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This paper presents a systematic computational study of the flow in a shrouded rotor cavity (with
depth of the order of 100 µm) with multiple discrete inflows revealing the physics of how an initially
non-axisymmetric flow evolves, both in the Lagrangian and Eulerian frameworks, towards axisymme-
try. The approach to axisymmetry happens faster for the tangential velocity as compared to the radial
component. The non-uniform inlet condition for the radial and tangential velocities, consisting of high
velocity at the inlet openings and zero velocity on the shroud wall in between two consecutive inlets,
gives rise to an oscillatory variation in the velocity of a fluid particle, with progressively decreasing
amplitude, if one tracks its motion along a surface streamline. The rate of decay of the amplitude
increases, i.e., equivalently the approach to the axisymmetric condition happens at a greater radial
location, as the number of inlets, N inlet , is increased. When the rotational speed of the discs, Ω, is
increased, the distribution of radial velocity (Ur) is significantly altered, which may result even in a
change of the fundamental shape of its z-profile, changing from parabolic to flat to W-shaped. The
fluid has to negotiate with two different non-uniformities within a short radial distance (∆rc): one
in the θ–direction because of the presence of discrete inlets and the other in the z–direction due to
the no-slip condition on the disc surface. An increase in ∆rc from zero to a finite value assists in the
attainment of the axisymmetric condition for both tangential and radial velocities, i.e., the axisymme-
try is obtained at a larger radial location. The subtle and complex fluid dynamics of the approach
to axisymmetry is comprehensively analysed by following the progressive development of the
z-profiles of Ur along a surface streamline located on the middle-plane of the inter-disc-spacing
for an eight-inlet flow-configuration. Two sets of velocity profiles are recorded—the first set at points
whose azimuthal positions are directly aligned with the inlets and the second set at points which
fall in the middle of two consecutive inlets. Both sets are of W-shape near the disc periphery, then
they become flat in the middle, finally becoming parabolic. The velocity profiles of the two sets
approach each other and finally become superposed when axisymmetry is attained. Published by AIP
Publishing. https://doi.org/10.1063/1.5001252

I. INTRODUCTION

The study of the flow through co-rotating discs has
attracted the attention of fluid dynamicists and engineers for
its fundamental value and practical utility. A few examples of
practical devices containing rotating discs are Tesla disc tur-
bine, disc pump, centrifugal microfluidic systems (e.g., lab-on-
a-disc or lab-on-a-CD), micro heat sink, computer disc mem-
ory, centrifuges, gear, rotating air cleaner, and wet clutches.
In the literature, a number of papers on axisymmetric inflow
through co-rotating discs,1–7 elucidating various flow features
and interesting flow physics within the rotor, are available. For
example, the roles of various forces (viz., inertia, Coriolis, cen-
trifugal and viscous) are delineated in Ref. 3; the mechanism
of work transfer is established in Ref. 2; the physics of pres-
sure variation is described in Ref. 1. In the present work, we
explore the fluid dynamics that originates from the practical

a)Author to whom correspondence should be addressed: a.guha@mech.
iitkgp.ernet.in

implementation of an inflow at the periphery of co-rotating
discs due to the interaction of a rotating cavity, a stationary
shroud, and multiple discrete inlets. The fluid dynamics in
the radial clearance space ∆rc between the rotating discs (of
radius rd) and the stationary shroud (situated at radius ri) is
complex since the fluid has to negotiate with two different
non-uniformities within a short radial distance (∆rc). At r = ri,
a source of non-uniformity is present in the θ–direction,
depending on the number and arrangement of the discrete inlets
in the circumferential plane of the stationary shroud. At r = rd ,
a z–directional non-uniformity exists due to the presence of
two closely spaced disc-surfaces (on which the boundary con-
dition Uθ = Ωr is imposed as a result of no slip, where Uθ

is the absolute tangential velocity, Ω is the rotational speed
of the discs, and r is the radial coordinate). The non-uniform
inlet condition for the radial and tangential velocities, consist-
ing of high velocity at the inlet openings and zero velocity
on the shroud wall in between two consecutive inlets, gives
rise to an oscillatory variation in the velocity of a fluid parti-
cle if one tracks its motion along a spiral surface streamline.
The amplitude of the fluctuations progressively decreases; this
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feature in the Lagrangian description is directly related to the
approach to axisymmetric condition in the Eulerian descrip-
tion of the velocity field within the inter-disc spacing. The
paper establishes the fluid dynamics of this progressive three-
dimensional evolution of the initially non-uniform flow field
toward axisymmetry.

The rotor comprises a stack of flat, parallel, coaxial discs
which are closely spaced (of the order of 100 µm). The rotor
is enclosed by a stationary shroud. A small radial clearance
is maintained between the stationary shroud and the rotor.
The shroud-wall, accommodating multiple discrete inlets, is
discontinuous. Each of the inlets occupies only a small por-
tion (∼2◦ – 6◦) of the whole periphery (i.e., 360◦) of the rotor.
Through the inlet-openings, working fluid is injected nearly
tangentially into the small passage between the stationary
shroud and the rotor. Due to a non-zero (inward) radial veloc-
ity component, the fluid in this narrow passage enters into the
inter-disc-spacings (of the order of 100 µm) and approaches
towards the exhaust port located at the centre of each
disc.

The flow in shrouded co-rotating discs has been dis-
cussed by a number of researchers, and many flow features
are explained in Refs. 8–12. Abrahamson et al., in their
experimental investigation with shrouded co-rotating discs,8

observed three distinct regions of flow, viz., an inner region
near the hub acting as a solid-body, an outer region domi-
nated by large counter-rotating vortices, and a boundary layer
region on the shroud. Huang and Hsieh10 employed parti-
cle image velocimetry (PIV) and observed five characteristic
regions (solid-body rotation region, hub-influenced region,
buffer region, vortex region, and shroud-influenced region).
Wu11 also employed PIV and quantitatively identified the
shroud-influenced region. The knowledge acquired from the
study of flow between shrouded co-rotating discs helps one
to understand the aerodynamics of hard disc drives (HDD).
Hendriks13 studied the flow-induced vibration (FIV) of discs
in HDD by computational fluid dynamics (CFD) simulations;
and, Shirai et al.14 performed experiments on FIV in HDD.
The present flow configuration is different from the configu-
rations considered in Refs. 8–14. In Refs. 8–14, the fluid is
driven by the rotational motion of the discs, whereas, in the
flow configuration discussed in the present paper, the fluid
drives all disc-surfaces. In the transient starting-up process,
the tangential momentum of the fluid coming out of the inlet
(nozzle) applies a drag force, because of the no slip boundary
condition, on the surfaces of the initially static discs and the
discs start rotating with an angular acceleration. What final
steady rotational speed Ω is attained by the discs depends on
the load applied on the shaft connected to the discs. Instead
of modelling the transient starting-up process, here we try to
determine the steady state solution directly. For this, the inlet
flow conditions and the rotational speed Ω of the discs are
specified at the respective boundaries, and the steady state
flow solutions are obtained. At the steady state, the loss of
angular momentum by the fluid between the inlet and the
outlet is equal in magnitude to the integrated torque applied
by the shear stress acting on the disc surfaces. The so deter-
mined power output from the steady flow simulations is the
same as the above-mentioned load for which the discs, being

driven by the fluid, would have attained the same rotational
speed Ω asymptotically at the end of the transient starting-up
process.

Another differentiating aspect of the present study (as
compared to Refs. 8–14) is that there is a superposed inward
flow by discrete multiple nozzles set at the periphery of the
shrouded discs. The presented three-dimensional flow field,
which is non-uniform in r, θ, and z directions, is useful for
comprehending the fluid dynamics within a Tesla disc tur-
bine invented and patented15 by the famous scientist Nikola
Tesla. Most theoretical studies of Tesla disc turbines assume
axisymmetric inlet condition at the periphery of the rotor.
Many practical implementations, on the other hand, employ
discrete nozzles at the rotor periphery. This paper is intended
to bridge this gap by providing a systematic study of the inter-
action of discrete multiple inflows with the rotor consisting
of closely spaced co-axial discs. Such a study is interest-
ing from a fundamental point of view, and the present work
focuses on establishing physical understanding of the fluid
dynamics. The fluid dynamics eventually has important impli-
cation for the performance of any engineering device utilizing
the flow configuration considered. [Continued (as yet unpub-
lished) work by the present authors, for example, has shown
that the efficiency of the Tesla disc turbine can be increased
very significantly by increasing the number of nozzles and
that the highest efficiency is obtained when axisymmetric
boundary condition can be established at the rotor inlet (i.e.,
at the outer periphery).] Such considerations of the role of
flow symmetry on the performance of any specific engineer-
ing device are, however, not included in this work. (Many
aspects of performance of a Tesla disc turbine are discussed in
Refs. 16–18.)

According to Czarny et al.,19 while the geometry
may be strictly axisymmetric, it is possible to have non-
axisymmetric patterns for turbulent (and unstable) flow adja-
cent to rotating discs. Several studies are available in the
literature dealing with non-axisymmetric flow in an axisym-
metric geometric-configuration formed by parallel, coaxial
discs. Czarny et al.19 showed non-axisymmetric flow pat-
terns in a rotor-stator disc cavity; Nore et al.20 showed non-
axisymmetric flow patterns between exactly counter-rotating
discs; and, Hewitt and Al-Azhari21 found non-axisymmetric
flow between two independently rotating infinite, paral-
lel discs. In Refs. 19–21 non-axisymmetry arises due to
turbulent flow. We, however, consider laminar flow. Non-
axisymmetry, in the present study, arises due to the presence
of a stationary shroud and discrete inlets in the flow configu-
ration.

The complex interaction of the discrete multiple inflows
within the small radial clearance space between the shroud
and the rotor, the three-dimensional spatial evolution during
the subsequent flow through the rotor-rotor cavity, and the
attainment of a nearly axisymmetric distribution towards the
outlet have been investigated in this paper. We examine the
effects of the number of inlets (N inlet), the rotational speed
of the discs (Ω), and the radial clearance between the rotor
and the shroud (∆rc) on the fluid dynamics of flow through
the rotating cavity. In order to capture the physics thoroughly,
fully three-dimensional CFD simulations are performed on
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a fine grid, which is necessary to capture the fluid dynam-
ics at a small scale inside the clearance space. Each CFD
simulation is run to a high degree of convergence (maxi-
mum RMS residual being 10�6). The CPU time for each
simulation varied from about 4 h to about 32 h, run on a
cluster (x86-64 architecture and 198 GB RAM) of 16 proces-
sors [Intel(R) Xeon(R) CPU E5-4640 with base frequency of
2.40 GHz].

II. METHOD OF CFD SIMULATION

The compressible Navier-Stokes equations are solved by a
commercially available CFD software CFX 15.22 In our earlier
related work,1,2,18 we used the incompressible formulation. For
the present work with discrete inflows, the local Mach num-
ber in certain cases is such that the compressibility effect may
be relevant. For example, the maximum local Mach number
is 0.35 for N inlet = 4, and the maximum local Mach number
is 0.66 for N inlet = 2. Thus the energy equation is included
in the present simulations to account for the compressibil-
ity effect wherever necessary. (This increased the requirement
for computational resources and the CPU time, but both were
affordable for the present exploratory study.) The governing
equations are as follows:
continuity equation,

∂ρ

∂t
+ ∇ ·

(
ρ~U

)
= 0, (1)

momentum equation,

∂
(
ρ~U

)
∂t

+ ∇ ·
(
ρ~U ⊗ ~U

)
= −∇p + ∇ · τ, (2)

energy equation,

∂ (ρht)
∂t

−
∂p
∂t

+ ∇ ·
(
ρ~U ht

)
= ∇ · (λ ∇T ) + ∇ ·

(
~U · τ

)
, (3)

where ~U is the velocity vector, p is the static pressure, and T
is the temperature. τ is the stress tensor, which is expressed as
follows:

τ = µ

(
∇~U + (∇~U)

T
−

2
3
δ ∇ · ~U

)
. (4)

In Eq. (3), ∇ ·
(
~U · τ

)
represents the viscous work term, i.e.,

the work done due to viscous stresses. ht is the total enthalpy,
which is related to the static enthalpy h(T, p) by ht = h + ~U2/2.
The effect of gravity is neglected in the analysis.

Air is used as working fluid. The dynamic viscosity µ,
thermal conductivity λ, and constant pressure specific heat
capacity cp are considered to be constant. The values of µ, λ,
and cp used here are adopted for a reference state (at 25 ◦C and
1 atmospheric pressure). The density of air, ρ, is modelled by
the equation of state for an ideal gas. The equation of state for
an ideal gas is as follows:

ρ = pabs/RT , (5)

where pabs is the absolute pressure (the gauge pressure being
denoted by p) and R is the specific gas constant of air (the
ratio of the universal gas constant and the molecular weight
of air).

CFX 15 is a finite volume solver. Navier-Stokes equa-
tions [Eqs. (1)–(4)] are solved for finite volumes which are
generated by discretizing the spatial domain into a mesh of
discrete nodes. The solver uses co-located grid, and there-
fore special techniques proposed by Rhie and Chow23 are
implemented to avoid the formation of a decoupled (checker-
board) pressure field. The implicit formulation24 is used. Shape
functions are employed to evaluate spatial derivatives for all
the diffusion terms and to calculate the velocity and pressure
at integration points from the velocity and pressure at mesh
nodes. The high resolution scheme,22 whose spatial order may
vary between one and two, is utilized to evaluate the advec-
tion terms at the integration points. The coupled solver, which
solves the equations (for Ux, Uy, Uz, p, etc.) as a single
system, is used for the simulations. Double precision arith-
metic is adopted for all numerical calculations given in this
paper.

It is already mentioned that the rotor consists of a stack
of discs (generally 10–20 discs). Instead of solving the flow
field for the full rotor, we have considered only two discs of
the full rotor assuming that the flow characteristics between
any two discs of the rotor are the same. This assumption is not
strictly applicable in the region between the end discs and the
casing where the flow field is similar to the flow field within a
stator-rotor. However, the effect of the end-discs on the overall
fluid dynamics and torque generation is not significant when
the number of discs is large. The computational domain, com-
prising two discs, is shown in Fig. 1. The lower disc is at
z = 0, and the upper disc is at z = b where b is the inter-disc-
spacing. Each disc has an outer radius rd and inner radius
ro (the subscript o denotes the location of the outlet). Both
the shroud-wall and the discrete inlets are located at the same
circumferential plane which is at a radius ri. The subscript
i denotes the inlet. A small radial clearance is maintained
between the discs and the circumferential plane containing
the shroud-wall and the discrete inlets. The radial clearance
∆rc equals (ri � rd). In the present CFD simulations, the geo-
metric parameters rd , ro, and b are fixed; their values being
rd = 25 mm, ro = 13.2 mm, and b = 300 µm. The value of
ri is varied by varying ∆rc. The objective is to investigate
the effect of ∆rc when the rotor-size is fixed. The azimuthal
extent covered by each inlet is 4◦. The allocation of the inlets
is such that they divide the shroud-wall into a finite number
of identical parts. For example, in a four-inlet configuration,

FIG. 1. Schematic diagram of the computational domain between two co-
rotating discs. (The inter-disc-spacing, in relation to the radius, is exaggerated
in the sketch for clarity.)
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the inlets divide the shroud-wall into four identical parts (see
Fig. 1).

The CFD simulations are performed for the following
boundary conditions. (i) At inlets, mass flow rate (ṁ), flow
angle (αi), and total temperature (T t) are specified. The study
is conducted for a constant value of mass flow rate through
the outlet (ṁo = 3 × 10−5 kg/s/rotating channel); each inlet
is assumed to inject identical amount of mass flow rate;
therefore, ṁi = ṁo/Ninlet . Unless otherwise specified, we con-
sider T t ,i = 313 K and αi = 6◦ with the tangential direction.
Due to nonzero αi, the velocity vector at the inlet has tan-
gential and radial components denoted, respectively, by Uθ

and Ur . (The symbol U denotes the absolute velocity and the
symbol V denotes the relative velocity.) (ii) At the outlet, the
gauge value of static pressure is zero. (iii) No slip condition is
specified at the stationary wall of the shroud. (iv) No slip con-
dition is set on the disc surfaces (upper and lower). A rotational
speed Ω of the disc-surface is also set. (v) The circular strips
(upper and lower) extended from rd to ri are modelled by the
“symmetry” boundary condition. The circular strip is shown in
Fig. 1.

We present the CFD solutions for steady, laminar, sub-
sonic flow (the maximum local Mach number is 0.66). To
maintain laminar flow, the dynamic similarity number Ds
(Ds ≡ ��Ur,i�� b2/ν ri) is kept below 10,2,3 where, ��Ur,i�� is the
radial velocity at the inlet and ν is the kinematic viscosity
of the working fluid. The value of the maximum Reynolds
number based on the local radial velocity at r = ri (i.e.,
��Ur,i�� b/ν) is 547 (which occurs for the two-inlet configura-
tion). The value of the maximum Reynolds number based
on the area-averaged radial velocity at r = ri (i.e., ���Ūr,i

��� b/ν)
is 12.7.

Grid-independence test has been carried out separately for
each flow configuration (i.e., for each value of N inlet). Table I
and Fig. 2 show a few pertinent details for N inlet = 4, overall
features of the grids for other values of N inlet being summarized
in Table II. We have used mapped, hexahedral computational
cells for the results presented in this paper. The grids are dis-
tributed differently in the r, θ, and z directions in accordance
with the difference in the flow physics in the three directions.
The grid distribution in the z-direction is non-uniform with
very small grid size close to the surfaces of the two discs
(to capture the velocity gradient on the surface accurately)
and with progressively larger grid size as one moves away
from the surfaces to the middle of the inter-disc gap (with
a successive ratio of 1.05). Between two consecutive inlets,
the grids in the θ-direction are non-uniformly distributed. Very
small grid is used at the junction of any inlet and its adjacent

TABLE I. Grid independence test (for N inlet = 4, ṁo = 30 mg/s, Ω = 2000
rad/s, αi = 6◦, T t ,i = 313 K, ∆rc = 0.2 mm).

Number of grids Area-averaged p

Grid in r, θ, and Total number [gauge value] at any of
distribution z directions of cells the four inlets (Pa)

Coarse (130 × 220 × 40) 1 144 000 1345
Standard (208 × 340 × 60) 4 243 200 1317
Fine (270 × 400 × 75) 8 100 000 1312

FIG. 2. The attainment of the grid independent velocity profiles by grid refine-
ment simultaneously in r, θ, and z directions. (Simulations are performed for
N inlet = 4, ṁo = 30 mg/s, Ω = 2000 rad/s, αi = 6◦, T t ,i = 313 K, ∆rc = 0.2
mm. z-profiles of Ur and Uθ are displayed at r = 15 mm and θ = 0◦. Details
of coarse, standard, and fine grid distributions for N inlet = 4 are given in
Table I.)

shroud-wall. The grid-size, starting from the end of a particu-
lar inlet, increases progressively along the shroud-wall, attains
a maximum value in the midway, and then decreases
progressively in the vicinity of another inlet. Uniform grid

TABLE II. Details of fine grid distributions for various flow configurations.

Flow Total number Number of grids in r, θ,
configuration of cells and z directions

2-inlet 10 432 800 (322 × 360 × 90)
4-inlet 8 100 000 (270 × 400 × 75)
8-inlet 6 489 600 (208 × 520 × 60)
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distribution is taken within the small azimuthal extent (i.e., 4◦)
of any inlet. In the r-direction, the grids are divided into two
zones—non-uniform and uniform.

In order to capture the boundary layers attached to the
stationary shroud and the rotating discs, very small grid-size
is used near the inlet, and the grid distribution is non-uniform
near the inlet. The rest of the radial extent up to the outlet
is meshed uniformly. Table I indicates that after attaining the
standard grid distribution, any further grid refinement results
in only small changes of the output parameters. We, how-
ever, present the results obtained for the fine grid distribution
(Table II) in Sec. III.

III. RESULTS AND DISCUSSION

This section is divided into three subsections. Section III A
shows the effect of increasing the number of inlets N inlet

on the fluid dynamics of the present physical configuration.
Section III B provides the effect of increasing the rotational

speed of the discsΩ. Section III C demonstrates the effect of the
radial clearance ∆rc on the velocity distributions. This section
also illustrates the fluid dynamics within the radial clearance
space between the shroud and rotor.

A. Effect of increasing the number of inlets (N inlet )

In this section, we investigate the effect of increasing the
number of inlet-nozzles (N inlet) on the distributions of velocity
and pressure keeping all other input parameters, viz., ṁo, Ω,
αi, T t ,i, and∆rc, fixed. In Fig. 3, the contours of radial velocity
Ur , absolute tangential velocity Uθ , and static pressure p, for
2-inlet (N inlet = 2), 4-inlet (N inlet = 4), and 8-inlet (N inlet = 8)
configurations, are shown. The contours are shown on the
middle-plane of the inter-disc-spacing (i.e., at z = b/2).

If one moves along a radial line, it is found that Ur (for any
nozzle-configuration) at first decreases from its large value at
the inlet openings, finally increasing again near the rotor exit.
This flow feature is consistent with the equation of continuity.
Each inlet occupies only a small azimuthal extent (i.e., 4◦).

FIG. 3. Distributions of absolute tan-
gential and radial velocities and static
pressure on the middle-plane of the
inter-disc-spacing (i.e., on z = b/2) for
three different flow configurations, viz.,
2-inlet, 4-inlet, and 8-inlet configura-
tions, excluding the solution in the
radial clearance space (ṁo = 30 mg/s,
Ω = 1500 rad/s, αi = 6◦, T t ,i = 313
K, ∆rc = 0.2 mm. The same scales
are used for a given flow variable to
understand how the flow asymmetry
depends on the number of discrete inlet-
nozzles; the minimum or maximum
of scales shown here does not repre-
sent the minimum or maximum of a
flow variable in any inlet configura-
tion. As an example, the value of Ur ,i
for a 2-inlet configuration is �25 m/s;
if we include this value in the contour
plots, then the fine details of flow asym-
metry shown in this figure cannot be
revealed).
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Therefore, in any particular configuration, the sum of the
azimuthal extents covered by all the inlets is much less than
360◦. For example, for a 4-inlet configuration, this sum is
only 16◦. In other words, the circular boundary at r = ri

is mostly occupied by the solid shroud-wall. As the fluid
moves slightly inward from r = ri, the full 360◦ extent is
available for the fluid flow due to the absence of the shroud
wall. This is why the magnitude of radial velocity has to
decrease to satisfy the equation of continuity. The decrease
of |Ur | is therefore attributed to an effort of relaxing the
azimuthal non-uniformity imposed at r = ri. We now explain
why |Ur | increases towards the exit. For r < ri, the avail-
able flow area, proportional to r, decreases towards the outlet.
The effect of decreasing flow area counteracts the effect of
azimuthal spreading near the inlet. This is why, below a certain
radius, |Ur | increases for any further decrease in radius. When
other input parameters are fixed, non-axisymmetry decays
faster with increasing N inlet . This feature is demonstrated
while comparing the Ur-distribution for an 8-inlet config-
uration with the Ur-distribution for a 2-inlet configuration
(Fig. 3).

Figure 3 shows that the near-axisymmetry in the contours
of Uθ and p is obtained at a larger radial location, as com-
pared to that in the contours of Ur . This characteristic can be

explained in the following way. Consider a relative frame of
reference, in which an observer is rotating at the same angular
speed as the discs’ rotational speed (Ω). The relative tan-
gential velocity is denoted by V θ . The relation between the
absolute and relative components of tangential velocity is as
follows:

Uθ = Vθ +Ωr. (6)

Out of the two components of Uθ , Ωr is independent of θ.
The non-axisymmetry displayed in the contour plot of Uθ is
solely due to the non-axisymmetric distribution of V θ . For the
adopted geometry and input parameters, V θ decreases substan-
tially near the inlet, andΩr becomes the dominant part of Uθ .
Although the non-axisymmetry in V θ persists much longer
along the flow path, (the relative measure of) axisymmetry in
Uθ is approached much earlier (i.e., at a larger radial location)
due to the contribution of Ωr. Figure 3 shows that axisymme-
try in the static pressure tends to be established more readily
(i.e., occurs at a greater radial location closer to the inlet) as
compared to the radial velocity component. In this regard, it
should be mentioned that the boundary condition of uniform
static pressure is applied at the outlet (no such boundary con-
dition is applied on the radial or relative tangential velocity at
the outlet).

FIG. 4. Attainment of axisymmetry along a surface streamline located on the middle-plane of the inter-disc-spacing (i.e., on z = b/2) for a four-inlet flow-
configuration. (a) A surface streamline extending from rd to ro; (b) the magnitude of radial velocity along the surface streamline; (c) tangential velocity along
the surface streamline; (d) relative tangential velocity along the surface streamline. (ṁo = 30 mg/s, Ω = 2000 rad/s, αi = 6◦, T t ,i = 313 K, ∆rc = 0.2 mm.)
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An interesting flow feature can be most clearly observed
in the Ur-contour for the 2-inlet configuration. It is found that
the mass flow rate at the rotor exit is not axisymmetric; the most
interesting feature of this circumferential variation is that the
locations of the greatest mass flow rate at exit do not fall on the
radial lines extended from the inlets but are situated somewhere
in between the radial positions of two consecutive inlets. Trans-
port of mass by the significant amount of tangential motion is
responsible for this phenomenon.

Figure 4 and several subsequent figures use the concept of
surface streamlines. The surface streamlines are constructed on
a chosen plane surface from the components of in-plane veloc-
ity, i.e., by not considering the velocity component which is
perpendicular to the chosen surface. All the surface streamlines
shown in the present paper are constructed on a special r � θ
plane which passes through z = b/2 (i.e., on the middle-plane of
the inter-disc-spacing). For this particular surface, the surface
streamlines are also the true streamlines since the out-of-plane
velocity, i.e., Uz, is actually zero at z = b/2.

Figure 4(a) shows a surface-streamline at z = b/2 for a
4-inlet configuration. The surface-streamline is obtained by
post-processing the velocity fields at z = b/2. The locations

of the four inlets are indicated by roman numerals (I, II, III,
and IV). The surface-streamline started at inlet-I contin-
ues up to the outlet following a nearly spiral-shaped curve.
Figures 4(b)–4(d) display, respectively, the variations of |Ur |,
Uθ , and V θ along the surface-streamline. The wavy appear-
ance of the curves (representing |Ur |, Uθ , and V θ ) arises due
to the existence of non-axisymmetry in the flow field. Crests
and troughs of the wavy |Ur | versus r curve are indicated by
numbers 1, 2, 3, . . . [see Fig. 4(b)]. The same numbers are
inserted in Fig. 4(a) to display the locations of these crests and
troughs on the surface-streamline. It is observed that the crests
appear close to the azimuthal locations of the inlets, while the
troughs occur (azimuthally midway) between two consecutive
inlet-nozzles. At the periphery (r = ri), between two consecu-
tive inlet-nozzles, a portion of the shroud-wall is present. The
radial velocity is zero at the shroud-wall, whereas its mag-
nitude is large at the inlet-regions. Such a non-axisymmetric
condition at r = ri influences the downstream distribution of
radial velocity and governs the origination of the crests and
troughs.

For axisymmetric condition, Ur is not a function of θ
and its magnitude increases toward the outlet according to

FIG. 5. Attainment of axisymmetry along a surface streamline located on the middle-plane of the inter-disc-spacing (i.e., on z = b/2) for an eight-inlet flow-
configuration. (a) A surface streamline extending from rd to ro; (b) the magnitude of radial velocity along the surface streamline; (c) tangential velocity along
the surface streamline; (d) relative tangential velocity along the surface streamline. (ṁo = 30 mg/s, Ω = 2000 rad/s, αi = 6◦, T t ,i = 313 K, ∆rc = 0.2 mm.)
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the relation |Ur | ∝ 1/r. Figure 4(b) shows that the spatial
oscillation in Ur decays in the downstream direction, whereby
the crests and the troughs progressively tend to the unique line
that would be obtained in the case of axisymmetric flow. In
other words, there is a decay of the non-axisymmetry toward
the outlet.

Figure 4(d) exhibits that in the variation of V θ , the influ-
ence of non-axisymmetry is retained even near the outlet.
Figure 4(c) exhibits that in the variation of Uθ , the influ-
ence of non-axisymmetry has disappeared within a short
radial distance from r = ri. It is already explained why Uθ

attains axisymmetry within a short radial distance from r = ri.
Figure 4(c) also shows that along the surface-streamline,
the wavy trend of Uθ is converted to a nearly linear trend
(explanation given in the next paragraph).

Figure 5(a) shows a surface-streamline on the plane
z = b/2 for an 8-inlet configuration. Figures 5(b)–5(d) dis-
play, respectively, the variations of |Ur |, Uθ , and V θ along
the surface-streamline. Near the inlet, Uθ decreases sharply
[Fig. 5(c)]. It is so because Ωr decreases linearly with radius
and V θ decreases drastically [Fig. 5(d)]. In other radial loca-
tions, the magnitude of V θ is much smaller than the magnitude
of Ωr, and the change in V θ is not drastic. Thus Uθ decreases

almost linearly. It was mentioned that starting from r = ri, |Ur |

decreases up to a certain radius, but then onward increases (up
to the outlet). This flow feature is observed in Fig. 5(b) [also
in Fig. 4(b)].

As the number of inlets N inlet increases, the spatial oscil-
lation in various velocity components subsides more quickly
(i.e., closer to the inlet). A comparison of Figs. 4(b)–4(d),
respectively, with their counterparts Figs. 5(b)–5(d) estab-
lishes this generic trend.

B. Effect of increasing rotational speed
of the discs (Ω)

The effect of increasing Ω is investigated keeping all
other input parameters, viz., ṁo, αi, T t ,i, ∆rc, and N inlet , fixed.
Figure 6 shows the contours of Ur on the middle-plane of
the inter-disc-spacing (i.e., on z = b/2) for an eight-inlet flow-
configuration (N inlet = 8). Figures 6(a)–6(c) display the con-
tours for Ω = 1000 rad/s, Ω = 1500 rad/s, and Ω = 2000 rad/s,
respectively.

At first, we focus our attention on the region near r = ri,
where Ur is typically non-axisymmetric because of the pres-
ence of discrete inlets. The magnitude of Ur is large adjacent
to each of the inlets, and the magnitude of Ur is small between

FIG. 6. Effect of increasing the rotational speed of the discs (Ω) on the radial velocity distribution. All contours are located on the middle-plane of the
inter-disc-spacing (i.e., on z = b/2) for an eight-inlet flow-configuration. (a) Contours for Ω = 1000 rad/s; (b) contours for Ω = 1500 rad/s; (c) contours for
Ω = 2000 rad/s; (d) z-variations of Ur at r = 15 mm and θ = 0◦ obtained for the three representative values of Ω. (ṁo = 30 mg/s, αi = 6◦, T t ,i = 313 K, ∆rc =
0.2 mm.)
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two consecutive inlets. For Ω = 2000 rad/s, a portion of the
large-|Ur |-region enters into the small-|Ur |-region. Due to
such entrainment, the large-|Ur |-region looks like a blob with a
tail [see Fig. 6(c)]. Such an interaction between small-|Ur | and
large-|Ur |-regions does not occur for small values of Ω. Con-
sequently, the tail-like-feature does not appear, e.g., see Fig.
6(a) corresponding toΩ = 1000 rad/s. It has already been men-
tioned that at a short radial distance from r = ri, |Ur | decreases
because of the azimuthal spreading, and Uθ also decreases
and becomes of the order of Ωr. The value of Ω determines
the difference between the magnitudes of Uθ and |Ur | near r
= ri. When Ω is large, Uθ is much greater than Ur near r =
ri. At large values of Ω, due to the presence of a large tangen-
tial momentum, a chunk of fluid adjacent to the inlet region
shifts tangentially in the direction of disc-rotation, keeping
its radial momentum (which drives the fluid radially inward)
intact. Such tangential shift results in the tail-like-feature.

We now focus our attention on the region near r = ro. Near
r = ro, the distribution of Ur is more or less axisymmetric in
nature, and the value of Ur (on z = b/2 plane) decreases with
an increase in Ω. To investigate the reason of the decrease of
Ur with increasing Ω, z-profiles of Ur are calculated at vari-
ousΩ. Figure 6(d) shows the z-profiles obtained at r = 15 mm
and θ = 0◦ for the three different values of Ω. When Ω = 1000
rad/s, the z-variation is parabolic in nature. In the parabolic
distribution, the maximum value occurs at z = b/2. When
Ω = 1500 rad/s, the z-profile is no longer parabolic. A flat
trend is attained near z = b/2. With a further increase in Ω, a
W-shaped profile is obtained, e.g., see the profile correspond-
ing toΩ = 2000 rad/s. In such W-shaped profiles, two maxima
exist while there is a minima at the centreline. The transition
from the parabolic to flat to the W-shaped profiles explains
why, with increasing Ω, the magnitude of Ur at the centreline
decreases near the outlet.

The formation of the W-shaped profiles can be explained
as follows. Near the outlet of the representative 8-inlet con-
figuration, axisymmetry is nearly attained and the Mach num-
ber remains below 0.3. We, therefore, consider the continuity
equation for steady, laminar, axisymmetric, and incompress-
ible flow,

1
r
∂(rUr)
∂r

+
∂Uz

∂z
= 0. (7)

An integral form of Eq. (7) is

− Ur =

∫ (
∂Uz

/
∂z

)
rδr

r
+

c(z)
r

. (8)

The contributions of the viscous effect and total inertia (com-
prising inertia, Coriolis, and centrifugal terms) in the radial
momentum equation would change with a change in Ω.1 In
the subsequent discussion, the total inertia is called inertia
for simplicity. When Ω is small, the viscous effect dominates
over the inertial effect and the pressure gradient term in the
radial momentum equation is principally balanced by the vis-
cous term. The Ur � z profile is then found to be parabolic.
Reference 7 shows that when the parabolic profile is a good
approximation, the term (∂Uz

/
∂z) can be neglected. With an

increase inΩ, as the inertial effect increases, the first term in the
R.H.S. of Eq. (8) is no longer negligible. At the middle-plane

of the inter-disc-spacing (i.e., on z = b/2), where the viscous
effect is expected to be the smallest, this term perturbs the pro-
file considerably. On the other hand, near the disc-surfaces, this
term perturbs the profile to a smaller extent. Thus a W-shaped
profile is obtained for a large value of Ω.

It has already been shown that near the outlet (r = ro), the
z-profiles of Ur are parabolic for comparatively small values of
Ω (e.g.,Ω = 1000 rad/s). However, even whenΩ is small, the z-
profiles of Ur may not be parabolic near r = ri as a consequence
of the non-axisymmetry introduced by the presence of multiple
discrete inlets.

A comparison of Figs. 6(a)–6(c) shows that the approach
to axisymmetry in the radial velocity Ur is delayed (i.e., the
radial location moves toward the outlet) as the rotational speed
Ω is increased. Similar results (not displayed here) for rel-
ative tangential velocity V θ and static pressure p show that
the amplitudes of fluctuations in these quantities at a given
radial location increase with increasing Ω. However, when
these amplitudes are normalized by the average values of the
respective quantities at the same radial location, the resulting
normalized fluctuations are found to decrease marginally with
increasing Ω. The normalized fluctuation in Ur at any radial
location, on the other hand, increases with increasing Ω.

The progressive development of the z-profiles of Ur

is examined along a surface streamline located on the
middle-plane of the inter-disc-spacing and constructed from
r = ri to r = ro. The streamline is shown in Fig. 7. There
are 20 red dots shown on the streamline indicating 20 spe-
cial locations on the θ � r plane at which the z–profiles of Ur

are determined. These profiles are organized in ten sub-plots.
(Note that the ordinates of the velocity profiles use two differ-
ent scales—one for points 1-8 and the other for points 9-20).
The profiles at odd-numbered locations (e.g., 1, 3, and 5,
etc.), which represent the azimuthal positions of the inlets, are
shown by dotted lines. The profiles at even-numbered loca-
tions (e.g., 2, 4, and 6, etc.), which represent the azimuthal
midpoints between two consecutive inlets, are shown by solid
lines. The figure shows that with decreasing radius, the pro-
files change from W-shaped to flat to parabolic. The velocity
at z = b/2 at the even-numbered locations (solid lines) seems
to increase continuously from the inlet to exit. The veloc-
ity at z = b/2 at the odd-numbered locations (dotted lines)
decreases at first and then onward increases as one moves
from the inlet to exit. The difference between the solid and
the dotted lines decreases with a decrease in radius, indicat-
ing the progressive attainment of an axisymmetric condition.
When axisymmetry is almost attained, the magnitude of Ur

along both solid and dotted lines increases (see curves 15-
20) due to the progressive decrease of the flow cross-sectional
area.

It is to be noted that results for Ω = 1000 rad/s are shown
in Fig. 7. Results for a range of rotational speeds, depicted
in Fig. 6, show that the Ur � z profile near the outlet can be
W-shaped when Ω is large. Thus the evolution of particular
shapes (W-shaped to flat to parabolic) shown in Fig. 7 may
not be obtained at higher rotational speeds; the progressive
approach of the two sets of profiles (shown by dotted and solid
lines) to each other still occurs in the process of attainment of
the axisymmetric condition.
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FIG. 7. Progressive development of the z-profiles of Ur along a surface streamline located on the middle-plane of the inter-disc-spacing for an eight-inlet
flow-configuration. (The dots on the streamline indicate the locations where the profiles are presented. Blue dotted lines indicate velocity profiles at points whose
azimuthal positions are directly aligned with the inlets, and red solid lines indicate velocity profiles at points which fall in the middle of two consecutive inlets.
Note that the ordinates of the velocity profiles use two different scales—one for points 1-8 and the other for points 9-20. Simulation is performed for ṁo = 30
mg/s, Ω = 1000 rad/s, αi = 6◦, T t ,i = 313 K, ∆rc = 0.2 mm.)

C. Effect of radial clearance (∆rc)
on the velocity distribution

CFD simulations are performed for both ∆rc = 0 and
∆rc , 0. Representative results are shown in this section
for a 2-inlet configuration (N inlet = 2). Figure 8 shows the
effect of radial clearance on the contours of absolute tangen-
tial velocity near the inlet. Figure 8(a) corresponds to ∆rc

= 0 and Fig. 8(b) corresponds to ∆rc = 0.2 mm. For both
cases, from inlet-I, the tangential component of fluid’s momen-
tum is transported in the θ-direction along the shroud wall.
For ∆rc = 0.2 mm, the large valued contour-band, starting
from inlet-I, is extended almost up to inlet-II, whereas for
∆rc = 0, the large valued contour-band disappears well before
inlet-II.

Figure 9 shows the effect of radial clearance on the dis-
tributions of radial velocity. Figure 9(a) corresponds to ∆rc =
0 and Fig. 9(b) corresponds to ∆rc = 0.2 mm. For ∆rc = 0,
the radial velocity (Ur) is typically non-axisymmetric near
the outlet. It is observed that the azimuthal location of the
large-Ur-zone near exit is offset by about 45◦ (for the case
of two inlets) from the azimuthal location of inlet-I in the
direction of disc rotation. High absolute tangential velocity
near inlet-I drives the fluid in the direction of disc rotation,
and the radial entry of the fluid into the inter-disc-spacing
is affected by the distribution of absolute tangential veloc-
ity along the rotor’s periphery. For ∆rc = 0.2 mm, it can be
observed that the radial velocity is almost axisymmetric near
the outlet. The axisymmetry of radial velocity near the out-
let is attained due to the nearly axisymmetric distribution
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FIG. 8. Effect of radial clearance on the distributions of absolute tangential
velocity near the inlet. (a) Without radial clearance (∆rc = 0); (b) with radial
clearance (∆rc = 0.2 mm). (N inlet = 2, ṁo = 30 mg/s,Ω = 1500 rad/s, αi = 6◦,
T t ,i = 313 K.)

FIG. 9. Effect of radial clearance on the distributions of radial veloc-
ity. (a) Without radial clearance (∆rc = 0); (b) with radial clearance
(∆rc = 0.2 mm). (N inlet = 2, ṁo = 30 mg/s, Ω = 1500 rad/s, αi = 6◦,
T t ,i = 313 K.)

of absolute tangential velocity [Fig. 8(b)] along the rotor’s
periphery.

In brief, an increase in the radial clearance ∆rc from zero
to a finite value assists in the attainment of the axisymmet-
ric condition for both tangential and radial velocities, i.e., the
axisymmetry is obtained at a larger radial location. With suit-
able combinations of N inlet , Ω, and ∆rc, the axisymmetry in
absolute tangential velocity may be obtained quite close to the
inlet itself, whereas the non-axisymmetry in radial velocity
persists much longer along the flow path and axisymmetry is
approached (for the adopted geometry) only near the outlet, if
at all.

1. Fluid dynamics inside the radial clearance space
between the rotor and the shroud

The radial clearance space refers to the region between ri

and rd . The difference of ri and rd , i.e., (ri � rd) ≡∆rc, is small
compared to the radii ri and rd . The fluid dynamics in the radial
clearance space is complex since the fluid has to negotiate with
two different non-uniformities within a short radial distance
(∆rc). At r = ri, a source of non-uniformity is present in the
θ–direction, depending on the number and arrangement of the
discrete inlets in the circumferential plane of the stationary
shroud. At r = rd , a z–directional non-uniformity exists due
to the presence of two closely spaced disc-surfaces (on which
the boundary condition Uθ = Ωr is imposed as a result of no
slip). The contours of Uθ on various r � z planes between
any two inlets are constructed in Fig. 10, which, among other
things, exhibit how the two above-mentioned non-uniformities
govern the (rather dramatic) three-dimensional evolution of
the locations of the large-Uθ and small-Uθ zones in the small
clearance space.

For an 8-inlet flow-configuration (N inlet = 8), the
azimuthal extent of inlet-I is �2◦ ≤ θ ≤ 2◦, and the azimuthal
extent of inlet-II is 43◦ ≤ θ ≤ 47◦. In the space between inlet-I
and inlet-II, eight representative r-z planes, viz., P1, P2, . . . ,
P8, are chosen. Figure 10 shows these eight r-z planes and
the distribution of absolute tangential velocity on these eight
planes. It has been observed that the contours are symmet-
ric about the mid-plane of the inter-disc-spacing; therefore,
we have shown only the upper half, i.e., from the upper disc-
surface up to the mid-plane. z = 0.3 mm and z = 0.15 mm
indicate the locations of upper disc-surface and mid-plane of
the inter-disc-spacing, respectively.

On the stationary wall of the shroud (at r = 25.2 mm),
no slip boundary condition is specified. The contours on P2,
P3, . . . , P8 exhibit the presence of a boundary-layer developed
near the shroud-wall. The stationary wall is absent within the
region �2◦ ≤ θ ≤ 2◦, where the boundary layer vanishes (see
the contours on P1). Figure 10 shows that the large-Uθ -zone
changes its location with an increase in θ from θ = 0◦. The
following three features pertaining to the location-change of
the large-Uθ -zone are mentionable. (i) From θ = 0◦ to θ = 5◦,
the large-Uθ -zone is shifted radially inward. This happens due
to the sudden appearance of boundary layer near the shroud-
wall. The growth of the boundary layer pushes the large-Uθ -
zone further in the inward radial direction (see the contours
corresponding on P2, P3, and P4). (ii) From θ = 15◦ to θ = 30◦,
the z–extent of the large-Uθ -zone diminishes and exists near
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FIG. 10. Distribution of tangential velocity within the small radial clearance between the rotor (up to r = 25 mm) and the shroud-wall (at r = 25.2 mm).
z = 0.3 mm and z = 0.15 mm indicate the locations of upper disc and mid-plane of the inter-disc-spacing, respectively. (N inlet = 8, ṁo = 30 mg/s,Ω = 1200 rad/s,
αi = 6◦, T t ,i = 313 K, ∆rc = 0.2 mm.)

the centre of inter-disc-spacing (see the contours on P4, P5,
and P6). (iii) From θ = 30◦ to θ = 42◦, the large-Uθ -zone, while
diminished in magnitude, gets shifted radially outward from
r = 25 mm to r = 25.1 mm (see the contours on P6, P7, and
P8). The value of Uθ at disc-surfaces (Uθ = Ωrd), set by the
no-slip boundary condition, is smaller than the value of Uθ at
inlet. Viscous dissipation initiated at the disc surface (present
at z = 0.3 mm) is responsible for the fluid dynamic features
described in observations (ii) and (iii) mentioned above.

IV. CONCLUSION

The paper presents a systematic computational study of
the flow in a shrouded rotor cavity (with depth of the order of
100 µm) with multiple discrete inflows revealing the physics
of how an initially non-axisymmetric flow evolves, both in
the Lagrangian and Eulerian frameworks, towards axisym-
metry. The fluid dynamics is studied by varying the number
of inlets (N inlet), rotational speed of the discs (Ω), and radial
clearance between the rotor and the shroud (∆rc), while keep-
ing the inlet mass flow rate, total temperature, and flow angle
fixed.

When the number of inlets N inlet is increased, keeping all
other input parameters fixed, the flow condition at the rotor’s
inlet becomes more uniform which assists in the attainment of
axisymmetric condition in the tangential and radial velocities,
i.e., the axisymmetry is obtained at a larger radial location. Of
the two components of the absolute tangential velocity Uθ , the
relative tangential velocity V θ depends on θ but Ωr is inde-
pendent of θ. For the adopted geometry and input parameters,
V θ decreases substantially near the inlet, and Ωr becomes the
dominant part of Uθ . Although the non-axisymmetry in V θ

persists much longer along the flow path, axisymmetry in Uθ

is approached much earlier (i.e., at a larger radial location) due
to the contribution of Ωr.

The non-uniform inlet condition for the radial and tangen-
tial velocities, consisting of high velocity at the inlet openings
and zero velocity on the shroud wall in between two consecu-
tive inlets, gives rise to an oscillatory variation in the velocity of
a fluid particle if one tracks its motion along a surface stream-
line [Figs. 4(a) and 5(a)]. The amplitude of oscillation in the
radial velocity (Ur) is much larger than that in the tangential
velocity (either Uθ or V θ ) and the oscillation in Ur persists
much longer along the spiral flow path. It is found that the crests
of the fluctuating velocities (at various turns of the spiral path)
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repeatedly occur close to the azimuthal positions of the inlets,
whereas the troughs occur close to the azimuthal mid-points
between two consecutives inlets. The amplitude of the fluctu-
ations progressively decreases; this feature in the Lagrangian
description is directly related to the approach to axisymmet-
ric condition in the Eulerian description of the velocity field.
The rate of decay of the amplitude increases, i.e., equiva-
lently the approach to the axisymmetric condition happens
at a greater radial location as the number of inlets N inlet is
increased.

When the rotational speed of the discs (Ω) is changed
keeping all other input parameters fixed, the distribution of
radial velocity is significantly altered, which may result even
in a change of the fundamental shape of its z-profile. At small
Ω, the maximum outflow occurs at the middle plane between
the two discs; whereas at largeΩ, the maximum outflow occurs
at two separate planes offset from the middle plane. Thus with
increasing Ω, the z-profile of radial velocity changes from
parabolic to flat to W-shaped (Fig. 6). This important and inter-
esting effect of Ω on the fundamental shape of the z-profile of
Ur has not been described in the previous literature.

The fluid dynamics in the radial clearance space is
complex since the fluid has to negotiate with two different
non-uniformities within a short radial distance (∆rc). At r = ri,
a source of non-uniformity is present in the θ–direction,
depending on the number and arrangement of the discrete inlets
in the circumferential plane of the stationary shroud. At r = rd ,
a z–directional non-uniformity exists due to the presence of
two closely spaced disc-surfaces (on which the boundary con-
dition Uθ =Ωr is imposed as a result of no slip). The contours
of Uθ on various r � z planes between any two inlets, con-
structed in Fig. 10, exhibit how the two above-mentioned
non-uniformities govern the rather dramatic three-dimensional
evolution of the locations of the large-Uθ and small-Uθ zones
in the small radial clearance space.

An increase in the radial clearance ∆rc from zero to a
finite value assists in the attainment of axisymmetric condition
for both tangential and radial velocities, i.e., the axisymmetry
is obtained at a larger radial location. With suitable combi-
nations of N inlet , Ω, and ∆rc, the axisymmetry in absolute
tangential velocity may be obtained quite close to the inlet
itself, whereas the non-axisymmetry in radial velocity per-
sists much longer along the flow path and axisymmetry is
approached (for the adopted geometry) only near the outlet, if
at all.

The subtle and complex fluid dynamics of the approach to
axisymmetry is comprehensively analysed in Fig. 7 by follow-
ing the progressive development of the z-profiles of Ur along
a surface streamline located on the middle-plane of the inter-
disc-spacing for an eight-inlet flow-configuration. Two sets
of velocity profiles are recorded—the first set at points whose
azimuthal positions are directly aligned with the inlets, and the
second set at points which fall in the middle of two consecutive
inlets. Both sets are of W-shape near the disc periphery, then
they become flat in the middle, finally becoming parabolic (the
particular shapes may be different at higherΩ). The maximum
velocity in the first set decreases at first due to spreading in the

azimuthal direction and then increases due to the decrease of
flow cross-sectional area. The maximum velocity in the sec-
ond set increases monotonically. The velocity profiles of the
two sets approach each other and finally become superposed
when axisymmetry is attained.
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