i can be expressed as

V�,i ¼ U�,i ��ri ð32Þ

Using the definition of � (equation (18)), we have

V�,i ¼ ð� � 1Þ�ri ð33Þ

Substituting the expression of V�,i in equation (29),
the following expression for �shear is obtained

�shear ¼
12
�ð� � 1Þ�r4i

b

�
Ds

12ð� � 1Þ
ð1� r̂2oÞ

þ
Ds

10
1�

Ds

6ð� � 1Þ

� �
F

�
ð34Þ

where

F ¼ 1� exp �
5

Ds
1� r̂2o
� �� �	 


ð35Þ

Using the definition � ¼ �U�,i=�ri, equation (34)
can be expressed as

�shear ¼ k1�þ k0 � k2�� k3� ð36Þ

where, k0 ¼
6
�r3i

�U�,i
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Figure 12. Variation of the torque produced by one side of a

single disc of a Tesla turbine (�shear) with the rotational speed of

the disc �: predictions of present CFD simulations and equa-

tion (29) (for ri ¼ 0:025 m, ro ¼ 0:0132 m, b¼116 mm,
�U�,i ¼ 106 m/s, �Ur,i ¼ �11:5 m/s, air as working fluid

(� ¼ 1:225 kg=m3 and �¼1.79�10–5 kg/m
s), and PVDI).
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k1 ¼

�r4i
b
ð1� r̂2oÞDs

k2 ¼
6
�r4i
5b

DsF

and, k3 ¼

�r4i
5b
ðDsÞ2 F

Therefore, one can write �shear ¼ c1 � c2�, where,
c1 ¼ k0 and c2 ¼ k2 þ k3 � k1.

It is also possible to determine the relation between
�shear and � directly from the many CFD simulations
conducted here. Figure 12 shows that the prediction
of the analytical theory, equation (29), is in good
agreement with the CFD results.
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