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This paper investigates the effects of a magnetic field on the natural convective boundary layer flow of an electri-
cally conducting fluid adjacent to horizontal as well as vertical surfaces. This has allowed us to establish overall
similarities and several subtle differences between the two cases. Previously published studies concentrated on
obtaining self-similar solutions at the cost of assuming very restrictive variation of the magnetic field along the
surface. In the present work, a numerical model and an in-house computer program have been developed to
solve directly the non-linear boundary layer equations which can accommodate any arbitrary variation of the
magnetic field. Special emphasis is given to the case of uniform magnetic field which perhaps represents the
most practical case and which cannot be solved by the similarity theory. Computations show that the Nusselt
number and the skin-friction coefficient decrease as the magnetic field increases. It is shown that the detailed
characteristics of the velocity profiles and the values of Nusselt number and skin-friction coefficient for the
case of a magnetic field which admits similarity are significantly different from those when a uniformmagnetic
field is applied, thus showing the importance of the present model.
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1. Introduction

Magnetohydrodynamics (MHD) is the study of the interaction be-
tween amoving fluid and amagnetic field. When amagnetic field is ap-
plied perpendicular to the main flow direction, the magnetic lines offer
a resistance to the flow and cause a retardation [1]. The study ofmagne-
tohydrodynamic natural convection has gained much importance due
to its application in the field of geophysical engineering, enhanced oil
recovery and nuclear sciences [2]. The flow control achieved by the ap-
plication of a magnetic field is of particular use in metallurgical and
polymer processing industries [3]. Relevant examples of Newtonian
fluids, for which a magnetic field may have an effect, include liquid
metals, ionized gases, electrolytic solutions and certain water-based
nanofluids.

The laminar natural convection of electrically conducting fluids past
a heated vertical surface in the presence of a magnetic field has been
studied by many researchers [4–7]. Riley [4] used a method of
“matching ‘outer’ and ‘inner’ solutions in the moving layer of fluid” in
his studies for strong magnetic fields. Lykoudis [6] obtained similarity
solutions for a specific variation of the magnetic field. Sparrow and
Cess [7] found that the application of a magnetic field significantly af-
fects the free convection heat transfer to liquid metals. Self-similar
.in (K. Pradhan),
solutions for magnetohydrodynamic natural convection past a vertical
plate exist only when the strength of themagnetic field varies as the in-
verse of the fourth root of the distance from the leading edge [5,6]. In
spite of the existence of numerous studies on themagnetohydrodynam-
ic natural convection over a vertical plate, the effect of a uniform mag-
netic field (which is of greater physical significance but does not
admit self-similar solutions) has not been investigated thoroughly.

Natural convective boundary layer flow over a horizontal surface is
quite different from its counterpart on a vertical surface and the flow
is set up indirectly by the buoyancy force acting normal to the surface.
This is why Schlichting and Gersten referred to this as “indirect natural
convection” [8]. Theoretical and numerical studies of this type of flow
for various types of fluids and boundary conditions may be found in
[9–15]. Natural convection over a heated horizontal surface under the
influence of a vertical magnetic field has been analysed by Gupta [16]
using the momentum-integral method. Gupta [16] considered self-
similar solutions for two cases: (i) the magnetic field varying as the in-
verse of the two-fifth power of the distance along the plate (from the
leading edge) when the surface temperature is constant, and, (ii) the
temperature difference varying as the square of the distance and the
boundary layer thickness being held constant for a uniform magnetic
field. Similar studies using the integral technique have been performed
by Singh [17,18] and Singh and Cremers [19]. Samanta and Guha [20]
performed a similarity analysis for the magnetohydrodynamic natural
convection over an isothermal horizontal plate, assuming the magnetic
field to vary as the inverse of the two-fifth power of the distance along
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Fig. 1. Physical model and coordinate system for the horizontal surface.

Nomenclature

B0 strength of a uniform magnetic field
cf skin-friction coefficient
cf
∗ reduced skin-friction coefficient
GrL Grashof number defined as gβ(Tw−T∞)L3/υ2

Grx local Grashof number defined as gβ(Tw−T∞)x3/υ2

g acceleration due to gravity
k thermal conductivity of the fluid
L reference length
M magnetic interaction parameter
M0 magnetic interaction parameter corresponding to B0
Nu Nusselt number
Nu∗ reduced Nusselt number
ΔNu

∧
relative difference in Nu∗, defined in Eq. (33)

Pr Prandtl number
p static pressure
p dimensionless static pressure
qw surface heat flux
r successive ratio for grid spacing
T temperature of the fluid
u, v velocity components along and normal to the surface
u, v dimensionless velocity components
u0 reference velocity
V
!

fluid velocity vector
x, y distance along and normal to the surface
x, y dimensionless variables for x and y

Greek symbols
α thermal diffusivity of the fluid
β volume coefficient of thermal expansion
δ defined as LGrL−1/5 for horizontal case and LGrL

−1/4 for
vertical case

η similarity variable
θ dimensionless temperature
λ index in power-law variation of magnetic field (Eq.

(30))
μ dynamic viscosity
ρ fluid density
σ electrical conductivity
τw wall shear stress
υ kinematic viscosity

Subscripts
w value of a variable at the surface
∞ ambient condition

466 K. Pradhan, A. Guha Journal of Molecular Liquids 236 (2017) 465–476
the plate (from the leading edge). The authors of ref. [19] recognized
that the effect of a uniform magnetic field on the natural convective
flow is of more physical interest than the relations stated above. Their
short paper [19] used an integral formulation, complex co-ordinate
transformation, and, in the end, a numerical integration process to ob-
tain results that are valid only for fluids with very low Prandtl number
(Pr=1/40).

In the present work, the power of computational fluid dynamics is
invoked to reveal the details of magnetohydrodynamic natural convec-
tion flow field and heat transfer on isothermally heated horizontal or
vertical surfaces. The effects of different variations of the applied mag-
netic field are investigated thoroughly. The developed computer pro-
grams are able to accommodate any arbitrary variation of the
magnetic field, thus eliminating the characteristic limitation of all previ-
ous studies seeking similarity solutions. The uniformmagnetic field per-
haps represents the most practical situation and hence much emphasis
is put on the natural convective flow field and heat transfer under the
application of a uniform field.We have studied the effect of themagnet-
ic field and Prandtl number on the heat transfer and the skin friction,
and on the spatial evolution of the boundary layer.

2. Mathematical formulation

The mutual interaction of the flow of a conducting fluid and an ap-
plied magnetic field gives rise to an additional body force on the fluid
called the Lorentz force. The relative motion of the conducting fluid
and the magnetic field sets up an electric current. This induced current,
in turn, gives rise to an inducedmagneticfieldwhich adds to the applied
magnetic field and produces an effect such that the fluid appears to drag
themagnetic field lines alongwith it. Therefore, there exists, in general,
a two-way coupling between themagnetic field and the velocity field of
the conducting fluid. The total magnetic field (applied plus induced) in-
teractswith the induced current to give rise to the Lorentz forcewhich is
given by the relation [1]:

F
!¼ J

!� B
! ð1Þ

where J
!¼ σð E!þ V

!� B
!Þ is the electric current density, σ is the elec-

trical conductivity of the fluid, E
!

is an external electric field, V
!

is the ve-

locity of the fluid and B
!

is the magnetic field.
The importance of the induced magnetic field is assessed by the

magnitude of the magnetic Reynolds number Rem, defined as,

Rem ¼ μ0σuL ð2Þ

where μ0 is themagnetic permeability, u a component of thefluid veloc-
ity and L is a reference length. For most laboratory experiments or in-
dustrial processes involving liquid metals, μ0σ~1 s/m2 [1], L~0.1 m [1]
and for natural convection u~0.1 m/s. This gives Rem~0.01. Under
these conditions, it is possible to neglect the induced magnetic field as
compared to the applied magnetic field [21]. For the present work, it
is assumed that the value of Rem is very small, whichmeans that the in-
duced electric current is unable to appreciably distort the applied mag-
netic field. This leads to a situation where the coupling between the

magnetic field and the velocity field becomes oneway; B
!

affects the ve-

locity field V
!

through the Lorentz force, but V
!

does not substantially

alter the appliedmagnetic field B
!
. It is also assumed that there is no ex-

ternal electrical field ( E
!¼ 0). The Lorentz force can then be simplified

as

Fx ¼ −σB2u ð3Þ

where B is the strength of a magnetic field applied perpendicular to the
u component of fluid velocity.
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Fig. 2. Physical model and coordinate system for the vertical surface.
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2.1. Formulation for horizontal surface

Consider a horizontal surface maintained at a temperature Tw. The
quiescent ambient fluid is at a temperature T∞(T∞bTw) and pressure
p∞. The x-axis is taken along the horizontal surface while the y-axis is
taken normal to the surface with the leading edge at the origin. A verti-
cal magnetic field B is applied as shown in Fig. 1.

The governing equations for natural convection over a horizontal
surface, in the presence of a vertical magnetic field, may be found in
ref. [20]. These equations, in non-dimensional form, are:

∂u
∂x

þ ∂v
∂y

¼ 0 ð4Þ

u
∂u
∂x

þ v
∂u
∂y

¼ −
∂p
∂x

þ ∂2u
∂y2

−Mu ð5Þ

0 ¼ −
∂p
∂y

þ θ ð6Þ

u
∂θ
∂x

þ v
∂θ
∂y

¼ 1
Pr

∂2θ
∂y2

: ð7Þ

The non-dimensional variables appearing in the above equations are
obtained by an order of magnitude analysis [11] and are defined as
follows:

x ¼ x
L
;

y ¼ y
L

GrLð Þ1=5;
u ¼ u

u0
;

v ¼ v
u0

GrLð Þ1=5;

p ¼ p−p∞
ρu0

2 ;

θ ¼ T−T∞

Tw−T∞
:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð8Þ

where L is a reference length and u0 is the reference velocity given by
ref. [11]

u0 ¼ υ
L

GrLð Þ2=5: ð9Þ

The dimensionless parameters Grashof number GrL, Prandtl number
Pr and the magnetic interaction parameter M are defined as follows:

GrL ¼ gβ Tw−T∞ð ÞL3
υ2 ;

Pr ¼ υ
α
;

M ¼ σB2L
ρu0

¼ σB2L2

μGr2=5L

:

9>>>>>>=
>>>>>>;

ð10Þ

The interaction parameter defined above is a ratio of the square of
the Hartmann number (Ha ≡ BL

ffiffiffiffiffiffiffiffiffi
σ=μ

p
) to the flow Reynolds number

(Re≡u0L/υ).
The solution to the non-dimensional Eqs. (4)–(7) depends only on

the values of two parameters: Pr and M. The Grashof number does not
appear explicitly in the non-dimensional governing Eqs. (4)–(7).
When there is no magnetic field, (i.e. B=0, and, therefore M=0), the
solution of Eqs. (4)–(7) depends only on Pr, and then the reference
length L is directly related to the adopted value of Grashof number
through the equation GrL=gβ(Tw−T∞)L3/υ2. For non-zero values of
M, however, Eq. (10) shows that the parameter M and L are related
such that M=ΨL4/5, where Ψ=σB2/[μ{gβ(Tw−T∞)/υ2}2/5]. For given
values offluid properties,magneticfield, temperaturedifference andac-
celeration due to gravity, L is then implicitly parametrized through M.

The non-dimensional variabley (defined in Eq. (8)) is obtained from
the dimensional variable y by global scaling with δ deduced in an order
of magnitude analysis [11], i.e. δ~LGrL−1/5. Since it has already been
established in the literature that self-similar solutions do not exist for
any arbitrary variation of the magnetic field, it is imperative to solve a
system of partial differential equations. We have therefore avoided the
complex transformations [6,7] associatedwith using the local boundary
layer thickness as the scaling factor for the y variable.

The boundary conditions for the governing equations in non-
dimensional form are:

at y ¼ 0; for all x; u ¼ v ¼ 0; θ ¼ 1 ð11Þ

as y→∞; for all x; u→ 0; θ→ 0; p→ 0 ð12Þ

at x ¼ 0; for yN0; u ¼ 0; θ ¼ 0;p ¼ 0: ð13Þ

The boundary condition in Eq. (13) is based on the assumption that
the boundary layer originates at the leading edge [22].

2.2. Formulation for vertical surface

Consider a heated vertical surface maintained at a temperature Tw.
The x-axis is taken along the surface while the y-axis is taken normal
to it with the leading edge at the origin. A horizontal magnetic field B
is applied as shown in Fig. 2.

The governing equations for natural convection past a vertical sur-
face, in the presence of a horizontal magnetic field, may be found in
ref. [7]. These equations, in non-dimensional form, are:

∂u
∂x

þ ∂v
∂y

¼ 0 ð14Þ

u
∂u
∂x

þ v
∂u
∂y

¼ θþ ∂2u
∂y2

−Mu ð15Þ



468 K. Pradhan, A. Guha Journal of Molecular Liquids 236 (2017) 465–476
u
∂θ
∂x

þ v
∂θ
∂y

¼ 1
Pr

∂2θ
∂y2

: ð16Þ

The non-dimensional variables appearing in the above equations are
obtained by an order of magnitude analysis and are defined as follows:

x ¼ x
L
;

y ¼ y
L

GrLð Þ1=4;
u ¼ u

u0
;

v ¼ v
u0

GrLð Þ1=4;

θ ¼ T−T∞

Tw−T∞
:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð17Þ

where L is a reference length and u0 is the reference velocity given by
ref. [23]

u0 ¼ υ
L

GrLð Þ1=2: ð18Þ

The non-dimensional variable y (defined in Eq. (17)) is obtained
from the dimensional variable y by global scaling with δ deduced in an
order of magnitude analysis, i.e. δ~LGrL−1/4.

The magnetic interaction parameter M appearing in Eq. (15) is dif-
ferent from that given in Eq. (10) due to the different reference veloci-
ties used in the horizontal and vertical cases. The expression for M in
case of the vertical surface is given by,

M ¼ σB2L
ρu0

¼ σB2L2

μGr1=2L

ð19Þ

For non-zero values ofM, Eq. (19) shows that the parameterM and L
are related such that M=ΨL1/2, where Ψ=σB2/[μ{gβ(Tw−T∞)/υ2}1/2].
For given values of fluid properties, magnetic field, temperature differ-
ence and acceleration due to gravity, L is then implicitly parametrized
through M.

The boundary conditions for the governing equations in non-
dimensional form are:

at y ¼ 0; for all x; u ¼ v ¼ 0; θ ¼ 1 ð20Þ

as y→∞; for all x; u→ 0; θ→ 0 ð21Þ

at x ¼ 0; for yN0; u ¼ 0; θ ¼ 0: ð22Þ

The boundary condition in Eq. (22) is based on the assumption that
the boundary layer originates at the leading edge [24].

2.3. Heat transfer and skin-friction

TheNusselt numberNu and the skin-friction coefficient cf are impor-
tant parameters in natural convective flow over flat plates.

2.3.1. For a horizontal surface
Using Eqs. (8) and (9), the Nusselt number and the skin-friction co-

efficient can be derived as follows:

Nu ¼ qwL
k Tw−T∞ð Þ ¼

−k ∂T=∂yð Þy¼0L

k Tw−T∞ð Þ ¼ − GrLð Þ1=5 ∂θ
∂y

� �
y¼0

ð23Þ

c f ¼
τw

ρu0
2=2

¼ μ ∂u=∂yð Þy¼0

ρu0
2=2

¼ 2 GrLð Þ−1=5 ∂u
∂y

� �
y¼0

ð24Þ
A reduced Nusselt number Nu∗ and a reduced skin-friction coeffi-
cient cf∗ are defined as,

Nu� ¼ Nu

GrLð Þ1=5
¼ −

∂θ
∂y

� �
y¼0

ð25Þ

c�f ¼
c f

2 GrLð Þ−1=5 ¼ ∂u
∂y

� �
y¼0

ð26Þ

2.3.2. For a vertical surface
Similarly, using Eqs. (17) and (18), the reduced Nusselt number Nu∗

and the reduced skin-friction coefficient cf∗ for the natural convection
along a vertical surface are given by the following expressions:

Nu� ¼ Nu

GrLð Þ1=4
¼ −

∂θ
∂y

� �
y¼0

ð27Þ

c�f ¼
c f

2 GrLð Þ−1=4 ¼ ∂u
∂y

� �
y¼0

ð28Þ

2.4. Magnetic interaction parameter for power-law variation in magnetic
field

Previous researchers have shown that self-similar solutions exist
only when the applied magnetic field B is proportional to x−2/5 in the
case of a horizontal surface [20] and x−1/4 in the case of a vertical surface
[6]. In analogy to similarity theory, a power-law variation of the mag-
netic field is assumed here:

B ¼ B0x
λ ð29Þ

Then the magnetic interaction parameter in Eqs. (5) and (15) is
given by

M ¼ σB2
0L

ρu0
x2λ ¼ M0x

2λ: ð30Þ

The particular values of λ, viz.λ=−2/5 and λ=−1/4, represent
the cases required by the similarity theories as described above. The
in-house computer programs developed for the present work can thus
accommodate an arbitrary variation of the magnetic field.

In an engineering application, the case of a uniformmagnetic field of
strength B0 seems to be the most relevant. The present computer
models are able to simulate this situation since it corresponds to λ=0
in Eqs. (29) and (30). The existing similarity theories, on the other
hand, are only valid for λ=−2/5 for horizontal case and λ=−1/4
for vertical case, and, are thus very restrictive in their scope.

3. Method of solution

Two computer programs are developed using the finite difference
method to solve the equation system (4)–(7) subject to the boundary
conditions (11)–(13) for the horizontal surface, and, the equation sys-
tem (14)–(16) subject to the boundary conditions (20)–(22) for the
vertical surface. The present computer programs are based on that de-
veloped for non-Newtonian fluids described in [12].

3.1. Numerical technique

For the present work, we have adopted a time-marching technique
[25–27] in which the final steady state is obtained as the limiting con-
verged solution of an unsteady process. For this purpose, appropriate
unsteady terms involving ∂u=∂t and ∂θ/∂ t are introduced in the x-



Fig. 3. Results of the grid independence test performed for three different grids in the case
of a horizontal surface at x ¼ 10withM0=1, λ=−2/5 and Pr=0.7. [The y axis is shown
here up to a value of 25 for clarity of the graphs, the maximum value used in the
computations is greater so as to ensure u asymptotically approaches zero.]
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momentum equation and energy equation respectively. The time-
marching technique beginswith an initial specification of all the variables
in the flow field, and then, as the name implies, marches forward in time
until the solution converges (a convergence criterion of 10−8 has been
used here). The selected time-marching scheme is explicit in nature,
and, this imposes a restriction on the maximum permissible size of the
time-step which depends on the minimum size of the spatial grid used.

This paper concentrates on laminar (Grx≤109 for vertical surfaces
and Grx≤106 for horizontal surfaces [28]) natural convective boundary
layers and instabilities of physical origin are not expected in the laminar
regime. Theremay, however, be several sources of convective numerical
instability in the computational solution process since thefluid dynamic
equations are non-linear in nature, and this makes the computations
challenging [12]. Moreover, the solution process for a horizontal surface
suffers from an additional challenge (as compared to that for a vertical
surface) since the v-velocity changes sign inside the boundary layer
[12]. As we are interested only in the steady solution, and not on its un-
steady development, under-relaxation factors are used in the present
numerical scheme with values chosen from experience such that nu-
merical instabilities are avoided but CPU time does not increase
excessively.

A rectangular two-dimensional computational domain of sizexmax in
thex-direction andymax in they-direction is used for both the horizontal
and the vertical cases. A grid of size (m×n) indicates that there are
m+1 and n+1 grid points respectively along thexandy axes. As an ex-
ample, Grid 1 (20×115)means that there are 21 grid points along thex-
direction and 116 grid points along they-direction. A uniform grid spac-
ing is used along the x direction while a non-uniform grid spacing is
used along the y direction such that the spacing (Δy) is progressively
increased, following a geometric progression, as one moves away from
the solid surface.
Table 1

Temperature and velocity gradients at the wall for natural convection over an isothermal horiz

Present work

θ′(0) f ″(0)

Pr=0.7, M0=0 0.3593 0.9835
Pr=0.7, M0=1, λ=−2/5 0.2985 0.7574
Pr=0.72, M0=0 0.3633 0.9731
Pr=0.01, M0=0 0.0875 4.4624
Pr=0.01, M0=1, λ=−2/5 0.0792 3.2894
3.2. Grid independence test

A comprehensive grid independence test has been performed at
each value of the Prandtl number to determine the optimum choice of
the two-dimensional grid. An example of grid independence test for
the case of M0=1, λ=−2/5 and xmax ¼ 10 at Pr=0.7 is shown in
Fig. 3 where results for three grid arrangements - Grid 1 (20×115),
Grid 2 (35×180) and Grid 3 (60×230) - are displayed. The Nusselt
number Nu and skin-friction cf (both defined only at y ¼ 0) are the
two most important (or practically useful) variables. However, our ex-
perience showed that evenwhen the values ofNu and cfhave converged
with sufficient accuracy, theu-velocity profile, particularly its solution in
the tail, may continue further to evolve with grid refinement. Experi-
ence also showed that the u-velocity is the most sensitive to grid struc-
ture among the flow variables u, v, θ and p. Accordingly, the u-velocity
profiles are displayed in Fig. 3 as themost stringent test of grid indepen-
dence. It is observed that the u-velocity profile obtained by using Grid 2
and Grid 3 are almost identical.

The values of Nusselt number and skin friction coefficient depend
strongly on the grid structure, and particularly on the distance of the
first computational grid point from the solid surface (Δy1). For Grid 2
(35×180), three values of Δy1 are tested, viz. 0.01, 0.05 and 0.07. Con-
sidering the significant increase in computational times (due to the
use of explicit scheme) and the relatively small improvements in the re-
sults, achieved by using successively decreasing values of Δy1, the opti-
mum value of Δy1 is chosen as 0.05 for all subsequent computations.
Hence, Grid 2 is used for all subsequent computations with xmax=10
and Pr=0.7. It is important to realize that the value of Δy1 ¼ 0:05
should not be interpreted as that there are only about 20 grid points
within the boundary layer. This is so because the δ used in the similarity
theory is not an exactmeasure of the physical thickness of the boundary
layer. An inspection of the figures given later shows that, forM0=1 and
x ¼ 5, the value of y (where y ¼ y=δ) is approximately 25 at the edge of
the boundary layer at Pr=0.7 and is approximately 100 at the edge of
the boundary layer at Pr=0.01. Thus, Δy1 ¼ 0:05 actually provides
many grid points within the boundary layer and ensures the demon-
strated accuracy of the example computations presented here.

Other than the size of the first computational cell (Δy1), another im-
portant variable is the size of the overall computational domain. The
value of ymax must be carefully selected to ensure that the pressure,
temperature and velocities reach asymptotically their respective values
at y→∞. This is done by selecting the value of ymax to be greater than the
thickness of the boundary layer at xmax. (A quantitative measure of the
boundary layer thickness is defined as that value of y at which flow var-
iables reach towithin 1% of their values in the ambient fluid and the rel-
ative changes in flow variables asymptotically reach a small magnitude
(≤10−4).) It is found from extensive computations that ymax must be in-
creased asxmax increases or Prdecreases. As anexample, forxmax ¼ 5and
Pr=0.01, a value of ymax ¼ 100 is used. For the same Prandtl number,
when xmax ¼ 10, a value of ymax ¼ 200 is used. Keeping the value of
xmax fixed at 10, a value of ymax ¼ 60 is used for Pr=0.7 as compared
toymax ¼ 200 for Pr=0.01. Consequently, a separate grid independence
test is required for the low Prandtl number case, where the number of
points along the y direction must be increased (while keeping Δy1 at
its optimum value) so as to increase the size of the computational
ontal surface (η ¼ y=x2=5, θ′(0)=dθ/dη|η=0, f ″(0)=d2f/dη2|η=0).

Similarity solution [20] Similarity solution [10]

θ′(0) f ″(0) θ′(0) f ″(0)

0.3547 0.9888 – –
0.2934 0.7560 – –
– – 0.3591 0.9799
0.0863 4.4645 – –
0.0755 3.2911 – –



Fig. 4. Variation of the similarity variable representing the dimensionless u-velocity
over a horizontal surface for Pr=0.7 obtained by post-processing the present CFD so-

lutions, and its comparison with the prediction of similarity theory (η ¼ y=x2=5, f 0ðηÞ ¼
df =dη ¼ u=x1=5).
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domain normal to the surface. The computational time is significantly
increased due to this increase in the number of computational points
in the y direction. Three grid arrangements - Grid 4 (20×200), Grid 5
(35×260) and Grid 6 (60×330) are used to establish the grid indepen-
dence of the solution at Pr=0.01. Keeping in mind the level of accuracy
achieved and the time required for computations, Grid 5 is selected for
performing all sample calculations at Pr=0.01 in the case of horizontal
surfaces.

In order to maintain the optimum grid structure (determined by the
grid independence test), the number of grid points along thex-direction
is increased as xmax increases. For example, while 36 grid points have
been used along the x-direction for xmax ¼ 10, 141 grid points have
been used in the x-direction for xmax ¼ 40.

After performing a similar grid independence test for the vertical
surface, a (30×180) grid withΔy1 ¼ 0:05 is chosen for all sample calcu-
lations at Pr=0.72 and xmax ¼ 10, and, a (30×320) grid withΔy1 ¼ 0:0
5 is chosen for sample calculations at Pr=0.01 and xmax ¼ 10. The de-
tails of the grid independence test for the vertical case has not been in-
cluded here for brevity.
3.3. Validation

The CFD method obviously does not use similarity variables.
Thus the CFD results are post-processed and cast into the similarity
variable form to enable a direct comparison with the predictions of
previous similarity analyses. Table 1 gives a comparison of θ′(0) and
f ″(0) (both variables arise in similarity theory, and have been defined
in the table caption) calculated by the present technique and those
existing in the literature for the case of a horizontal surface. Fig. 4
shows a comparison of the similarity variable for the u-velocity
Table 2

Temperature and velocity gradients at the wall for natural convection along an isothermal ver

Present work

θ′(0) f ″(0)

Pr=0.72, M0=0 0.5076 0.6740
Pr=0.72, M0=1, λ=−1/4 0.4506 0.5704
Pr=0.01,M0=0 0.0822 0.9881
Pr=0.01, M0=1, λ=−1/4 0.0723 0.7662
obtained by previous researchers [11,20] with that obtained by
the present computer program. Table 2 gives a comparison of
θ′(0) and f ″(0) calculated by the present technique and those existing
in the literature for the case of a vertical surface. The excellentmatching
of the present results with those in the literature validates the in-house
computer programs developed and lends confidence to the new results
generated.

4. Results and discussion

The effect of the variation of the applied magnetic field on the natu-
ral convective flow is thoroughly investigated. As mentioned in
Section 2.4, power-law variation in the magnetic interaction parameter

(M ¼ M0x
2λ ) is assumed in analogy with the practice followed for

the similarity theory. The case of uniform magnetic field is represented
byM ¼ M0≠ f ðxÞ, i.e.M is fixed at all x-locations in a single CFD simula-
tion but different values ofM0 are ascribed for different CFD simulations.

An important application ofmagnetohydrodynamics arises inmetal-
lurgical processes involving the flow of liquid metals. Ionized air and
particular water-based nanofluids or electrolytic solutions may have
significant electrical conductivity such that the effect of an appliedmag-
neticfield on theflowof suchfluids is important. However, for practical-
ly achievable magnetic fields, magnetohydrodynamic modification of
the natural convective flow field is insignificant in high Prandtl number
fluids which usually have low electrical conductivity. (For example, the
electrical conductivity of a typical practical high Prandtl number fluid
(e.g. heavy oil) may be of the order of 10−7 s/m [29]. This is in contrast
to the electrical conductivity of a typical practical low Prandtl number
fluid (e.g. liquid metal, ionized gas) which may be of the order of
106 s/m [30].) Hence, in the numerical illustrations given in the present
study, we have chosen three parametric values of the Prandtl number,
viz. 0.01, 0.7 and 7, typically representative of liquid metals, air and
water respectively. For the vertical surface, a Prandtl number of 0.72 is
considered so that direct comparison with previously published results
is possible.

It is also important to understand the physical implication of the
various values of x at which results are presented. For a given fluid
and fixed values of other parameters, changing values of x represent dif-
ferent values of local Grashof number Grx. Even though Grx does not ex-
plicitly appear in the non-dimensional governing equations because of
the particular scaling adopted, its influence on the thermo-fluid-
dynamics of the convective boundary layer is critical. It is to be noted
that though the temperature difference ΔT between surface and sur-
rounding (which is primarily responsible for natural convective flow)
need not be explicitly varied, it appears in the scaling velocity u0 and,
through that, in the magnetic interaction parameter M. (A related
study ofmagnetohydrodynamic natural convection in a porousmedium
is given in ref. [31].)

4.1. Natural convection over a horizontal surface

The results obtained from the present computations (as functions of
x and y) are post-processed and cast in the similarity variable form so
that the existence (or non-existence) of self-similar solutions can be
tical surface (η ¼ y=x1=4, θ′(0)=dθ/dη|η=0, f ″(0)=d2f/dη2|η=0).

Similarity solution [23] Similarity solution [7]

θ′(0) f ″(0) θ′(0) f ″(0)

0.5046 0.6760 0.5076 0.6680
– – 0.4510 0.5677
– – 0.0804 0.9900
– – 0.0707 0.7658



Fig. 6. CFD solution of the similarity variable representing the dimensionless temperature
at different x-locations along a horizontal surface for Pr=0.7 and M0=1.
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ascertained. The following similarity variables [20] are defined for the
above purpose for a horizontal surface,

η ¼ y

x2=5
; f 0 ηð Þ ¼ u

x1=5
; θ ηð Þ ¼ θ x; yð Þ ð31Þ

In the above expressions, η is the spatial similarity variable for the
boundary layer, f ′(η) represents the dimensionless u-velocity in the
boundary layer and θ(η) is the similarity variable for dimensionless
temperature. The post-processed results are shown in Figs. 5 and 6.

For the case λ=−2/5 (for which similar solutions exist), the plots
of f ′(η) (Fig. 5) and θ(η) (Fig. 6) at various x-locations collapse to a
single graph, as expected (this is an independent check on the accuracy
of the computer programdeveloped). However, in the case of a uniform
magnetic field (λ=0), the plots of f ′(η) and θ(η) versus η at various x-
locations do not superpose on one another. Fig. 5 further shows that as
the downstream distance from the leading edge increases, the non-
dimensional velocity profile for uniform magnetic field deviates more
from the similarity velocity profile (though the rate of deviation with
distance becomes small at large distance).

Fig. 7 shows the effect of an applied magnetic field on the u-velocity
at two different x -locations along the horizontal surface and for
different variations of the interaction parameter M (defined in

Eq. (30) as M0x
2λ). As a result of the damping caused by the magnetic

field, the maximum of convective velocity ( u ) at a particular x -
location decreases as the magnitude of M increases. The other effect of
themagneticfield is that the thickness of the velocity boundary layer in-
creases withM. It is already shown in Figs. 5 and 6 that when a uniform
magnetic field is applied there is no self-similarity in the solution.
Therefore, in Fig. 7, and in all subsequent figures for the horizontal
case, simple non-dimensional variables such as u, v, θ and p are plotted
along the ordinate and simple non-dimensional distance y is plotted as
the abscissa instead of the corresponding similarity variables.

It is known that for pure natural convection [11] or for that in the
presence of a magnetic field that admits self-similar solutions
(λ=−2/5) [20], the maximum of the u-velocity profile increases
and shifts to greater values of y, as x increases. This feature is seen in
the CFD solutions given in Fig. 7(a) and (b). However, it is observed
that the same trend may not hold in the case of a uniform magnetic
field. Fig. 7(b), for example, clearly shows that as x increases from 5 to
10, the value of y at which the u-velocity attains its maxima has in-
creased but this maximum u- velocity has decreased. This feature,
coupled with the fact that the velocity boundary layer thickness in-
creases with increasing x , causes the two velocity profiles to cross
Fig. 7. Comparison of the u profiles for Pr=0.7 at different x-locations along a horizontal
surface with and without magnetic field. (a) Effect of applying a vertical magnetic field
with M0=0.5. (b) Effect of applying a vertical magnetic field withM0=1.

Fig. 5. CFD solution of the similarity variable representing the dimensionless u-velocity at
different x-locations along a horizontal surface for Pr=0.7 and M0=1.



Fig. 9. CFD solution for variation of thev-velocity in a low Prandtl number fluid at x ¼ 5 on
a horizontal surface with varying strength of a uniform magnetic field.
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over. Eq. (3) shows that the Lorentz force increases linearly with the u-
velocity. This force therefore has a tendency to decelerate the faster
moving fluid to a greater extent as compared to the slower moving
fluid (i.e. the Lorentz force affects the peak of the u-velocity profile
more than its tail). This tendency plays a role in the crossing-over of
the velocity profiles as observed for the uniform field. In order to under-
standwhy the crossing-over is not observed for the case of λ=−2/5, it
is to be realized that, for the case of λ=−2/5, the intensity of themag-
netic field and hence the damping force it generates, decreases along x
(as an example, at x ¼ 10 , M=0.16M0). The Lorentz force still
decreases the rate of increase of u with x , the increase being an
inherent trend in pure natural convection, but is unable to reverse the
trend.

Figs. 8–11 represent CFD solutions for theflowof a low Prandtl num-
ber fluid on horizontal surfaces with M0 as a parameter. Fig. 8 shows
that, asM0 increases, the maximum u-velocity decreases and the thick-
ness of the boundary layer increases. The y-location at which the maxi-
mum velocity occurs also shifts towards the surface as M0 increases.
Thus the u-velocity profiles gradually flatten asM0 is increased. A com-
parison of Figs. 7 and 8 reveals that, at low values of Pr, the velocity pro-
files become pointed near the maxima with the velocity dropping off
rapidly on both sides of the maxima. The thicknesses of both velocity
and thermal boundary layers become considerably greater as the
Prandtl number decreases.

Fig. 9 shows the v-velocity profiles inside the boundary layer on a
horizontal surface for different values of M0. The v-velocity changes
sign inside the boundary layer, being positive near the surface and
then becoming negative when y exceeds a certain value. So, the overall
flow may be visualized as two streams, one stream appearing to rise
from the isothermal surface and the other stream descending from the
surrounding fluid present just outside the boundary layer. The two
streams interact at some y-location (where v ¼ 0) which is not very
far away from the surface. As y→∞, the v-velocity profile asymptotically
approaches a value, the entrainment velocity from the surrounding,
whose magnitude decreases with increasing intensity of the applied
magnetic field. The magnitude of v-velocity close to the isothermal sur-
face increases with increasing M0; however, the magnitude decreases
with increasingM0 after a certain distance from the surface. This rever-
sal in trend is due to the change of sign of the v-velocity.

A study of Eqs. (4) and (5) shows that the variation of v-velocity fol-
lows a first order equation iny; hence, only onemathematical boundary
Fig. 8. CFD solution for the variation ofu-velocity in a low Prandtl number fluid atx ¼ 5 on
a horizontal surfacewith varying strength of a uniformmagnetic field. [Theyaxis is shown
here up to a value of 70 for clarity of the graphs, the maximum value used in the
computations is greater so as to ensure u asymptotically approaches zero.]
condition is needed, which is provided on the solid surface, i.e. at y→0
(no penetration through an impervious wall). Since the u-velocity is
zero everywhere in the region of the computational domain that lies
outside the boundary layer, the value of ∂u=∂x is zero there. From the
continuity equation (Eq. (4)) it follows that ∂v=∂y should also be zero
there, indicating thatvattains a constant value at the edge of the bound-
ary layer. This value evolves from the solution of the equations itself.
The entrainment velocity at y→∞ is, therefore, not prescribed but auto-
matically calculated by the CFD program. The importance of providing a
sufficiently large computational domain in the y-direction, so that all
flow variables asymptotically approach their respective values at y→∞,
was mentioned in Section 3.2. This is of the greatest importance in the
computation of v, for which (unlike the other flow variables) no math-
ematical boundary condition is imposed at y→∞, and the final solution
must evolve such that the correct, finite entrainment velocity is obtain-
ed there.

The non-dimensional temperature (θ) distribution inside the
boundary layer on a horizontal surface for different values of M0 is
shown in Fig. 10. AsM0 increases, the temperature of the fluid at a par-
ticular y-location increases. This is a direct outcome of the reduced con-
vective flow velocity which results in less amount of heat being carried
Fig. 10. CFD solution for variation of the dimensionless temperature in a low Prandtl
number fluid at x ¼ 5 on a horizontal surface with varying strength of a uniform
magnetic field.



Fig. 12.CFD solution of the similarity variable representing the dimensionless u-velocity at
different x-locations along a vertical surface for Pr=0.72 andM0=1.

Fig. 11. CFD solution for variation of the dimensionless static pressure in a low Prandtl
number fluid at x ¼ 5 on a horizontal surface with varying strength of a uniform
magnetic field.
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away from the hot surface. It is found in Fig. 9 that the value of y at
which v changes sign, increases with increase in M0. This indicates
that the fluid stream appearing to rise from the heated isothermal sur-
face meets the descending stream at progressively increasing distances
from the solid surface as M0 increases. Such a phenomenon may be
attributed to the increased temperature of the fluid near the solid sur-
face with increasing M0. Fig. 11 shows that the non-dimensional pres-
sure p inside the natural convective boundary layer increases from a
negative value at the surface to reach zero asymptotically at the edge
of the boundary layer. The magnitude of p at y ¼ 0 increases with
an increase in M0.

The effects of the variation of M and Pr on the reduced Nusselt
number Nu∗ (�ð∂θ=∂yÞy ¼ 0) and the reduced skin-friction coefficient

cf
∗ (ð∂u=∂yÞy ¼ 0) are given in Table 3. Following the same trend as in

pure natural convection, as Pr is increased, Nu∗ increases and cf
∗ de-

creases in magnetohydrodynamic natural convection too. It is observed
that for the case of a uniformmagnetic field, asM0 is increased, bothNu∗

and cf
∗ decreases. This may be attributed to the reduced convective ve-

locities with increasing M0 and the associated increase in the tempera-
ture near the surface, which result in decreased velocity and
temperature gradients there. Table 3 further shows that for a fixed
value of Pr andM0, the values ofNu∗ and cf

∗ for λ=0 are significantly dif-
ferent from those for λ=−2/5.
Table 3
Variation of the reduced Nusselt number and the reduced skin-friction coefficient at x ¼ 10
for a horizontal surface.

Pr M0 λ Nu∗ cf
∗

0.01 0 0 0.0348 2.8156
0.25 0 0.0314 2.2329
0.50 0 0.0276 2.0187
1.00 0 0.0220 1.7890
1.00 −2/5 0.0315 2.0755

0.7 0 0 0.1430 0.6205
0.25 0 0.1248 0.5272
0.50 0 0.1108 0.5027
1.00 0 0.0933 0.4500
1.00 −2/5 0.1188 0.4779

7 0 0 0.2488 0.2599
0.25 0 0.2274 0.2468
0.50 0 0.2053 0.2397
1.00 0 0.1862 0.2276
1.00 –2/5 0.2286 0.2129
4.2. Natural convection past a vertical surface

For a vertical surface, the computational results, obtained as func-
tions of x and y, are post-processed and recast in terms of the following
similarity variables [6]:

η ¼ y

x1=4
; f 0 ηð Þ ¼ u

x1=2
; θ ηð Þ ¼ θ x; yð Þ ð32Þ

The similarity variables f ′(η) and θ(η) are plotted against η in Figs. 12
and 13 respectively. The CFD program accurately produces self-similar
solution, when it exists (i.e., when λ=−1/4 [6,7]). When a uniform
magnetic field (λ=0) is applied the plots of f ′(η) and θ(η) versus η at
different x-locations do not collapse to a single graph, thus demonstrat-
ing the non-existence of self-similar solution.

Fig. 14 shows the effect of an appliedmagnetic field on theu-velocity
at two x-locations along the vertical surface and for different variations
of the interaction parameter M. Some of the features of the convective
flow past the vertical surface, observable in Fig. 14, are similar to
those seen in Fig. 7 for the horizontal surface. These include, the
reduction of u-velocity and the thickening of the boundary layer at
a particular x-location with increasing M, and, the smaller convective
velocities and thicker boundary layers for the uniform magnetic field
as compared to the field that admits self-similar solutions (λ=−1/4)
for the same value of M0.

As in the case of a horizontal surface, the maxima of the u-velocity
profiles for pure natural convection past a vertical surface or for that
in the presence of a magnetic field with λ=−1/4, increase in magni-
tude and shift to greater values of y, as x increases. The same behaviour
of the maxima of the u-velocity profiles is observed even for a uniform
magnetic field, which is unlike what happens for a horizontal surface.
However, it is observed in Fig. 14(a) and (b) that as the value of M0 in-
creases (for λ=0), the gap between the u-velocity profiles at x ¼ 5 and
x ¼ 10 decreases. Hence it is possible that for values of M higher than
what has been investigated here (i.e. for MN1), the vertical surface
may also show features similar to those seen in Fig. 7.

Fig. 15 shows the effects of altering the uniform magnetic field (by
varying M0) when the Prandtl number of the fluid is low. The results
are shown at x ¼ 5. A comparison of Figs. 14 and 15 reveals that, at
low values of Pr, the velocity profiles become pointed near the maxima
with the velocity dropping off rapidly on both sides of the maxima. The
thicknesses of both velocity and thermal boundary layers become con-
siderably greater as the Prandtl number decreases.



Fig. 15. CFD solution for natural convection in a low Prandtl number fluid along a
vertical surface at x ¼ 5 for varying strength of a uniform magnetic field. (a)
Variation of u-velocity, (b) variation of v-velocity and (c) variation of temperature.

Fig. 14. Comparison of the u profiles for Pr=0.72 at different x-locations along a vertical
surface with and without magnetic field. (a) Effect of applying a horizontal magnetic
field with M0=0.5. (b) Effect of applying a horizontal magnetic field with M0=1.

Fig. 13.CFD solution of the similarity variable representing thedimensionless temperature
at different x-locations along a vertical surface for Pr=0.72 and M0=1.
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Fig. 16. Predictions of the present theory showing the evolution of the u-velocity and v-
velocity along the horizontal surface for a uniform magnetic field with M0=1 and
Pr=0.7. (a) u-velocity and (b) v-velocity.
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A comparison of Figs. 8 and 15(a), and that of Figs. 10 and
15(c) show that the same value of M0 seem to produce more pro-
nounced effect on the u-velocity and temperature profiles for the verti-
cal case than those for the horizontal case. This is because of the fact that
for the same value of M0 (calculated from Eqs. (10) and (19)), the
strengths of the applied magnetic field for the horizontal case
(Bhorizontal) and the vertical case (Bvertical) are related by the Grashof

number according to the relation Bvertical=Bhorizontal ¼ GrL
1=20 (which is

greater than 1 for GrL≥1000).
A comparison of Figs. 9 and 15(b) reveals the similarities and differ-

ences, in the variation of v-velocity, between the horizontal and vertical
surfaces. Like the horizontal case, the entrainment velocity vjy→∞ is not

prescribed but automatically calculated by the CFD program for the ver-
tical case. Since∂u=∂x is zero outside the boundary layer, it follows from
Eq. (14) that ∂v=∂y should also be zero there, indicating that v attains a
constant value (the entrainment velocity) at the edge of the boundary
layer. This value evolves from the solution of the equations itself. How-
ever, unlike the horizontal case, there is no change in the sign of v-
velocity for the case of vertical surface and the value of v is negative
everywhere within the boundary layer. At any given x and y , the
magnitude of v decreases either with increasingM0 or increasing Pr.

Table 4 shows that the variations with Pr and M0 of the reduced
Nusselt number Nu∗ and the reduced skin-friction coefficient cf∗ follow
the same trends for natural convection past a vertical surface as they
were found for the horizontal surface. Table 4 further shows that for a
fixed value of Pr andM0, the values ofNu∗ and cf

∗ forλ=0are significant-
ly different from those for λ=−1/4. Hence it would not be appropriate
to predict the effect of a uniform magnetic field from the existing simi-
larity solutions.

4.3. Spatial evolution of the convective velocity profiles

An interesting feature of magnetohydrodynamic natural convection
may be appreciated by comparing Figs. 7 and 14. For the vertical surface
(Fig. 14), it is found that as x increases, the maximum value of u
increases. The same trend is obtained in simple natural convection
(i.e. in the absence of a magnetic field) for either a vertical or horizontal
surface. Fig. 7 shows that the same feature is retained also for a horizon-
tal surface for a specific variation of themagnetic field along the surface

(B∝x−2=5). However, when a uniform magnetic field is applied (for ei-
therM0=0.5 orM0=1.0), Fig. 7 shows that themaximum of u at x ¼ 1
0 is smaller than the maximum of u at x ¼ 5. This suggests that the nat-
ural increase of the maximum of u-velocity with x due to pure natural
convection, is exceeded by the decrease due to the damping action of
the magnetic field. This situation, depicted in Fig. 7, makes one uneasy
since the question arises whether the natural convective flow may
Table 4
Variation of the reduced Nusselt number and the reduced skin-friction coefficient at x ¼ 10
for a vertical surface.

Pr M0 λ Nu∗ cf
∗

0.01 0 0 0.0327 1.2425
0.25 0 0.0260 1.1361
0.50 0 0.0213 0.8954
1.00 0 0.0180 0.7588
1.00 −1/4 0.0251 0.9635

0.72 0 0 0.2018 0.8475
0.25 0 0.1724 0.7822
0.50 0 0.1584 0.7186
1.00 0 0.1345 0.6043
1.00 −1/4 0.1653 0.7172

7 0 0 0.4361 0.7599
0.25 0 0.3853 0.6464
0.50 0 0.3536 0.5778
1.00 0 0.3196 0.4866
1.00 −1/4 0.3775 0.6195
stop altogether at a sufficiently large value of x. In order to shed further
light on this issue, computations for a uniform magnetic field with
M0=1.0 (Pr=0.7) are continued up to a large value of x (xmax ¼ 40).
The spatial evolution of the profiles of u and v are shown respectively
in Fig. 16(a) and (b). Profiles are drawn at a few selected x locations
only so that the figures are not crammed. The locus of maxima given
in Fig. 16(a) shows that, when the applied magnetic field is uniform,
for a horizontal surface, the maximum of u at first increases with an in-
crease in x but then decreases with any further increase in x. At large x,
the maximum of u velocity tends to approach a constant value asymp-
totically instead of continuously decreasing to a vanishing magnitude.
The boundary layer thickness, however, continuously increases with in-
creasing x. Fig. 16(b) shows that themaximum of jvj (i.e. themagnitude
of the entrainment velocity) decreases continuously with increasing x,
though the rate of decrease diminishes with increasing x.

Fig. 14 (vertical surface) shows that the maximum values of u-
velocity follow the same trend as in pure natural convection. However,
the decrease in the difference between the maximum values for two
values of x with an increase in M0 indicates that for values of M higher
thanwhat has been investigated here (i.e. forMN1), the vertical surface
may also show the above-mentioned evolutionary features of the hori-
zontal surface.

4.4. A final look at similarity analysis versus present CFD simulations

An inspection of Tables 3 and 4 shows that considerable differences
exist between the solutions for a uniform magnetic field and the



Table 5

Relative difference in Nusselt number, ΔNu
∧

given by Eq. (33) (x ¼ 10,M0=1).

Configuration Pr=0.01 Pr=0.7 Pr=7

Horizontal 43.18% 27.33% 22.77%
Vertical 39.44% 22.90% 18.12%
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similarity solutions valid for the restrictive assumptions on the variation

of themagneticfield (B∝x−1=4 for a vertical surface andB∝x−2=5 for a hor-
izontal surface). This difference becomesmore prominent at a low value
of Prandtl number. The relative difference in the value of the Nusselt

number, ΔNu
∧
, is defined as

ΔNu
∧

¼ Nu�
similarity−Nu�

uniform

Nu�
uniform

: ð33Þ

In Eq. (33), the subscript ‘similarity’ refers to the case of a magnetic
field which admits similarity solution and the subscript ‘uniform’ refers

to the case of a uniformmagnetic field. Sample values ofΔNu
∧
are given

in Table 5. It is clear that the results of the similarity theory cannot be
used if the magnetic field is uniform in a practical situation. Herein
lies the importance of the present computations.

It is to be appreciated that the developed numerical scheme can ac-
commodate any arbitrary variation of the magnetic field even though
example calculations are presented for two situations: (i) the case of a
uniform magnetic field (which represents the most practical situation)
and (ii) variable magnetic fields which admit self-similarity.

5. Conclusion

A time-marching finite difference technique is used to obtain the
steady-state solutions for magnetohydrodynamic natural convection
adjacent to heated horizontal as well as vertical surfaces. This has
allowed us to establish overall similarities and several subtle differences
between the two cases (Section 4). The computer program has been so
developed that it is possible to study the effect of any arbitrary variation
of the appliedmagnetic field. The CFD solutions obtained by the present

method, for a power-law variation of the magnetic field B ¼ B0x
λ , are

found to be in excellent agreement with the results predicted by simi-
larity theory. However, the practical utility of such restrictively variable
magnetic fields (λ=−2/5 or λ=−1/4) is questionable. In the exam-
ple calculations of the present work, particular attention is paid to the
case of uniformmagnetic field which perhaps bears the greatest practi-
cal significance (but cannot be solved by the similarity transformation
method).

The damping force generated by a magnetic field reduces the
convective flow velocity (u). This reduced velocity results in less
heat being carried away from the heated surface and a consequent in-
crease in the fluid temperature adjacent to the surface. The mutual in-
teraction of two effects, viz. the increase of the maximum of u-velocity
with x in any natural convective flow and the damping action of a mag-
netic field, results in complex variations of the maximum of u-velocity
with x. The magnitude of the non-dimensional entrainment velocity
vjy→∞ , which is not prescribed but automatically calculated by the

CFD program, is found to decrease with an increase in any of the three
important parameters, viz. Grx, Pr and M0. It is established here that,
for a successful, accurate CFD simulation of natural convective boundary
layer flow, the y-extent of the computational domain needs to be appro-
priately adjusted with the variation of x(i.e. Grx), Pr and M0, so that all
flow variables asymptotically approach their respective values at large y.

The reduced Nusselt number Nu∗ increases and the reduced skin-
friction coefficient cf∗ decreases with an increase in Pr. For a uniform
magnetic field, both Nu∗ and cf

∗ decrease with an increase in M0. For
the same value of M0, both Nu∗ and cf
∗ are significantly smaller for

λ=0 than those for values of λ which admit self-similar solutions.
Thus, if simulating the effect of a uniformmagnetic field is the computa-
tional objective from practical considerations, then the existing similar-
ity solutions are poor substitutes for a full CFD solution such as the
present study.
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